Astrophysics

   

Powering Starships with Compact Condensed Quark Matter

Authors: Thomas Marshall Eubanks

Compact Composite Objects (CCOs), nuggets of dense Color-Flavor-Locked Superconducting quark matter created before or during the Quantum Chromo- Dynamics phase transition in the early universe, could provide a natural explanation for both Dark Matter (DM) and the observed cosmological baryon asymmetry, without requiring modifications to fundamental physics. This hypothesis implies a relic CCO population in the Solar System, captured during its formation, which would lead to a population of “strange asteroids,” bodies with mm-radii quark matter cores and ordinary matter (rock or ice) mantles. This hypothesis is supported by the observed population of small Very Fast Rotating (VFR) asteroids (bodies with rotation periods as short as 25 sec); the VFR data are consistent with a population of strange asteroids with core masses of order 10^10 - 10^11 kg. If the VFR asteroids are indeed strange asteroids their CCO cores could be mined using the techniques being developed for asteroid mining. Besides being intrinsically of great scientific interest, CCO cores could also serve as very powerful sources of energy, releasing a substantial fraction of the mass energy of incident particles as their quarks are absorbed into the QCD superfluid. Through a process analogous to Andreev reflection in superconductors[7], even normal matter CCOs could be used as antimatter factories, potentially providing as much as 10^9 kg of antimatter per CCO. While of course speculative, this energy source, if realized, would be suitable for propelling starships to a substantial fraction of the speed of light, and could be found, extracted and exploited in our Solar System with existing and near-term developments in technology.

Comments: 15 Pages. Revised version with changes for publication

Download: PDF

Submission history

[v1] 2013-10-24 17:28:01
[v2] 2013-11-07 20:00:43

Unique-IP document downloads: 1028 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus