Data Structures and Algorithms


A Neutrosophic Image Retrieval Classifier

Authors: A. A. Salama, Mohamed Eisa, A. E. Fawzy

In this paper, we propose a two-phase Content-Based Retrieval System for images embedded in the Neutrosophic domain. In this first phase, we extract a set of features to represent the content of each image in the training database. In the second phase, a similarity measurement is used to determine the distance between the image under consideration (query image), and each image in the training database, using their feature vectors constructed in the first phase. Hence, the N most similar images are retrieved.

Comments: 6 Pages.

Download: PDF

Submission history

[v1] 2017-07-18 07:46:50

Unique-IP document downloads: 25 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus