Nuclear and Atomic Physics


Atomic and Molecular Aspects of Astronomical Spectra

Authors: Taha Sochi

In the first section we present the atomic part where a C2+ atomic target was prepared and used to generate theoretical data to investigate recombination lines arising from electron-ion collisions in thin plasma. R-matrix method was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states were generated in the intermediate-coupling approximation. The data were used to generate dielectronic recombination data for C+ which include transition lines, oscillator strengths, radiative transition probabilities, emissivities and dielectronic recombination coefficients. The data were cast in a line list containing 6187 optically-allowed transitions which include many C II lines observed in astronomical spectra. This line list was used to analyze the spectra from a number of astronomical objects, mainly planetary nebulae, and identify their electron temperature. The electron temperature investigation was also extended to include free electron energy analysis to investigate the long-standing problem of discrepancy between the results of recombination and forbidden lines analysis and its possible connection to the electron distribution. In the second section we present the results of our molecular investigation; the generation of a comprehensive, calculated line list of frequencies and transition probabilities for H2D+. The line list contains over 22 million rotational-vibrational transitions occurring between more than 33 thousand energy levels and covers frequencies up to 18500 cm-1. About 15% of these levels are fully assigned with approximate rotational and vibrational quantum numbers. A temperature-dependent partition function and cooling function are presented. Temperature-dependent synthetic spectra for the temperatures T=100, 500, 1000 and 2000 K in the frequency range 0-10000 cm-1 were also generated and presented graphically.

Comments: 238 Pages.

Download: PDF

Submission history

[v1] 2016-10-14 05:34:03

Unique-IP document downloads: 19 times

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus