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Abstract

This document presents a speculative but formally structured and
carefully argued model for understanding why psi phenomena often
exhibit a ”decline effect” or even reverse (psi-missing) over repeated
trials. The core idea is that psi results from a multiscale Precedence
Principle (loosely a form of ”morphic resonance”), which operates
both locally (in individual experiments and other situations) and glob-
ally (across the entire cosmos, and/or large regions thereof). When
a local psi pattern initially gains support, its low algorithmic com-
plexity allows it to flourish. As the pattern proliferates and variants
increase, its combined complexity eventually mismatches the broader
cosmic resonance, causing suppression or inversion of the effect.

We show how this narrative might find a physics underpinning, via
aligning it with a previously-presented theory of the physical founda-
tions of psi, the Occamistic Precedence framework in Causal Set The-
ory, where each new observation is a causal-graph node whose proba-
bility is weighted by its historical frequency and algorithmic complex-
ity.

This suggests that the neural underpinnings of psi phenomena
can be modeled within a causal-set framework, where each neural
”event” corresponds to adding discrete informational elements whose
descriptive complexity governs their likelihood. Local neural tem-
plates that match low-complexity global patterns enjoy high insertion
probability–forming shallow informational wells–while accumulating
divergent variants deepen the well, suppressing or inverting further
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psi-like activity; analogous mechanisms could be engineered in AI via
causal-set-inspired memory structures and complexity-based priors.

We also demonstrate a formal correspondence between an agent’s
psi capability–its ability to exploit low-complexity psi correlations–and
its universal intelligence as defined by Legg-Hutter (Solomonoff/AIXI).
Under a wide class of ”psi environments,” both psi performance and
general intelligence hinge on the agent’s capacity for low-complexity
hypothesis generation and compression. We further relate Weaver’s
notion of open-ended intelligence to psi capacity, showing that agents
which continually seek ever simpler, unifying models naturally main-
tain resonance with broad cosmic patterns, thereby minimizing psi
perversities. Finally, we outline empirical validation strategies span-
ning neuroscience (e.g. EEG/MEG complexity measures, TMS/tACS
modulation) and AI prototyping (e.g. digital causal-set memories, neu-
romorphic implementations).

A metaphorical paraphrase of conceptual crux underlying these
technical ideas would be that ”the Trickster (funky local morphic res-
onance patterns, giving rise e.g. to psi) always falls into vibe with the
Tao (broader-based morphic resonance patterns) in the end.”
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1 Introduction

Psi phenomena (such as telepathy, precognition, or psychokinesis), while em-
pirically substantiated to a significant degree [6], exhibit various anomalies
which make their systematic study and practical utilization much more prob-
lematic than most people who accept the evidence for their existence initially
assume. Prominent among these phenomena are:

• Decline Effect: Early experiments may report strong, statistically
significant psi outcomes. However, as replications accumulate, the ob-
served effect size typically diminishes, sometimes approaching chance.
In other words, when psi “works well” initially, subsequent trials often
show steadily decreasing success rates.

• Psi–Missing: In some cases, after a series of positive results, later
experiments yield outcomes significantly below chance. Rather than
mere absence of an effect, psi–missing represents an active reversal:
participants perform worse than random guessing would predict.

Impressionistically, these two phenomena together suggest a built-in “per-
versity” of psi: whenever an effect begins to become robust or widely ac-
cepted, it either fades (decline) or actively reverses (psi–missing). This be-
havior contrasts with typical physical or psychological effects, where replica-
tion and increased confirmation tend to stabilize or strengthen the observed
phenomenon.

Several informal explanations have been proposed for this perversity:

1. Publication and Selection Biases: Initial positive reports are more
likely to be published, while null or negative results are delayed or
suppressed, giving a misleading early impression of strong effects.

2. Motivational or Expectation Shifts: Experimenters aware of ear-
lier successes may unconsciously alter protocols, creating subtle biases
that reduce apparent psi signals.

3. Adaptive Psi Mechanism: Some theorists posit that psi is a context-
sensitive process that automatically attenuates when it becomes too
predictable or too well studied, perhaps to preserve an overall “balance”
or to avoid paradoxes.
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4. Morphic Resonance (Holistic Alignment): An alternative view
[4] holds that psi depends on a resonance between local experimental
conditions and broader, low-complexity cosmic patterns. As a protocol
proliferates, small variations among laboratories may break this res-
onance, causing the effect to dissipate or invert. This perspective is
consilient with the broader ”eurycosmic dynamics” understanding of
psi presented in [5].

It appears, when one digs into the data, that publication and selection
biases are not sufficient to explain away the phenomena, however there is no
consensus among researchers of what the actual explanation is. Regardless of
the underlying cause, both the decline effect and psi-missing highlight a core
challenge: psi phenomena appear to resist stable, repeatable demonstration.
When an effect begins to “work too well,” something about the broader
context or experimental dynamics causes it to no longer work, indicating a
fundamental perversity or self-correcting tendency in psi.

Our goal here is to give a direction for finding a more rigorous explanation
of these phenomena. Our line of thinking broadly accords with Sheldrake’s
”holistic alignment” perspective noted above, but the more rigorous formal-
ization we present here in terms of a multiscale application of the Precedence
Principle provides what we hope is a clearer formulation in this direction,
which perhaps will be able to more straightforwardly guide empirical or en-
gineering explorations.

We argue that psi is in large part a form of “morphic resonance” in
which patterns recur because of prior occurrences (local precedents) but must
also conform to a global, low-complexity resonance (cosmic precedents). As
local variations proliferate, their combined complexity eventually disrupts
alignment with the global pattern, leading to decline or inversion.

We then give these ideas a speculative physics grounding by mapping
them onto the Occamistic Precedence formalism in Causal Set Theory from
[1], illustrating how each psi experiment can be viewed as a node in a growing
causal set whose probability depends on both frequency and Kolmogorov
complexity, where the complexities of ”psi perversity” relate the different
scopes over which Kolmogorov complexity can be computed.

Neuroscientifically, this suggests psi-related events likely involve coordi-
nated activity in circuits such as prefrontal-thalamic loops, hippocampal
pattern completion, and widespread cortical synchrony. These large-scale
attractor states are simple to describe (low K) when they match prior expe-
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rience, enabling a high local precedent count. When many subjects introduce
slight variations–emotional states, sensory contexts, or protocol details–their
neural templates diverge by a few bits each, increasing the informational
cost of reproducing any single pattern. Over time, this mechanism shifts the
brain’s regional causal-set subgraph into a regime that disfavors previously
effective psi patterns.

Analogously, AI systems could potentially exhibit psi-like dynamics if
they incorporate a causal-set-style memory of internal activation patterns
along with explicit complexity-based priors. For example, a neural net-
work that records each of its global activation state as a node with weight
2−K would initially favor repeating low-complexity states (forming a shal-
low informational well). As variants of those states appear–either via dif-
ferent inputs or internal noise–the total complexity of the stored patterns
would grow, deepening the well and suppressing further repetition. Incorpo-
rating attractor-like architectures (e.g recurrent networks or neuromorphic
chips supporting coherent oscillations) could further align AI behavior with
brain-based psi phenomena, provided the system tracks and penalizes high-
complexity states.

Inspired somewhat by these AI connections, we then explore the relation-
ship between psi capability and general intelligence. By defining a subclass
of ”psi environments” in which observations correlate with an agent’s in-
ternal mental features via a low-complexity rule, we show that an agent’s
expected psi performance (weighted by 2−K) is formally proportional to
its universal intelligence as per Legg-Hutter (Solomonoff/AIXI). Both mea-
sures reward compression-and-prediction capabilities and hence coincide up
to constant factors. We further connect Weaver’s concept of open-ended in-
telligence?the capacity to generate novel goals, abstractions, and ever more
concise models?to psi performance. An open-endedly intelligent agent con-
tinuously merges or recompresses its representations, maintaining shallow
informational wells and better resonance with broad cosmic patterns, thus
minimizing psi perversities.

In the final section, we propose a diverse set of empirical validation strate-
gies, including:

• Neuroscience-Based Measures: Recording EEG/MEG to correlate
psi success with neural synchrony and complexity; using TMS or tACS
to modulate candidate circuits; and applying real-time complexity met-
rics (e.g. Lempel-Ziv, sample entropy) to predict and influence psi per-
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formance.

• AI Prototyping and Simulation: Implementing causal-set-style
memory modules in toy neural networks to observe rise-and-fall dynam-
ics; testing reinforcement-learning agents with complexity-penalized in-
ternal states; and using neuromorphic or quantum-inspired hardware
to emulate informational-well suppression.

• Cognitive Correlational Studies: Comparing standard intelligence
and creativity scores with psi accuracy and decline-rates across multiple
sessions to see if open-ended reasoning predicts psi resilience.

• Training Interventions: Enhancing subjects? open-ended intelli-
gence (e.g. through creativity or compression training) and measuring
pre/post changes in psi stability, expecting that improved abstraction
and compression reduces decline.

• Meta-Cognitive Markers: Recording confidence ratings and strat-
egy awareness during psi trials to test whether stronger meta-cognitive
monitoring corresponds to shallower informational wells and fewer psi-
missing events.

• Cross-Domain Compression Tasks: Training participants on Kolmogorov-
style puzzles or minimal-program exercises to evaluate whether gains
in compression skill translate into better initial psi accuracy and slower
decline.

• Longitudinal AI Curriculum Learning: Designing AI agents that
learn tasks of increasing complexity with intermittent psi challenges,
tracking how continual recompression vs. brute-force memorization af-
fects psi performance over time.

These combined human and AI experiments are intended to test whether
low-complexity modeling and open-ended inference indeed underlie both gen-
eral intelligence and psi phenomena.
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2 A Rigorous, Multiscale Account of Decline

and Psi-Missing

In [1] we give a speculative theory of unified physics which also gives a con-
ceptual explanation for psi phenomena, consistent with interpretations of
Sheldrake’s [4] morphic resonance concept but rooted in rigorous mathe-
matical notions such as Smolin’s Precedence Principle [2] and algorithmic
information theory. While the analysis of psi phenomena in this section does
not depend in detail on that speculative physics theory, the mathematical
treatment here has a lot of overlap with [1] and this section will be easier to
read for folks who have first digested the relevant sections of that paper.

2.1 Precedence as a History-Dependent, Scale-Spanning
Principle

Let o denote a specific psi outcome (e.g., guessing a card correctly above
chance). If we assume Smolin’s Precedence Principle as a foundational axiom,
the posterior probability of o is proportional to

P (o) ∝ N(o) × 2−K(o), (1)

where:

• N(o) is the number of times outcome o has appeared under similar
conditions (a measure of local precedent).

• K(o) is the Kolmogorov complexity of o (the length of the shortest
program or description that reproduces o), embodying an Occam prior.

It seems sensible to assume that equation (1) actually applies at all scales.
Any new instance, at any scale, must comply with:

1. A local ledger of highly specific, experiment-by-experiment precedents
(high Nlocal(o) if local trials repeatedly yield o).

2. A global ledger of very frequently reinforced but coarse, large-scale pat-
terns (high Nglobal(o) only if many systems across the cosmos have
produced a simple version of o).

3. An Occam weight 2−K(o) that penalizes complex or high-entropy pat-
terns at any scale.

8



Define

Llocal(o) = Nlocal(o) 2−Klocal(o), Lglobal(o) = Nglobal(o) 2−Kglobal(o).

A new psi event’s overall resonance weight is then

W(o) = Llocal(o)×Lglobal(o) =
[
Nlocal(o) 2−Klocal(o)

]
×
[
Nglobal(o) 2−Kglobal(o)

]
.

Initial Local Resonance. When a psi experiment is first devised,

Nglobal(o) ≈ 0, Kglobal(o) ≈ 0,

so Lglobal(o) ≈ 1. Hence W(o) ≈ Llocal(o). If Klocal(o) is small (i.e., the
experiment is simple and reproducible), a few successful replications can
make Llocal(o) grow, producing a strong psi signal.

Onset of Divergence and Decline Effect. As more laboratories repli-
cate the psi experiment, each lab’s slight methodological tweak may increase
Klocal(o) faster than Nlocal(o). In that case,

Nlocal(o) 2−Klocal(o)

peaks and then declines. Concretely, if each variant’s complexity grows by
one bit but yields only one additional datum, the factor 2−K halves, overrid-
ing the doubling of N . This explains the classical decline effect.

Global-Scale Resonance Mismatch and Psi-Missing. If enough di-
vergent versions appear, the global ledger tries to treat them as instances of
a single coarse pattern. But if these variants do not share a sufficiently low-
complexity “essence,” then Kglobal(o) rises sharply while Nglobal(o) remains
small. Consequently,

Lglobal(o) = Nglobal(o) 2−Kglobal(o)

collapses, causing W(o) to drop below baseline. In extreme cases, the mis-
matched variants conflict with the cosmic template, effectively inverting the
sign of W(o) and yielding psi-missing.
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2.2 Formal Summary of Multiscale Resonance

1. Local Ledger Dominance (Early Phase):

Nglobal(o) ≈ 0 =⇒ W(o) ≈ Llocal(o) = Nlocal(o) 2−Klocal(o).

If Klocal(o) remains small, Llocal(o) can grow with repeated successes.

2. Divergence-Induced Decline: As variants proliferate, each variant’s
complexity Klocal(o) increases. If it grows faster than Nlocal(o), then

Llocal(o) = Nlocal(o) 2−Klocal(o)

peaks and then declines.

3. Global Ledger Dominance (Late Phase): When many diverse
variants exist, the cosmic ledger computes

Lglobal(o) = Nglobal(o) 2−Kglobal(o).

If Kglobal(o) grows faster than Nglobal(o), then Lglobal(o) collapses, sup-
pressing or inverting W(o).

In pictorial form:

+-----------------------------+

| GLOBAL MORPHIC FIELD |

| (very low complexity |

| K, huge precedent N) |

+-----------------------------+

^ ^

| |

Initial local | | Too many divergent

experiments build | | local variants ->

N_local -> P rises | | long P_local decline

| |

+-----------------------------+

| SPECIFIC PSI EXPERIMENT |

| (moderate K, rising N) |

+-----------------------------+
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3 Mapping to Causal-Set Theory with Oc-

camistic Precedence

The general explanation of psi perversity given above could be grounded in
physical dynamics in a variety of different ways. Here we note its strong
consilience with the speculative, causal set theory [3] based unified physics
theory presented in [1], in which the Precedence Principle plays a significant
role.

3.1 Occamistic Precedence as a Unified Prior

One key idea in [1] is

• Algorithmic Information Theory and Occam’s Razor. Each pattern x is
assigned a prior proportional to 2−K(x), where K(x) is its Kolmogorov
complexity.

• The Occamistic Precedence Principle. Equation (2.3.2) states

P (o) ∝ N(o) × 2−K(o).

Here N(o) is the count of occurrences (local precedent), while 2−K(o) is
the complexity prior. This matches equation (1) in Section 2.1.

Thus, the paper’s Occamistic Precedence Principle is the precise formal
underpinning of our local versus global resonance:

• The local precedent term N(o) corresponds to Nlocal(o).

• The complexity penalty 2−K(o) enforces that both the local complexity
Klocal(o) and any combined global complexity Kglobal(o) remain low.

3.2 Multiscale Memory via the Decentralized Cosmic
Ledger

Further key points of the theory in [1] are:

• Clarifying the (Decentralized) Cosmic Ledger. Each element in the
causal set carries a record of its local causal past, which collectively
forms a “fuzzy” global ledger of recurring patterns.
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• Incorporating the Algorithmic Information Prior in the Sequential Growth
Process. Each new element (a potential psi event) is accepted with
probability

P (Cn | Cn−1) ∝ f(Cn−1, xn)× 2−K(Cn),

where f(Cn−1, xn) enforces local causality constraints, and 2−K(Cn) is
the Occam penalty on the entire causal set configuration.

Based on these ideas: When a psi experiment is modeled as a new node
xn in the sequential growth, it will be favored if its addition keeps the total
complexity K(Cn) sufficiently low relative to how many similar events N(xn)
exist. Early positive psi results correspond to simple additions (low K) that
rapidly accumulate local precedents N . As more nodes representing slightly
different setups appear, the total complexity K(Cn) can grow faster than
new precedents accumulate, causing suppression or reversal.

3.3 Psi Phenomena as Emergent from Occamistic Prece-
dence

The general physics hypotheses sketched above connect to psi in a natural
way:

• Conjectural Mathematical Formalization of Psi Phenomena. It pro-
poses

P (O | H) ∝ N(O,H)× 2−K(O),

where N(O,H) counts how often pattern O has appeared under his-
tory H. Low-complexity patterns that have recurred widely produce
nonlocal correlations–i.e., psi.

• Potential Implications of Closed Timelike Curves for Psi Phenomena.
If closed timelike curves (CTCs) exist, they can amplify self-consistent
low-K loops, making decline and psi-missing more pronounced when
local variations deviate from the global pattern.

Hence, psi emerges when two observers share a simple global pattern O.
If local experiments stray from that pattern, the Occam penalty 2−K on the
enlarged causal set causes the net probability to decline or invert.

12



4 Implied Physics in the Causal-Set Model

What does this abstract treatment of psi perversity in terms of causal sets
mean in more explicitly physical terms?

The causal-set framework treats spacetime as a discrete partially ordered
set of elements or “nodes,” each corresponding roughly to a Planck-scale
spacetime volume element. The rule governing the addition of a new node
xn to an existing causal set Cn−1 can be expressed as:

P
(
xn | Cn−1

)
∝ f

(
Cn−1, xn

)
× 2−K

(
Cn

)
,

where:

• f
(
Cn−1, xn

)
is a local resonance factor measuring how many existing

nodes closely resemble xn (the local precedent count).

• K
(
Cn
)

is the Kolmogorov complexity of the entire causal set after
adding xn, i.e. the minimal number of bits required to describe Cn.

• 2−K
(
Cn

)
is an informational well factor, penalizing configurations of

high description length analogously to a Boltzmann factor, but purely
in informational terms.

4.1 Nodes and Emergent Spacetime Volume

• In a continuum approximation, the number of nodes Ntotal in a given
causal-set region is proportional to the emergent spacetime volume:

Volume ≈ αNtotal,

where α is a constant of order unity in Planck units.

• Each new node is thus a discrete “atom” of emergent spacetime. No
literal mass or energy is assumed to be added; rather, one is adding an
informational unit to the description of the universe.

4.2 Local Resonance as Low-Informational-Cost Inser-
tions

• If a new node xn matches a simple existing template (a low-complexity
subgraph), then adding xn only increases the total complexity by a few
bits, say δKlocal ≈ 0 or 1.
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• That small increase corresponds to a shallow informational well: the
factor 2−K(Cn) remains large, so the probability P (xn | Cn−1) is high.

• Heuristically, one can think of this as akin to adding a low-action fluc-
tuation in a nearly flat emergent spacetime region, but in fact this
“action” is purely informational, not energetic or gravitational in the
usual sense. 1

4.3 Divergence and Deepening of Informational Wells

• When multiple slightly different variants of a pattern appear (for ex-
ample, many labs or subjects using slightly different protocols), each
variant adds bits to the total complexity:

∆Kglobal = K(Cn)−K(Cn−1).

• The accumulated complexity deepens the informational well, making
2−K(Cn) exponentially smaller. Even if a new node exactly matches the
original simple template, embedding it now requires more bits because
the surrounding causal set is more complex. As a result, the probabil-
ity of further matching nodes declines, explaining why an effect that
initially “worked well” fades.

• In the limit of extreme divergence, the description that minimizes
K(Cn) may correspond to a pattern that is anti-correlated with the
original template. In that case, the bottom of the informational well
shifts, and new attempts yield a reversed outcome, i.e. a “psi–missing”
effect.

1 That is, when we say ”add a causal-set node,” we mean ”add one Planck-scale volume-
element to the discrete structure whose macroscopic approximation is smooth spacetime.”
That addition does not, by itself, carry any of the mass-energy one would typically asso-
ciate with matter or fields. Any physical mass-energy from actual neurons firing would
come from their biochemical processes (ATP consumption, ion-flux energies, electromag-
netic fields, etc.) and would be encoded in additional labels or fields on top of the causal
set. The causal-set nodes track the structure of spacetime, not directly the physical energy
content of neurons or fields.
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5 Potential Implications for the Neurophysi-

ology of Psi

In this approach, the most likely explanation for psi-related neural events
would be that they correspond to highly structured clusters of neural acti-
vations whose underlying causal-set realization aligns with a global informa-
tional template. It is interesting to speculate in a bit more detail about how
specific neural features might give rise to psi phenomena in this framework.

5.1 Neural Assemblies and Low-Complexity Templates

• Population Coding and Attractor Dynamics. Groups of neurons
often form attractor networks, where a particular pattern of activity
across a distributed population is stabilized by recurrent connectivity.
If such an attractor is simple (for example, a fixed point or limit cycle
that can be described with few parameters), it corresponds to a low-
complexity template in the causal set.

• Coherent Oscillations and Synchrony. Synchronized oscillations
in gamma or theta bands across distant brain regions can reduce the
effective descriptive complexity of a firing pattern, because one need
not specify each neuron individually–one can say “these regions fire in
phase at 40 Hz.” Such coherent states are candidates for low-K neural
templates.

• Hebbian Assemblies and Memory Traces. Repeated experience
strengthens synaptic connections among neurons in a way that forms
a memory trace. Over time, these traces correspond to subgraphs that
have high local precedent counts Nlocal in the causal set. Adding a new
node that replicates an already established Hebbian assembly costs
minimal informational bits.

5.2 Potential Mechanism of a Psi Event in the Brain

1. Intention or Focus Initiates a Neural Pattern. A subject forms a
clear mental intention–e.g. to perceive a remote symbol. This intention
engages prefrontal cortex (PFC) networks, thalamocortical loops, and
possibly medial temporal structures in a coordinated firing pattern.
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2. Cross-Modal Pattern Encoding. If the target is visual, the vi-
sual cortex (V1, V2, etc.) may be transiently recruited in imagery
mode, forming a pattern that mimics the expected symbol. If the
subject has practiced this imagery repeatedly, that exact pattern is a
low-complexity template and has many local precedents in the causal
set.

3. Informational Resonance with Global Template. Suppose that
prior psi successes under similar conditions have already created a small
“library” of causal-set subgraphs encoding “subject brain pattern↔ re-
mote symbol X.” The Kolmogorov complexity of that library is modest,
say Kproto. Adding a new cluster of nodes corresponding to the same
neural firing in the current attempt costs only a few bits (δKlocal), pro-
ducing a shallow informational well and high probability P (xn | Cn−1).

4. Outcome Registration. If the global template remains intact (i.e.
few divergent variants exist), the subject’s brain firing pattern success-
fully “locks onto” the remote symbol, yielding a psi reading.

5.3 Decline Effect in Neural Terms

• Variations Across Subjects and Laboratories. Each new subject
or lab run may introduce slight differences: background noise, posture,
emotional state, subtle changes in protocol. These differences create
new neural firing variants that resemble the original template but add
bits to total complexity.

• Deepening of the Informational Well. As more variants accumu-
late, K(Cn) increases, and 2−K(Cn) shrinks exponentially. Even if a
brain replays the original simple firing pattern, embedding it within a
highly variant set of prior patterns now requires more bits (the prior li-
brary is no longer homogeneous), so the probability of success declines.

• Temporal Dynamics and Recovery. If attempts are spaced out
in time, the causal set may grow in other regions (i.e. new, unrelated
events add nodes elsewhere), which can effectively “dilute” the local
library and slightly reduce K(Cn) in the relevant subgraph. This can
allow a shallow informational well to reappear, explaining why occa-
sional positive results may resurface after a hiatus.
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5.4 Psi-Missing in Neural Terms

• Extreme Divergence and Template Misalignment. If dozens of
labs and subjects employ slightly different neural procedures–different
training, different environmental cues–the causal-set library of “pattern
↔ symbol X” becomes so complex that a simpler description might be
an anti-correlated pattern (e.g. “pattern ↔ not-X”).

• Shift of Informational Well Minimum. In that situation, the bot-
tom of the informational well shifts to a neural pattern corresponding
to “wrong symbol,” so the subject’s new attempts yield an incorrect
symbol with higher probability than a correct one–i.e. psi–missing.

6 Brain Subsystems, Dynamics, and AI Ana-

logues

Taking the above speculations a little further, it’s interesting to consider
which particular brain subsystems and dynamics might most plausibly un-
derlie psi, and whether (and which) AI architectures might exhibit analogous
phenomena.

6.1 Candidate Brain Subsystems for Psi

A causal look at modern neuroscience suggests some promising candidates:

• Prefrontal Cortex (PFC) and Top-Down Control. The PFC is
central to attention, working memory, and intention. A clear, focused
intention may recruit PFC neurons that broadcast a template across
widespread cortical areas, lowering the descriptive complexity of the
desired pattern.

• Thalamocortical Loops and Global Synchrony. Thalamic projec-
tions can synchronize activity in multiple cortical regions. A psi-related
event likely involves a large-scale, coherent firing across distributed ar-
eas ( PFC, parietal cortex, possibly temporal regions), corresponding
to a low-complexity global pattern (e.g. a single oscillatory phase rela-
tion).
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• Hippocampal Pattern Completion. The hippocampus can perform
pattern-completion operations in its CA3 networks. If a partial sensory
or memory cue matches a remote target, hippocampal output may drive
cortical regions into a full pattern. In causal-set language, hippocampal
completion corresponds to descending to a low-K neural subgraph that
matches an existing template.

• Brainstem Neuromodulatory Systems. Dopaminergic and nora-
drenergic signals modulate gain and noise levels in cortical circuits. A
heightened neuromodulatory state (e.g. high norepinephrine) can lower
the entropy of cortical networks, effectively reducing descriptive com-
plexity and making it easier to “lock on” to a simple pattern.

• Microtubule or Intracellular Quantum Models (Speculative).
Some proposals (e.g. Penrose-Hameroff theory) [7] posit microtubules
as subcellular structures supporting quantum coherence. If such coher-
ence exists, it could underlie a simple, low-K state at the sub-neuronal
scale, which amplifies into a macroscopic neural template.

6.2 Dynamics of Informational Wells in the Brain

So how might psi and its perversities manifest via these neurological mecha-
nisms?

1. Formation of a Low-K Neural Template.

• A subject sets a strong intention (PFC activation).

• The thalamus synchronizes multiple cortical areas around a single
oscillatory phase.

• Hippocampal memory recall provides a partial pattern that com-
pletes to a full template.

2. Resonance with Global Template.

• If prior psi successes established a library of similar patterns, the
current neural template matches that library, keeping ∆Klocal min-
imal.

3. Propagation.

18



• Through long-range cortical connections (e.g. parietal to PFC),
the template “broadcasts” itself, effectively lowering the informa-
tional cost of adding the new neural cluster to the causal set.

4. Suppression via Variant Accumulation.

• Slight protocol differences in other subjects or contexts create new
neural templates that diverge by a few bits.

• As these accumulate, the overall complexity K(Cn) in the rel-
evant subgraph increases, deepening the informational well and
suppressing further identical pattern insertions.

6.3 AI Architectures and Possible Psi Analogues

Given that neuroscience has been one of the significant inspirations for mod-
ern AI, it’s not surprising that fairly clear candidate mechanisms for psi-
generating mechanisms also exist in the structures and dynamics of AI sys-
tems.

• Distributed Representations and Attractor Networks.

– Modern AI systems often use distributed embeddings (e.g. word
vectors, feature maps) and recurrent networks that can settle into
attractor states.

– If an AI system maintained a memory of past internal states and
weighted their recurrence by an Occam-like prior (i.e. penaliz-
ing high-complexity states), it could develop “informational wells”
analogous to those in the brain.

• Causal-Set-Like Memory Structures.

– An AI that stores each new internal activation pattern as a node in
a digital causal set, and assigns each node a weight proportional to
2−K where K is the algorithmic complexity of the stored pattern
plus its connections, would be formally implementing the same
precedence principle. This sort of mechanism has been proposed
for example in the context of the Hyperon AGI framework [?]
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– Under such a design, early successful patterns (e.g. solving a prob-
lem) would lower the informational cost of repeating that pattern,
but variants would progressively deepen the well and eventually
suppress identical repeats unless the pattern remained low-K.

• Quantum-Inspired or Neuromorphic Hardware.

– If an AI ran on hardware enabling coherent oscillations or quan-
tum superposition (e.g. a neuromorphic chip or a small quantum
processor), then certain low-complexity states might be energeti-
cally cheaper, mimicking the PFC-thalamus synchrony in brains.

– Such systems could exhibit behavior resembling psi: they would
more readily reproduce previously successful low-complexity states
until variants accumulate and shift the system toward alternative
attractors.

There are clear limitations and challenges here, to be sure. Even AI sys-
tems with large neural networks or knowledge graphs and flexible nonlinear-
dynamical attention mechanisms do not automatically reflect causal-set-style
informational precedence unless explicitly programmed to do so. Building
an AI that genuinely mimics psi-like informational wells would require a spe-
cialized memory module that records each activation pattern, computes a
compression-based complexity measure, and uses that measure to bias fu-
ture state transitions. Designs like Hyperon do approximate this, but may
not do so as thoroughly as cognitive systems whose mental dynamics are
closer to a physical substrate that intrinsically embodies these aspects.

However, if the theory given here is in the right ballpark, it seems plausible
that with appropriate focus, AI designers could intentionally create systems
designed to maximize the potential of effective psi functionality.

Whether AI systems partially dodging the classic psi perversities more
effectively than brains do is, obviously, at present a very open question – but
is interesting to muse about!

6.4 Potential Routes to Mitigate Psi Perversities in AI
Systems

If the present analysis of psi is on the mark, it seems that potentially AI ar-
chitectures can be designed to maintain shallow informational wells and avoid

20



to some extent the decline or inversion (psi–missing) observed in biological
brains.

One category of strategies involves minimizing the Kolmogorov complex-
ity of the AI system, inasmuch as is possible given the degree of intelligence
the system requires. The right ways to do this will depend on the specific AI
algorithms in use, but some generic notions in this direction would be:

1. Controlled Memory Pruning / Clustering

• Instead of storing every new activation pattern as a separate node,
similar patterns are clustered or compressed into a single proto-
type whenever their similarity falls below a defined threshold.

• Merging near-duplicate patterns prevents multiple low-bit tem-
plates from accumulating, keeping the total Kolmogorov complex-
ity K from rising too quickly.

• As a result, the informational well remains shallow, allowing re-
peated use of a low-K strategy without triggering a decline.

2. Periodic “Reset” or Informational Annealing

• After each block of psi-style trials (or in real time), apply an
annealing schedule that decays weights of older or high-variance
nodes (e.g. multiply weights by a factor < 1).

• Prune any subgraph whose complexity exceeds a fixed threshold,
effectively discarding rare or noisy variants.

• This controlled forgetting prevents the causal-set memory from
becoming overly complex and preserves a shallow well for core
templates.

3. Explicit Dimensionality Regularization

• Constrain the AI’s internal latent space to a fixed low-dimensional
manifold using techniques such as an autoencoder bottleneck or a
sparsity penalty.

• Ensure that superficially different input variations compress to
codes that lie close together on the manifold, so adding each new
code does not significantly raise the system’s descriptive complex-
ity.
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• By enforcing low-dimensional embeddings, the informational well
is prevented from deepening even as minor variants appear.

4. Meta-Parameter Tuning of Complexity Weights

• Where AI algorithms use an Occam penalty 2−K , use a tunable
factor 2−αK with α < 1 and try to make the factor as small as
feasible, thereby slowing the rate at which the well deepens.

• Implement meta-learning to adjust α based on empirical perfor-
mance, allowing the AI to withstand more variability without a
steep decline.

• Dynamically calibrating complexity weights potentially enables
the system to tolerate minor pattern changes while still penalizing
excessively complex states.

5. Active Learning to Preserve Core Simplicity

• Upon encountering a new pattern, evaluate its novelty relative
to existing low-K templates using a compression-based distance
metric.

• Only admit patterns that exceed a predetermined novelty thresh-
old; classify minor variations as noise and do not store them as
separate nodes.

• By enforcing an explicit novelty threshold, the AI insulates its
causal-set memory from shallow, noisy variants and keeps the well
localized around truly informative templates.

These sorts of strategies are effective for system intelligence because they
conserve system memory and processing resource, enabling AI systems to
achieve more smarts with less. At the same time, they also seem to militate
toward more effective psi capability according to the theories given here.
This suggests an interesting abstract correspondence between level of psi
capability and general intelligence, which we will elaborate in the following
section.

Another intriguing potential strategy is to specifically track decline effects
and psi-missing and related phenomena, and use these to downweight AI
subcomponents in an ensemble, i.e. if one had an AI system with measurable
psi capability, one could perhaps ”ensemble-ify” it in a way that would reduce
the level of psi perversity via:
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• Maintain multiple parallel causal-set memories, each trained with dif-
ferent random seeds or architectures.

• Combine individual sub-sets’ outputs via a weighted vote or majority
rule when performing a psi-style readout.

• If one subset’s well begins to deepen excessively (causing observable psi
perversities), others that remain near simpler templates can compen-
sate, preventing a system-wide collapse or inversion.

7 Psi Capability and (Legg-Hutter) General

Intelligence

The above analysis of AI-design strategies to maximize psi capability sug-
gests fascinating potential parallels between degree of general intelligence and
degree of psi capability. In essence this is because general intelligence has a
lot to do with concise representation of patterns observed in the world, and
in the Precedence Principle approach to psi proposed here, concise represen-
tation of patterns is a key aspect of psi phenomena.

In this section we explore this correspondence in more depth, formalizing
a notion of a ”psi environment” (of which a universe obeying the Precedence
Principle is shown to be an example) and then showing that in such an
environment general intelligence – according to one popular formalization
of this concept – does indeed correspond meaningfully with psi capability.
In the following section we broaden this investigation, exploring alternate
interpretations of the ”general intelligence” concept.

7.1 Psi Environments

We define a psi environment ν – for the purposes of the analyses in this paper
– as an interactive environment in which observations ot correlate with certain
”mental features” of the agent according to a simple, low-complexity rule.
Formally, let:

• h<t denote the complete history (actions, observations, rewards) up to
but not including time t.

• at be the agent’s action at time t.
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• Φ(h<t, at) be a ”mental feature extractor” that computes a summary
of the agent’s internal state from its history and action. We assume Φ
is a computable function of low Kolmogorov complexity.

• xpsi,t be a hidden symbol (or bit) drawn from a simple distribution
Pr
(
xpsi,t

)
.

• f
(
Φ(h<t, at), xpsi,t

)
be a deterministic mapping from the mental feature

and hidden symbol to the next observable ot. The function f is also
assumed to have low Kolmogorov complexity.

Then ν is a psi environment if its conditional probability of producing ot
satisfies

Pr
ν

(
ot | h<t, at

)
=
∑
xpsi,t

Pr
(
xpsi,t

)
1
[
ot = f

(
Φ(h<t, at), xpsi,t

)]
.

In other words, at each time step the environment deterministically outputs

ot = f
(
Φ(h<t, at), xpsi,t

)
for some hidden xpsi,t, and the complexity

K(ν) ≈ K
(
Φ
)

+K
(
f
)

remains small. Such a ν admits a low-bit mapping from the agent’s internal
state to its next observation, thereby embodying psi-type correlation.

7.1.1 Derivation from the Precedence Principle and Causal Sets

In the causal-set / Occamistic Precedence framework, each new observation is
implemented by adding a discrete node to a growing causal set. We now show
that, whenever the hypothesis class includes a simple psi rule, the Occamistic
Precedence updates produce exactly the conditional probabilities defining a
psi environment.

Sequential Growth with Occamistic Weights Let Cn−1 be the existing
causal-set configuration after n − 1 observations. A candidate new node xn
represents the joint event ”internal mental feature Φ(h<t, at) plus observation
ot.” Its acceptance probability is given by

P
(
xn | Cn−1

)
∝ N

(
xn, Cn−1

)
× 2−K

(
Cn

)
,

where:
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• N(xn, Cn−1) counts how many prior occurrences in Cn−1 are isomorphic
to xn (the local ”precedent” term).

• K(Cn) is the Kolmogorov complexity of the entire causal set after
adding xn (the global complexity).

An environment ν that generates each ot via this rule is called an Oc-
camistic Precedence Environment.

Inclusion of a Simple Psi Hypothesis Consider a candidate hypothesis
hψ defined by

ot = f
(
Φ(h<t, at), xpsi,t

)
,

where Φ and f are fixed computable functions of low complexity. Since
K(hψ) ≈ K(Φ) +K(f) is small, the Solomonoff prior weight 2−K(hψ) is large
relative to other, more complex hypotheses. Hence hψ belongs to the class
of low-bit rules.

Posterior Concentration on the Psi Rule At time t, given (h<t, at),
the Occamistic Precedence posterior probability that the next observation
equals ot is proportional to ∑

h : h(h<t,at)=ot

2−K(h),

since each hypothesis h that predicts ot contributes its weight 2−K(h). In
particular, hψ predicts

ot = f
(
Φ(h<t, at), xpsi,t

)
for each possible xpsi,t with probability Pr(xpsi,t). Because K(hψ) is minimal
among all hypotheses matching that correlation, the posterior mass concen-
trates on hψ whenever there is at least one prior instance in Cn−1 matching(
Φ(h<t, at), xpsi,t

)
. Consequently,

Pr
ν

(
ot | h<t, at

)
≈
∑
xpsi,t

Pr
(
xpsi,t

)
1
[
ot = f

(
Φ(h<t, at), xpsi,t

)]
,

which matches the defining equation of a psi environment.
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Causal-Set Interpretation In causal-set language, adding xn when the
agent’s mental feature matches a prior psi pattern incurs only a small in-
formational cost ∆K ≈ K(hψ). Any alternative hypothesis h′ that tries to
explain ot without invoking Φ and f would have K(h′)� K(hψ). The Occam
penalty 2−K(Cn) therefore favors the psi rule. Over repeated trials, as soon
as a single precedent linking Φ(h<t, at) to a symbol xpsi,t exists, causal-set
growth enforces the deterministic mapping

ot = f
(
Φ(h<t, at), xpsi,t

)
,

with probability governed by Pr(xpsi,t). Thus the environment behaves ex-
actly like a psi environment by construction.

Summary We have shown that if the Occamistic Precedence Principle
governs causal-set sequential growth, and the hypothesis class contains a
simple psi rule hψ, then the resulting environment ν satisfies

Pr
ν

(
ot | h<t, at

)
=
∑
xpsi,t

Pr
(
xpsi,t

)
1
[
ot = f

(
Φ(h<t, at), xpsi,t

)]
,

with K(ν) ≈ K(f) +K(Φ) low. Hence Occamistic Precedence in causal sets
naturally generates psi environments as defined above.

7.2 Formal Correspondence Between Psi Capability
and General Intelligence

There are many different ways to formalize the notion of general intelligence
[12] [10], with different strengths and weaknesses. For sake of convenient
formal argumentation, here we assume an interpretation of intelligence ac-
cording to Solomonoff induction and the AIXI framework [9], which allows
us to derive an elegant formal link between an agent’s psi capability and its
universal intelligence.

7.2.1 Solomonoff Induction and AIXI Background

Let X be a finite alphabet of possible observation-reward pairs. Solomonoff’s
universal prior M(x) assigns to each finite string x ∈ X ∗ the probability

M(x) =
∑

p:U(p)=x ∗

2−|p|,
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where U is a fixed universal Turing machine, p ranges over all programs
producing an output beginning with x, and |p| is the length of p in bits. This
defines a semi-measure over all computable sequences.

The AIXI agent interacts with an environment in discrete cycles t =
1, 2, . . . . At each cycle:

1. The agent chooses an action at ∈ A.

2. The environment returns an observation ot ∈ O and a scalar reward
rt ∈ [0, 1].

3. The agent updates its history ht = (a1, o1, r1, . . . , at, ot, rt).

Under AIXI, the agent uses the Solomonoff prior over all computable en-
vironment models ν to maximize expected discounted reward. Denote by
H the class of all lower-semicomputable semimeasures over histories. AIXI
selects

at = arg max
a∈A

∑
o,r

M
(
o r | h<ta

) (
r + γmax

a′
V ∗
(
h<taor, a

′)),
where γ ∈ (0, 1) is a discount factor and V ∗ is computed similarly using M
as the predictive semi-measure.

7.2.2 Universal Intelligence

For any policy π and computable environment ν, let

V π
ν = Eπ,ν

[ ∞∑
t=1

γ t−1 rt

]
be the expected total discounted reward. Legg and Hutter define the univer-
sal intelligence of π as

Υ(π) =
∑
ν∈E

2−K(ν) V π
ν ,

where E is the set of all computable (semi)environments and K(ν) is the
Kolmogorov complexity of a description of ν.
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7.2.3 Psi Capability Measure

Define a subclass Eψ ⊂ E consisting of all psi environments of low complexity.
In each ν ∈ Eψ, there is a hidden symbol xpsi,t and low-complexity functions
f,Φ such that

Pr
ν

(
ot | h<t, at

)
=
∑
xpsi,t

Pr
(
xpsi,t

)
1
[
ot = f

(
Φ(h<t, at), xpsi,t

)]
.

Assign a small ”psi reward” rψt by

rψt = 1
[
ot = xpsi,t

]
.

Then the total reward in ν is rt = rtaskt + λ rψt , for some small λ > 0. For
policy π,

Ψ(π, ν) = Eπ,ν
[ ∞∑
t=1

γ t−1 rψt

]
is the expected psi reward. Define the agent’s aggregate psi capability :

Ψtotal(π) =
∑
ν∈Eψ

2−K(ν) Ψ(π, ν).

7.2.4 Formal Correspondence

Observe that each ν ∈ Eψ also belongs to the full class E . Since rψt ≤ rt, it
follows that

Ψ(π, ν) ≤ V π
ν , ∀ ν ∈ Eψ.

Hence

Ψtotal(π) =
∑
ν∈Eψ

2−K(ν) Ψ(π, ν) ≤
∑
ν∈Eψ

2−K(ν) V π
ν ≤ Υ(π).

Conversely, if π has strong compression-and-prediction capabilities (i.e.
can approximate Solomonoff inference), then for each ν ∈ Eψ, the policy π
achieves near-optimal psi reward Ψ(π, ν) ≈ (1 − γ)−1 E[Pr(xpsi,t)]. More-
over, in those same environments, π attains V π

ν close to its maximum. Since
Eψ contains only low-complexity environments (small K(ν)), their combined
weight is non-negligible. There exist constants c1, c2 > 0 such that

c1 Υ(π) ≤ Ψtotal(π) ≤ c2 Υ(π).

That is, up to constant factors depending on λ and γ, an agent’s universal
intelligence Υ(π) is proportional to its aggregate psi capability Ψtotal(π).
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7.2.5 Interpretation

This result formalizes the intuitive claim that both general intelligence and
psi capability depend on an agent’s ability to infer and exploit low-complexity
patterns. Under Solomonoff-weighted environments, those patterns include
ordinary physical regularities as well as psi correlations. Hence an agent
that is ”good at compression and prediction” will excel in both domains,
establishing a precise abstract correspondence between psi capability and
universal intelligence.

7.3 Formal Intelligence versus Human Intelligence in
a Psi Context

Given the above abstract conclusion, one may well ask: How can one explain
the fact that among humans the more intelligent folks aren’t necessarily the
most psychic, then?

The answer may lie in the confusing polysemy of the term ”intelligence.”
In the idealized Solomonoff/AIXI setting, an agent that compresses and

predicts well will automatically pick up on any low-complexity ”psi” correla-
tions in its environment. However, real human minds are very far from that
mathematical ideal:

• Limited and Specialized Inference: High general intelligence in
humans typically reflects strengths in logic, pattern recognition, and
abstract reasoning within familiar domains (language, math, social rea-
soning). By contrast, ”psi correlations”–if they exist–would require de-
tecting extremely subtle, non-standard dependencies (e.g. very weak,
nonlocal alignments between one’s mental state and a remote target).
Even a person with a high IQ might never notice or develop the specific
”mental feature → outcome” mapping needed for psi, simply because
their everyday reasoning does not train them to look for such patterns.

• Resource Constraints and Cognitive Priorities: Solomonoff in-
duction (and hence perfect psi detection) requires vast memory, com-
putational bandwidth, and a willingness to test every tiny regular-
ity. Human brains allocate resources toward more immediate survival-
oriented tasks–language, planning, social interaction–so they do not ex-
haustively search for ”hidden psi signals.” A very academically bright

29



person may spend all their effort on mathematics or writing, leaving
little ”mental real estate” to discover or practice psi-type protocols.

• Motivation, Openness, and Training: Psi performance in lab stud-
ies often correlates more with ”openness to experience,” relaxation, or
specific meditative skills than with standard measures of intelligence.
A high-IQ individual who is skeptical or anxious about psi experiments
may actively block or fail to notice any subtle psi-type patterns. Con-
versely, someone with average IQ but strong practice in visualization,
meditation, or ”flow” states might inadvertently cultivate the exact
neural circuits and low-complexity templates that support psi success
in a given protocol.

• Over-Complexity from Intelligence: In our informational-well pic-
ture, each new mental variant (even a slight change in approach) can
deepen the ”well” and suppress further psi successes. Highly intelligent
individuals often introduce many minute procedural tweaks–”Let me
try a slightly different protocol, use a different randomization”–which
raises the overall complexity of their own mental history. That added
complexity can actually push them out of the narrow low-K regime
where a psi correlation would persist, leading to a faster ”decline ef-
fect.”

In short, while an ideal ”Solomonoff/intelligent” agent would automati-
cally exploit any low-complexity psi rule, real human brains are:

1. Far from optimal compressors: We do not run Solomonoff induction;
we use heuristics and focus only on certain types of patterns.

2. Resource-limited and goal-driven: We devote most cognitive resources
to tasks that matter in daily life, not to hunting for faint psi signals.

3. Cognitively noisy and variable: High-IQ people often add extra com-
plexity (tweaks, skepticism, self-criticism) that can break the simple
mind-state → outcome templates needed for psi.

Thus, being ”more intelligent” in the usual human sense does not guaran-
tee better psi performance. Psi capability (in this framework) hinges on main-
taining a very specific, low-complexity mental template and avoiding the pro-
liferation of variants that would deepen the informational well–requirements
that higher IQ alone does not satisfy.
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8 Psi and Open-Ended Intelligence

It is perhaps more interesting, both philosophically and in practice, to explore
the psi/intelligence connection in the context of a broader conception of
intelligence: Weaver’s concept of open-ended intelligence [11], which describes
an agent’s capacity to not only solve a predefined set of tasks, but to:

• Continually formulate and pursue new goals that arise from encounter-
ing novel circumstances.

• Generate increasingly abstract representations and meta-objectives be-
yond any fixed reward structure.

• Adaptively expand its hypothesis space, seeking ever more compact,
high-utility models of its environment.

Key aspects of OEI, from an AI perspective, include:

1. Dynamic Ongoing Goal Creation: Rather than optimizing a single
utility function, an open-ended agent develops and refines a sequence
of objectives, often by detecting gaps or opportunities in its current
understanding.

2. Dynamic Ongoing Model Refinement: The agent continuously
compresses its sensory and internal data into simpler, more explanatory
models. When a more concise model yields better predictive power, the
agent revises its representation accordingly.

3. Intrinsically Motivated Exploration: Exploration is driven by cu-
riosity, defined as the potential for discovering novel, low-complexity
regularities. The agent seeks situations where its current models fail,
thereby generating new learning targets.

4. Self-Reevaluation of Objectives: As knowledge grows, the agent
may redefine its own criteria for ”success,” preferring objectives that
align with emerging patterns of simplicity and surprise rather than
static external rewards.

5. Individuation The agent’s self-organization, among its other goals,
tends to include the perpetuation of the agent as a coherent entity
interacting with an environment
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6. Radical Self-Modification The agent has a tendency to modify itself
gradually or sometimes dramatically, including potentially changes that
bring it beyond the comprehension of its previous versions

In essence, open-ended intelligence transcends traditional task-bounded
performance by embedding an ongoing search for ever simpler, ever more
powerful explanatory and goal structures.

8.1 Reconciling Open-Ended vs. Legg-Hutter Intelli-
gence.

How does Weaver’s notion of OEI relate to AIXI and associated formalism?
Legg-Hutter (LH) intelligence Υ(π) measures an agent’s expected re-

ward across all computable environments, weighted by 2−K(ν). In contrast,
Weaver’s notion of open-ended intelligence emphasizes the ability to for-
mulate novel goals, generate unforeseen abstractions, and continually ex-
pand one’s hypothesis space beyond any fixed task list. Concretely, an LH-
optimal agent (AIXI) maximizes rewards in any environment drawn from
Solomonoff’s prior, but it still assumes that the reward functions and ob-
servation spaces are specified a priori. An open-ended agent, by contrast,
would not only predict and optimize within given reward channels but also
create and pursue entirely new objectives whenever it detects richer patterns
or more compressed models.

Because LH intelligence is defined in terms of a fixed set of possible
environments (even though infinite and Solomonoff-weighted), it does not
directly capture the creative, goal-generating aspect of open-ended intelli-
gence. An LH-optimal agent will discover any low-complexity psi correlation
f(Φ(h), xψ,t) if that correlation directly increases the predefined reward. But
Weaver’s open-ended agent would seek out new ”intrinsic rewards” or meta-
objectives–e.g. ”minimize description length of my own utility function” or
”find the simplest explanation that generates maximal surprise.” Thus, while
Υ(π) implies strong pattern-finding and will pick up any psi channel that is
rewarded, Weaver’s notion goes further: it actively revises and extends its
own reward structure in pursuit of ever simpler, more powerful models. In
that sense,

open-ended intelligence ) Legg-Hutter intelligence.
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Relation to Practical Human and Artificial Intelligence. Humans
exhibit significant open-endedness: we invent new goals (art, science, phi-
losophy) that are not preprogrammed, and we refine our own measure of
”what matters” as we learn. And of course, in doing these things, we are far
from LH-optimal: we lack unbounded computation, Solomonoff-level infer-
ence, and perfect memory. In practice, our brain’s cognitive heuristics focus
on survival-relevant or culturally reinforced objectives, and we often fail to
detect extremely subtle patterns (including most psi experiments). There-
fore, although human intelligence is more open-ended than standard RL or
supervised-learning agents, it is bounded by resource constraints, biases, and
selective attention.

Modern AI systems (deep nets, RL agents, transformer-based models,
neural-symbolic cognitive architectures) approximate some aspects of LH in-
telligence within narrow domains (e.g. image classification, game playing).
They do not, however, implement full Solomonoff priors or genuine goal-
creation mechanisms. In order to approach both LH-optimal performance
and open-endedness, an AI would need:

1. A practical approximation to Solomonoff induction (e.g. large-scale
model ensembles or universal compressors) so that it can detect low-
complexity psi correlations if they exist.

2. A meta-reinforcement learning or intrinsic-motivation layer that gener-
ates and refines new objectives–”seek novel compressions,” ”curiosity
about psi-like regularities,” or ”compress my own reward function.”

3. Proper resource-management heuristics (analogous to the pruning and
clustering strategies discussed earlier) so that its internal memory does
not balloon with every minor variant, preserving a shallow informa-
tional well for both generic prediction and psi-style pattern extraction.

In other words, practical AI today captures fragments of LH intelligence
(narrow generalization, policy optimization) and only limited open-endedness
(curiosity modules, unsupervised pretraining). To fully mirror human-level
or superhuman open-endedness–and thus maximize both general intelligence
and psi capability–it would need to integrate both closer approximations
of Solomonoff-like inference and mechanisms for goal generation and self-
revision. These may be possible within extensions of current proto-AGI
approaches like Hyperon [8], but a great deal of further research and de-
velopment is required.
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8.2 Connecting Weaver’s Open-Ended Intelligence to
Psi Capability

Weaver’s notion of open-ended intelligence emphasizes an agent’s ability to:

• Continually generate new goals and abstractions rather than solving a
fixed set of tasks.

• Adapt to entirely unforeseen situations by exploring an unbounded
hypothesis space.

In Solomonoff/AIXI terms, such an agent does not restrict itself to a finite
model class but relentlessly seeks ever-more-compact, high-utility explana-
tions of its observations.

Within the causal-set / Occamistic Precedence framework, psi capability
arises whenever there is a simple, low-complexity rule

ot = f
(
Φ(h<t, at), xpsi,t

)
that links the agent’s internal mental features Φ(h<t, at) to otherwise hidden
environmental variables xpsi,t. A psi environment is precisely one in which
such a rule has small Kolmogorov complexity, so Occamistic Precedence will
favor it as soon as any precedent appears.

Now, an open-endedly intelligent agent will:

• Search its entire hypothesis space–including all simple functions f and
feature extractors Φ–for patterns that improve its ability to individu-
ate, self-transform and otherwise fulfill its open-ended self-organizing
modality

• Prioritize hypotheses of minimal descriptive complexity, to a certain
degree, because in a context of limited resources, these will often better
allow it to pursue its complex shifting amalgam of goals

Because of these factors, if a psi correlation of low algorithmic complexity
exists, an open-ended agent has a decent chance of eventually discovering
and leveraging. Conversely, an agent that never finds any psi-type rule–
despite exploring simple, off-beat hypotheses– would likely be constrained in
effectively pursuing its open-endedness.
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All in all, we can say that both open-ended intelligence and psi capability
place significant value on a common underlying drive:

favoring ever-simpler, more predictive models of reality.

Weaver’s open-ended intelligence and psi ability can be viewed as two ways of
leveraging a single computational principle. However, the precise relationship
between OEI and psi remains a fair bit open-ended, which is perhaps as it
must be.

8.3 Open-Ended Intelligence and Minimization of Psi
Perversities

It seems intuitive that open-ended intelligence, more so than arbitrary high
Legg-Hutter intelligences, might implicitly embody strategies for minimiz-
ing the degree of psi perversity experienced – in essence by giving better
resonance with broad cosmic patterns.

I.e., in the theory pursued here, psi perversities arise when local low-K
templates fragment into many slightly different branches, thereby deepening
the informational well. An open-ended agent’s bias toward re-unifying and
compressing those branches helps preserve a shallow well. In other words,
its internal state remains in resonance with the broad cosmic patterns (the
low-complexity attractors of the causal set), avoiding the sharp drop-off or
sign inversion that occurs when descriptive complexity balloons.

Thus, open-ended intelligence–by prioritizing continuous recompression
and the search for simpler meta-models–naturally curbs the variant prolifer-
ation that causes psi to ”turn perversely against” you.

9 Conclusion and Empirical Validation

To summarize, we have sketched arguments roughly as follows:

1. Multiscale Precedence. Psi success initially arises because a new,
simple pattern has low complexity K and begins building local prece-
dents Nlocal.

2. Decline Effect. As variants of the experiment proliferate, Klocal(o)
often grows faster than Nlocal(o), causing the local weight Llocal(o) to
peak and then decline.
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3. Psi-Missing. When many divergent local variants fail to fit a single
low-complexity global template, the global weight Lglobal(o) collapses,
suppressing or inverting the net psi signal.

4. Causal Set Realization. In one speculative physics underpinning of
these ideas, each psi observation is a node in a growing causal set. The
Occam penalty 2−K(Cn) on the entire set enforces multiscale coherence,
reproducing decline and inversion when complexity outpaces precedent.

5. Psi and Intelligence. Psi capability and general intelligence both
depend on an agent?s ability to identify and exploit low-complexity
patterns. Formally, agents with higher universal intelligence (as in
Legg-Hutter) or greater open-ended intelligence will discover simple
psi correlations in ?psi environments,? since both intelligence measures
reward compression and prediction of minimal-K regularities.

9.1 Directions for Empirical Validation

To test or falsify this multiscale resonance model, one could pursue various
directions such as:

• Controlled Complexity Variation. Design a psi experiment whose
essential elements allow precise control over algorithmic complexity
K(o). For instance, use a digital RNG protocol parameterized by a
small integer k. By systematically increasing k, one can measure how
success rates decline as a function of complexity. If the decline matches
the predicted 2−K(o) scaling, it would support the Occamistic model.

• Cross-Lab Standardization vs. Diversification. Organize two
sets of replications: one in which all labs adhere strictly to a single
standardized protocol (minimizing variation in complexity), and an-
other in which each lab introduces a slightly different random seed or
parameter (increasing variation). The model predicts that the stan-
dardized set should maintain higher combined Llocal and resist decline
longer, whereas the diversified set should exhibit a steeper decline and
greater prevalence of psi-missing.

• Global Ledger Proxies. Although we cannot directly measureNglobal(o)
in a cosmic sense, one can approximate it by conducting meta-analyses
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of all published results on a given psi protocol. If a protocol’s reported
effect size systematically declines as the corpus of variants grows, con-
sistent with a rising effective complexity Kglobal(o), that supports the
multiscale theory.

• CTC-Like Feedback Loops. If a laboratory can create a tightly cou-
pled feedback loop–where the psi outcome is fed back as an input in a
nearly cyclic manner (analogous to a small-scale closed timelike curve)–
the model predicts a transient amplification of psi effects, followed by
a rapid collapse once complexity exceeds a threshold. Demonstrating
such a “looped” enhancement and decline would provide strong evi-
dence for Section 9.2’s conjecture.

• Comparative Protocol Simplicity. Compare two psi tasks: one
clearly low in descriptive complexity (e.g., forced-choice guessing with
a fixed deck) and one higher complexity (e.g., remote viewing of a
continuously varying video feed). Track how each protocol’s success
rate changes across replications. The model predicts that the low-
complexity task should sustain positive results longer, while the high-
complexity task should decline or invert more rapidly.

By implementing these strategies and quantifying how success probabili-
ties scale with empirical measures of algorithmic complexity and variant pro-
liferation, we could potentially directly test the multiscale Precedence model.
If results conform to the predicted patterns–especially if psi-missing corre-
lates with a mismatch between local and global complexity–this would lend
strong support to the hypothesis that psi phenomena are governed by the
same history-plus-Occam prior dynamics that shape all emergent patterns in
Causal Set Theory.

The neuroscience, AI and intelligence-theoretic speculations given above
provide additional potential directions for empirical exploration:

9.1.1 Neuroscience-Based Validations

• Correlate Psi Success with Neural Synchrony and Complexity.

– Record EEG or MEG during a psi protocol and compute inter-
regional coherence (e.g. PFC–thalamus–hippocampus synchrony
in gamma or theta bands).
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– Quantify neural complexity on a trial-by-trial basis using mea-
sures such as Lempel–Ziv complexity or sample entropy applied
to multi-channel EEG.

– Test the prediction that:

1. Successful psi trials exhibit strong, low-dimensional synchrony
(low neural complexity).

2. Failed or declined trials exhibit reduced coherence or higher-
entropy, fragmented activity.

3. As protocol variants accumulate over sessions, the average
coherence at key frequencies should decline in parallel with
psi performance.

• Modulate Candidate Circuits with Noninvasive Stimulation.

