## On an Entropic Universal Turing Machine Isomorphic to Physics (draft)

**Authors:** Alexandre Harvey-Tremblay

According to the second law of thermodynamics, a physical system will tend to increase its entropy over time. In this paper, I investigate a universal Turing machine (UTM) running multiple programs in parallel according to a scheduler. I found that if, over the course of the computation, the scheduler adjusts the work done on programs so as to maximize the entropy in the calculation of the halting probability Ω, the system will follow the laws of physics. Specifically, I show that the computation will obey algorithmic information theory (AIT) analogues to general relativity, entropic dark energy, the Schrödinger equation, a maximum computation speed analogous to the speed of light, the Lorentz's transformation, light cone, the Dirac equation for relativistic quantum mechanics, spins, polarization, etc. As the universe follows the second law of thermodynamics, these results would seem to suggest an affinity between an "entropic UTM" and the laws of physics.

**Comments:** 39 Pages.

**Download:** **PDF**

### Submission history

[v1] 2017-08-13 20:34:15

[v2] 2017-08-14 09:19:09

[v3] 2017-08-16 20:22:20

[v4] 2017-09-09 17:23:30

**Unique-IP document downloads:** 55 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*