Geometry

   

Volume Enclosed by Subdivision Surfaces

Authors: Jan Hakenberg, Ulrich Reif, Scott Schaefer, Joe Warren

We present a framework to derive the coefficients of trilinear forms that compute the exact volume enclosed by subdivision surfaces. The coefficients depend only on the local mesh topology, such as the valence of a vertex, and the subdivision rules. The input to the trilinear form are the initial control points of the mesh.
Our framework allows us to explicitly state volume formulas for surfaces generated by the popular subdivision algorithms Doo-Sabin, Catmull-Clark, and Loop. The trilinear forms grow in complexity as the vertex valence increases. In practice, the explicit formulas are restricted to meshes with a certain maximum valence of a vertex.
The approach extends to higher order momentums such as the center of gravity, and the inertia of the volume enclosed by subdivision surfaces.

Comments: 15 Pages.

Download: PDF

Submission history

[v1] 2014-05-02 10:39:37

Unique-IP document downloads: 80 times

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus