High Energy Particle Physics


Gravity’s Hidden Inverse Relationship With Electromagnetism: A Possible Path to Solving the Hierarchy Problem

Authors: Lamont Williams

The hierarchy problem — the problem of why gravity is far weaker than electromagnetism — is one of the greatest problems in physics. In this study, it is hypothesized that the disparity between the forces stems from their having an inverse, or seesaw-like, relationship — with one strength value naturally being high when the other value is low. In accordance with this seesaw-like relationship, it is further hypothesized that, as energy is increased, the strength of electromagnetism falls while the strength of gravity rises. The author suggests that theory and observation indicating a rise in electromagnetic strength with increasing energy are not accounting for gravity’s contribution to the calculated and measured coupling. It is shown that removing this contribution exposes the inverse relationship between the forces and, importantly, the lowering of electromagnetism’s strength over the increasing energy levels. Taken together, the concepts presented here may help in solving the hierarchy problem. This, in turn, may point the way to combining gravity and electromagnetism into a single framework and ultimately unifying general relativity and quantum mechanics.

Comments: 19 Pages.

Download: PDF

Submission history

[v1] 2017-01-29 11:15:37

Unique-IP document downloads: 311 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus