Artificial Intelligence


Contradiction Measures and Specificity Degrees of Basic Belief Assignments

Authors: Florentin Smarandache, Arnaud Martin, Christophe Osswald

In the theory of belief functions, many measures of uncertainty have been introduced. However, it is not always easy to understand what these measures really try to represent. In this paper, we re-interpret some measures of uncertainty in the theory of belief functions. We present some interests and drawbacks of the existing measures. On these observations, we introduce a measure of contradiction. Therefore, we present some degrees of non-specificity and Bayesianity of a mass. We propose a degree of specificity based on the distance between a mass and its most specific associated mass. We also show how to use the degree of specificity to measure the specificity of a fusion rule. Illustrations on simple examples are given.

Comments: 8 Pages.

Download: PDF

Submission history

[v1] 14 Jun 2011

Unique-IP document downloads: 116 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus