## The 3n ± p Conjecture: A Generalization of Collatz Conjecture

**Authors:** W.B. Vasantha Kandasamy, K. Ilanthenral, Florentin Smarandache

The Collatz conjecture is an open conjecture in mathematics named so after Lothar Collatz who proposed it in 1937. It is also known as 3n + 1 conjecture, the Ulam conjecture (after Stanislaw Ulam), Kakutanis problem (after Shizuo
Kakutani) and so on. Several various generalization of the Collatz conjecture
has been carried. In this paper a new generalization of the Collatz conjecture
called as the 3n ± p conjecture; where p is a prime is proposed. It functions on
3n + p and 3n - p, and for any starting number n, its sequence eventually enters
a finite cycle and there are finitely many such cycles. The 3n ± 1 conjecture, is
a special case of the 3n ± p conjecture when p is 1.

**Comments:** 10 Pages.

**Download:** **PDF**

### Submission history

[v1] 2016-11-07 11:29:42

**Unique-IP document downloads:** 51 times

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*