Artificial Intelligence

   

MidcurveNN: Encoder-Decoder Neural Network for Computing Midcurve of a Thin Polygon

Authors: Yogesh H. Kulkarni

Various applications need lower dimensional representation of shapes. Midcurve is one-dimensional(1D) representation of a two-dimensional(2D) planar shape. It is used in applications such as animation, shape matching, retrieval, finite element analysis, etc. Methods available to compute midcurves vary based on the type of the input shape (images, sketches, etc.) and processing (thinning, Medial Axis Transform (MAT), Chordal Axis Transform (CAT), Straight Skeletons, etc.). This paper talks about a novel method called MidcurveNN which uses Encoder-Decoder neural network for computing midcurve from images of 2D thin polygons in supervised learning manner. This dimension reduction transformation from input 2D thin polygon image to output 1D midcurve image is learnt by the neural network, which can then be used to compute midcurve of an unseen 2D thin polygonal shape.

Comments: 3 Pages.

Download: PDF

Submission history

[v1] 2019-04-22 20:38:36

Unique-IP document downloads: 339 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus