On Maximum Likelihood Estimates for the Shape Parameter of the Generalized Pareto Distribution

Authors: Kouider Mohammed Ridha

The general Pareto distribution (GPD) has been widely used a lot in the extreme value for example to model exceedance over a threshold. Feature of The GPD that when applied to real data sets depends substantially and clearly on the parameter estimation process. Mostly the estimation is preferred by maximum likelihood because have a consistent estimator with lowest bias and variance. The objective of the present study is to develop efficient estimation methods for the maximum likelihood estimator for the shape parameter or extreme value index. Which based on the numerical methods for maximizing the log-likelihood by introduce an algorithm for computing maximum likelihood estimate of The GPD parameters. Finally, a numerical examples are given to illustrate the obtained results, they are carried out to investigate the behavior of the method

Comments: 6 Pages.

Download: PDF

Submission history

[v1] 2019-10-31 17:01:19

Unique-IP document downloads: 6 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus