High Energy Particle Physics

   

Influence of Laser Spot Scanning Speed on Micro Polishing Using uv Nano-Second Pulse Laser

Authors: Jang Pong-Ryol, Kim Chun-Gun, Han Guang-Pok, Pea Uyong-Guk

During laser micro polishing of the metallic surface, it is very important to choose the optimal laser energy density and laser spot scanning speed. In this paper, during micro-polishing on the metallic surface by using UV nanosecond pulse laser, the influence of laser spot scanning speed on the polishing effect was investigated in terms of the relationship with the laser energy density. The experimental and analytical considerations were shown that there is the optimal scanning speed of laser spot for the best laser polishing effect when the laser energy density on the workpiece surface was rated, and the influence of the overlap ratio of the scanning lines was also considered. In addition, the optimal process parameters for the laser micro polishing of Ti and Ni metallic surfaces were obtained and the laser micro polishing experiments on theose metallic surfaces were conducted. For Ti and Ni metallic surfaces, the surface roughness improvements of up to 51.6% and 52 % were respectively obtained.

Comments: 10 Pages.

Download: PDF

Submission history

[v1] 2018-03-11 20:29:57

Unique-IP document downloads: 75 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus