## Koide Mass Equations for Hadrons

**Authors:** C. A. Brannen

Koide's mass formula relates the masses of the charged leptons. It is related to the
discrete Fourier transform. We analyze bound states of colored particles and show that
they come in triplets also related by the discrete Fourier transform. Mutually unbiased
bases are used in quantum information theory to generalize the Heisenberg uncertainty
principle to finite Hilbert spaces. The simplest complete set of mutually unbiased bases
is that of 2 dimensional Hilbert space. This set is compactly described using the Pauli
SU(2) spin matrices. We propose that the six mutually unbiased basis states be used
to represent the six color states R, G, B, R-bar, G-bar, and B-bar. Interactions between the colors
are defined by the transition amplitudes between the corresponding Pauli spin states.
We solve this model and show that we obtain two different results depending on the
Berry-Pancharatnam (topological) phase that, in turn, depends on whether the states
involved are singlets or doublets under SU(2). A postdiction of the lepton masses is
not convincing, so we apply the same method to hadron excitations and find that their
discrete Fourier transforms follow similar mass relations. We give 39 mass fits for 137
hadrons.

**Comments:** recovered from sciprint.org

**Download:** **PDF**

### Submission history

[v1] 24 Apr 2009

**Unique-IP document downloads:** 130 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*