**Authors:** Andrew Banks

This paper will demonstrate a diagonal argument by listing all non-empty finite ordinals in a table according to their ε order using their subset representation, meaning {0,1,2…n-1} is listed for the ordinal n. Next, the axiom of choice is applied to all of these ordinals and selects the maximal element. This selection process forms a diagonal which satisfies the axiom of infinity, hence, the diagonal is a limit ordinal. However, it will also be shown for the nth choice made by the choice function, the diagonal is the successor ordinal number n = {0,1,2…n-1} and this is true for all n. So, at the n+1 choice, the diagonal is the ordinal n+1 and so on. Therefore, based on all the actions of the choice function, it is provable from ZFC on one hand that this diagonal cannot ever be anything other than a successor ordinal and on the other hand, the diagonal is a limit ordinal.

**Comments:** 8 Pages.

**Download:** **PDF**

[v1] 2012-06-09 09:13:06

**Unique-IP document downloads:** 136 times

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful. *