Degree of Negation of an Axiom

Authors: Florentin Smarandache

In this article we present the two classical negations of Euclid's Fifth Postulate (done by Lobachevski-Bolyai-Gauss, and respectively by Riemann), and in addition of these we propose a partial negation (or a degree of negation) of an axiom in geometry. The most important contribution of this article is the introduction of the degree of negation (or partial negation) of an axiom and, more general, of a scientific or humanistic proposition (theorem, lemma, etc.) in any field - which works somehow like the negation in fuzzy logic (with a degree of truth, and a degree of falsehood) or like the negation in neutrosophic logic [with a degree of truth, a degree of falsehood, and a degree of neutrality (i.e. neither truth nor falsehood, but unknown, ambiguous, indeterminate)].

Comments: 4 pages

Download: PDF

Submission history

[v1] 8 Mar 2010

Unique-IP document downloads: 209 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus