High Energy Particle Physics


Bifurcations and Pattern Formation in Particle Physics: an Introductory Study

Authors: Ervin Goldfain

Quantum field theories, regardless of their content, lead to a finite or infinite number of coupled nonlinear field equations. In general, solving these equations in analytic form or managing them through lattice-based computations has been met with limited success. We argue that the theory of nonlinear dynamical systems offers a fresh approach to this challenge. Working from the universal route to chaos in coupled systems of differential equations, we find that: a) particles acquire mass as plane wave solutions of the complex Ginzburg-Landau equation (CGLE), without any reference to the hypothetical Higgs scalar; b) the and gauge groups, as well as leptons and quarks, are sequentially generated through period-doubling bifurcations of CGLE

Comments: recovered from sciprint.org

Download: PDF

Submission history

[v1] 4 Oct 2007

Unique-IP document downloads: 60 times

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus