Mathematical Physics


The Gravity Primer

Authors: Hans Detlef Hüttenbach

It was shown in [1] that gravitational interaction can be expressed as an algebraic quadratic invariant form of energies. This allows the decomposition of the entire gravitational system into the sum of squares of energies of its composing particles. Still then, we ran into serious problems, when it came to figure out the Hamiltonian and calculate the total energy of the system from that. (Equivalently put, the algebraic invariant above is not a Hamiltonian one.) The problem is: What goes wrong? This is what this article is about, and the answer is very simple.

Comments: 5 Pages. misspellings corrected

Download: PDF

Submission history

[v1] 2018-07-16 15:34:46
[v2] 2018-07-18 10:57:21

Unique-IP document downloads: 38 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus