A T Cell Equation as a Conceptual Model of T Cell Responses for Maximizing the Efficacy of Cancer Immunotherapy

Authors: Haidong Dong, Yiyi Yan, Roxana S. Dronca, Svetomir N. Markovic

Following antigen stimulation, the net outcomes of a T cell response are shaped by integrated signals from both positive co-stimulatory and negative regulatory molecules. Recently, the blockade of negative regulatory molecules (i.e. immune checkpoint signals) demonstrates promising therapeutic effects in treatment of human cancers, but only in a fraction of cancer patients. Since this therapy is aimed to enhance T cell responses to cancers, here we devised a conceptual model by integrating both positive and negative signals in addition to antigen stimulation that can evaluate strategies to enhance T cell responses. A digital range of adjustment of each signal is formulated in our model for prediction of a final T cell response. Our model provides a rational combination strategy for maximizing the therapeutic effects of cancer immunotherapy.

Comments: 5 Pages.

Download: PDF

Submission history

[v1] 2017-09-25 01:56:12

Unique-IP document downloads: 19 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus