High Energy Particle Physics


On the Asymptotic Transition to Complexity in Quantum Chromodynamics

Authors: Ervin Goldfain

Quantum Chromodynamics (QCD) is a renormalizable gauge theory that successfully describes the fundamental interaction of quarks and gluons. The rich dynamical content of QCD is manifest, for example, in the spectroscopy of complex hadrons or the emergence of quark-gluon plasma. There is a fair amount of uncertainty regarding the behavior of perturbative QCD in the infrared and far ultraviolet regions. Our work explores these two domains of QCD using nonlinear dynamics and complexity theory. We find that local bifurcations of the renormalization flow destabilize asymptotic freedom and induce a steady transition to chaos in the far ultraviolet limit. We also conjecture that, in the infrared region, dissipative nonlinearity of the renormalization flow supplies a natural mechanism for confinement.

Comments: recovered from sciprint.org

Download: PDF

Submission history

[v1] 14 Jun 2007

Unique-IP document downloads: 56 times

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus