Artificial Intelligence

   

AI Locate Risky Dams

Authors: George Rajna

The team is pinpointing the riskiest dams, using climate models, GIS data, and artificial intelligence to predict the likelihood that rainfall will overtop a dam and cause significant downstream damages to population and critical infrastructure. [26] Governments may soon be able to use artificial intelligence (AI) to easily and cheaply detect problems with roads, bridges and buildings. [25] Scientists led by Daigo Shoji from the Earth-Life Science Institute (Tokyo Institute of Technology) have shown that a type of artificial intelligence called a convolutional neural network can be trained to categorize volcanic ash particle shapes. [24] Intel's Gadi Singer believes his most important challenge is his latest: using artificial intelligence (AI) to reshape scientific exploration. [23] Artificial intelligence is astonishing in its potential. It will be more transformative than the PC and the Internet. Already it is poised to solve some of our biggest challenges. [22] In the search for extraterrestrial intelligence (SETI), we've often looked for signs of intelligence, technology and communication that are similar to our own. [21] Call it an aMAZE -ing development: A U.K.-based team of researchers has developed an artificial intelligence program that can learn to take shortcuts through a labyrinth to reach its goal. In the process, the program developed structures akin to those in the human brain. [20] And as will be presented today at the 25th annual meeting of the Cognitive Neuroscience networks to enhance their understanding of one of the most elusive intelligence systems, the human brain. [19] U.S. Army Research Laboratory scientists have discovered a way to leverage emerging brain-like computer architectures for an age-old number-theoretic problem known as integer factorization. [18] have come up with a novel machine learning method that enables scientists to derive insights from systems of previously intractable complexity in record time. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16]

Comments: 47 Pages.

Download: PDF

Submission history

[v1] 2018-08-25 09:26:31

Unique-IP document downloads: 6 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus