General Mathematics


Finite-Time Lyapunov Exponents in the Instantaneous Limit and Material Transport

Authors: Peter J. Nolan, Mattia Serra, Shane D. Ross

Lagrangian techniques, such as the Finite-Time Lyapunov Exponent (FTLE) and hyperbolic Lagrangian coherent structures, have become popular tools for analyzing unsteady fluid flows. These techniques identify regions where particles transported by a flow will converge to and diverge from over a finite-time interval, even in a divergence-free flow. Lagrangian analyses, however, are time consuming and computationally expensive, hence unsuitable for quickly assessing short-term material transport. A recently developed method called OECSs rigorously connected Eulerian quantities to short-term Lagrangian transport. This Eulerian method is faster and less expensive to compute than its Lagrangian counterparts, and needs only a single snapshot of a velocity field. Along the same line, here we define the instantaneous Lyapunov Exponent (iLE), the instantaneous counterpart of the finite-time Lyapunov exponent (FTLE), and connect the Taylor series expansion of the right Cauchy-Green deformation tensor to the infinitesimal integration time limit of the FTLE. We illustrate our results on geophysical fluid flows from numerical models as well as analytical flows, and demonstrate the efficacy of attracting and repelling instantaneous Lyapunov exponent structures in predicting short-term material transport.

Comments: 43 Pages. Submitted for publication

Download: PDF

Submission history

[v1] 2019-11-11 18:05:40

Unique-IP document downloads: 14 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus