Mathematical Physics

   

A General Class of Exactly Solvable Inverted Quadratic Liénard Type Equations

Authors: J. Akande, D. K. K. Adjaï, L. H. Koudahoun, Y. J. F. Kpomahou, M. D. Monsia

The inverted quadratic Liénard type equation is very useful in various branches of classical and quantum theories, since it admits a position dependent mass dynamics. The objective of the present work is to show that some interesting inverted nonlinear oscillator equations like the inverted version of Mathews-Lakshmanan oscillator belong to a general class of exactly solvable inverted quadratic Liénard equations. This class of equations is generated from a first integral formulated as an integro-differential equation. The obtained results may be used for the identification and integrability of a family of dynamical systems equations.

Comments: 7 pages

Download: PDF

Submission history

[v1] 2016-08-12 08:02:59

Unique-IP document downloads: 23 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus