**Authors:** Steven Kenneth Kauffmann

Feynman's Lagrangian path integral was an outgrowth of Dirac's vague surmise that Lagrangians have a role in quantum mechanics. Lagrangians implicitly incorporate Hamilton's first equation of motion, so their use contravenes the uncertainty principle, but they are relevant to semiclassical approximations and relatedly to the ubiquitous case that the Hamiltonian is quadratic in the canonical momenta, which accounts for the Lagrangian path integral's "success". Feynman also invented the Hamiltonian phase-space path integral, which is fully compatible with the uncertainty principle. We recast this as an ordinary functional integral by changing direct integration over subpaths constrained to all have the same two endpoints into an equivalent integration over those subpaths' unconstrained second derivatives. Function expansion with generalized Legendre polynomials of time then enables the functional integral to be unambiguously evaluated through first order in the elapsed time, yielding the Schrödinger equation with a unique quantization of the classical Hamiltonian. Widespread disbelief in that uniqueness stemmed from the mistaken notion that no subpath can have its two endpoints arbitrarily far separated when its nonzero elapsed time is made arbitrarily short. We also obtain the quantum amplitude for any specified configuration or momentum path, which turns out to be an ordinary functional integral over, respectively, all momentum or all configuration paths. The first of these results is directly compared with Feynman's mistaken Lagrangian-action hypothesis for such a configuration path amplitude, with special heed to the case that the Hamiltonian is quadratic in the canonical momenta.

**Comments:** 18 pages, Also archived as arXiv:0910.2490 [physics.gen-ph].

**Download:** **PDF**

[v1] 2 Dec 2009

[v2] 8 Aug 2010

**Unique-IP document downloads:** 394 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful. *