Data Structures and Algorithms


Random-Resistor–random-Temperature Kirchhoff-Law–Johnson-Noise (RRRT-KLJN) Key Exchange

Authors: Laszlo B. Kish, Claes G. Granqvist

We introduce two new Kirchhoff-law–Johnson-noise (KLJN) secure key distribution schemes which are generalizations of the original KLJN scheme. The first of these, the Random-Resistor (RR–) KLJN scheme, uses random resistors with values chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR–KLJN system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is the second scheme, the Random-Resistor–Random-Temperature (RRRT–) KLJN key exchange, inspired by a recent paper of Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT–KLJN secure key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the security of the RRRT–KLJN scheme can prevail at non-zero power flow, and thus the physical law guaranteeing security is not the Second Law of Thermodynamics but the Fluctuation–Dissipation Theorem. Alice and Bob know their own resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values because, for her, there are four unknown quantities while she can set up only three equations. The RRRT–KLJN scheme has several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.

Comments: 8 Pages. submitted for journal publication

Download: PDF

Submission history

[v1] 2015-09-27 17:00:53
[v2] 2015-10-01 16:55:57

Unique-IP document downloads: 72 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus