Number Theory


An Expression For The Argument of ζ at Zeros on the Critical Line

Authors: Stephen Crowley

Abstract. It is conjectured that when t=t_n is the imaginary part of the n-th zero of ζ on the critical line, the normalised argument S(t_)_=π^(-1)argζ(1/2+i t__) is equal to S(t)=S_n(t_n)=_n-3/2-(ϑ(t_n_))/π where ϑ(t) is the Riemann-Siegel ϑ function. If S(t_n)=S_n(t_n)∀n∈ℤ^+ then the exact transcendental equation for the Riemann zeros has a solution for each positive integer n which proves that Riemann's hypothesis is true since the counting function for zeros on the critical line is equal to the counting function for zeros on the critical strip in that case.

Comments: 6 Pages.

Download: PDF

Submission history

[v1] 2017-03-05 22:06:49
[v2] 2017-03-07 22:44:56
[v3] 2017-03-09 16:06:14
[v4] 2017-03-14 18:11:01

Unique-IP document downloads: 39 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus