**Authors:** Steven Kenneth Kauffmann

It has recently been shown that the classical electric and magnetic fields which satisfy the sourcefree Maxwell equations can be linearly mapped into the real and imaginary parts of a transverse-vector wave function which in consequence satisfies the time-dependent Schrödinger equation whose Hamiltonian operator is physically appropriate to the free photon. The free-particle Klein-Gordon equation for scalar fields modestly extends the classical wave equation via a mass term. It is physically untenable for complexvalued wave functions, but has a sound nonnegative conserved-energy functional when it is restricted to real-valued classical fields. Canonical Hamiltonization and a further canonical transformation maps the real-valued classical Klein-Gordon field and its canonical conjugate into the real and imaginary parts of a scalar wave function (within a constant factor) which in consequence satisfies the time-dependent Schrödinger equation whose Hamiltonian operator has the natural correspondence-principle relativistic square-root form for a free particle, with a mass that matches the Klein-Gordon field theory's mass term. Quantization of the real-valued classical Klein-Gordon field is thus second quantization of this natural correspondence-principle first-quantized relativistic Schrödinger equation. Source-free electromagnetism is treated in a parallel manner, but with the classical scalar Klein-Gordon field replaced by a transverse vector potential that satisfies the classical wave equation. This reproduces the previous first-quantized results that were based on Maxwell's source-free electric and magnetic field equations.

**Comments:** 8 pages, Also archived as arXiv:1012.5120 [physics.gen-ph].

**Download:** **PDF**

[v1] 24 Dec 2010

**Unique-IP document downloads:** 671 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful. *