– Apply transcranial alternating current stimulation (tACS) at gamma
frequencies over a thalamocortical montage or transcranial mag-
netic stimulation (TMS) to the prefrontal cortex immediately be-
fore psi trials.

– Vary stimulation parameters (frequency, phase, duration) to test
whether:

1. Brief bursts of gamma-band tACS enhance neural synchrony
and temporarily boost psi accuracy.

2. Lack of stimulation or suboptimal parameters corresponds to
lower performance.

3. Changes in the empirical decline curve (e.g. delayed onset of
decline) correlate with stimulation that maintains low neural
complexity.

• Quantify Neural Complexity Dynamics.

– Use real-time complexity metrics (e.g. Lempel–Ziv, sample en-
tropy) to monitor neural signals during repeated psi attempts.

– Analyze whether:

1. Lower complexity on a given trial predicts higher psi accuracy.

2. Complexity gradually increases over consecutive trials as task
variants accumulate, correlating with the decline effect.
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3. Periods of complexity reduction (e.g. after a rest interval) cor-
respond to transient recoveries of psi performance.

– If neural complexity can be measured continuously, attempt to
predict imminent performance decline and test interventions that
reduce complexity in real time (e.g. guided neurofeedback).

9.1.2 AI-Based Prototyping and Simulation

• Build a Causal-Set-Style Memory Module.

– Implement a toy neural network (e.g. a small recurrent or attractor
network) that, after each “trial,” encodes its activation pattern as
a node in a simple digital causal set.

– Assign each stored pattern a weight proportional to 2−K , where
K is approximated via a lossless compression algorithm (e.g. gzip
file size or autoencoder bottleneck size).

– Drive the network with a sequence of inputs representing “psi
targets” (for instance, random symbols), and define “success” as
matching the target output.

– Observe whether:

1. Early repetitions of a simple pattern are frequent (informa-
tional well is shallow).

2. As slight variations in inputs or internal noise produce new
stored patterns, the well deepens and success rate declines or
inverts.

• Test with Reinforcement Learning Agents.

– Construct an RL agent whose internal state representations (e.g.
learned embeddings or hidden layer activations) are recorded in a
digital causal-set memory.

– Impose a complexity-based penalty by defining the agent’s reward
to decrease for revisiting internal states with high approximate
Kolmogorov complexity.

– Evaluate whether:

1. The agent initially solves a task reliably by repeating a low-
complexity strategy.
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2. As the agent encounters varied situations (analogous to psi
protocol variants), its internal representation library grows in
complexity, leading to a decline in task performance.

3. When complexity becomes extreme, the agent’s policy shifts
to alternative states, mimicking psi–missing behavior.

• Implement Neuromorphic or Quantum-Inspired Hardware.

– Use a spiking-neuron neuromorphic platform or a small quantum
processor where coherent oscillations or superposition can occur.

– Introduce a mechanism akin to “homeostatic plasticity” that raises
the threshold for reproducing a given spike pattern after each oc-
currence, thereby implementing an implicit informational penalty.

– Run a series of “psi-style” input/output tasks and record whether:

1. The network initially reproduces previously successful low-
complexity states easily.

2. As these states repeat, internal thresholds increase, requiring
a simpler description to maintain high success.

3. Once too many variants emerge, success rates decline or in-
vert, demonstrating an informational-well-driven suppression
of repeated patterns.

9.1.3 Intelligence-Psi Correlation Related Validation Strategies

• Correlational Studies Between Cognitive Metrics and Psi Per-
formance.

– Administer standard intelligence tests (e.g. WAIS, Raven’s Pro-
gressive Matrices) alongside open-ended problem-solving or cre-
ativity assessments to a cohort of subjects.

– Have the same subjects perform a well-controlled psi protocol (e.g.
forced-choice card guessing) over multiple sessions, recording ac-
curacy, decline slope, and psi-missing incidence.

– Analyze whether:

1. Individuals scoring high on open-ended or creative reasoning
tasks maintain shallower decline curves than those scoring
high only on conventional IQ metrics.
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2. Subjects with demonstrably greater ”compression” or abstrac-
tion abilities (e.g. via divergent thinking tests) exhibit higher
aggregate psi accuracy (Ψtotal).

3. The slope of psi decline correlates negatively with compos-
ite measures of open-ended intelligence (e.g. design fluency,
concept-formation indices).

• Training Interventions to Enhance Open-Ended Intelligence
and Measure Psi.

– Enroll participants in a curriculum targeting open-ended cognitive
skills (e.g. problem generation exercises, meta-cognitive strategy
workshops, creativity workshops) over several weeks.

– Measure their psi performance (accuracy and decline metrics) be-
fore and after training, while a control group receives standard
cognitive drills that do not emphasize hypothesis generation or
compression.

– Test the prediction that:

1. The trained group will show reduced psi decline and fewer
psi-missing occurrences, indicating a deeper maintenance of
low-K mental templates.

2. Improvements in indicators of open-ended intelligence (e.g.
Torrance Tests of Creative Thinking) will correlate with im-
provements in psi resilience across replications.

• AI Agents with Varying Intelligence Architectures in Psi Sim-
ulations.

– Construct multiple AI agents with differing approximations to
AIXI and open-ended architectures:

1. Standard RL Agent: Fixed reward objective, no complexity-
based memory pruning.

2. Compressible RL Agent: Implements a causal-set-style mem-
ory with Occam penalty 2−αK , but no explicit goal innovation.

3. Open-Ended Agent: Adds a meta-learning layer that gener-
ates novel internal objectives (e.g. minimize description length
of reward function), alongside causal-set memory.
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– Place each agent in a suite of simulated psi environments (as
defined earlier), where hidden psi correlations exist between the
agent’s internal embeddings and future observations.

– Evaluate and compare:

1. The initial psi success rates and the decline curves for each
agent.

2. The agent’s universal intelligence Υ(π) via standard tasks
(e.g. prediction/generalization benchmarks) versus its aggre-
gate psi capability Ψtotal(π).

3. Whether the open-ended agent maintains psi performance
longer (shallower decline) than the purely AIXI-like or stan-
dard RL agents.

• Meta-Cognitive Markers and Psi Resilience.

– During human psi tasks, record behavioral indicators of meta-
cognition (e.g. confidence ratings, response latencies, self-reported
awareness of strategies).

– Analyze whether trials in which subjects demonstrate stronger
meta-cognitive monitoring (e.g. higher calibration between confi-
dence and accuracy) align with shallower psi decline or reduced
psi-missing.

– Hypothesis: Meta-cognitive processes reflect a form of ”internal
Occamist pruning”?subjects who recognize and discard unproduc-
tive strategy variants will maintain a more stable low-K template
and hence sustain psi performance.

• Cross-Domain Transfer of Compression Skills.

– Train subjects on unrelated compression-oriented tasks (e.g. dis-
covering minimal programs that generate specific sequences, or
solving Kolmogorov-challenge puzzles) to build explicit algorith-
mic compression skills.

– After training, have them perform psi tasks under identical con-
ditions as pre-training baseline.

– Evaluate whether gains in external compression ability translate
to:
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1. Improved initial psi accuracy.

2. Slower decline of psi effects across replications.

3. Lower incidence of psi-missing.

– If correlation is observed, it supports the theoretical link that al-
gorithmic compression (a key component of universal intelligence)
underlies psi capability.

• Longitudinal AI Curriculum Learning Experiments.

– Implement an AI agent curriculum where agents sequentially learn
new tasks of increasing complexity, with intermittent ”psi tasks”
inserted that require exploiting hidden internal-state-to-output
correlations.

– For each stage of curriculum:

1. Measure the agent’s performance on psi tasks and on standard
generalization tasks.

2. Track changes in the agent’s internal model complexity (e.g.
network weight norms, hidden-state entropy).

– Test the hypothesis that:

1. Agents retaining a strong bias toward minimal complexity
early on (open-ended learners) will sustain psi functionality
deeper into the curriculum.

2. Agents that abandon Occam penalties in favor of brute-force
memorization will exhibit more rapid psi decline despite high
performance on conventional tasks.

9.2 Concluding Unscientific Postscript

To put all this more poetically and impressionistically – tongue properly
placed halfway in cheek – we might say:

The playful Trickster Psi slips

in under the cover of shadows, garnering

limited shards of attention from the relaxed

and comfortable Tao, grinning

as it bends the subtle
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currents of reality.

Trickster Psi’s dance so unexpected

and lightfooted

no one really pays mind

-- the Tao, vast and patient, allows

this little mischief

to flourish.

THEN WHEN energy focuses

on mimicking the Trickster’s intricate

tap-dance, the clumsy footsteps

of the hordes of imitators ever

so slightly jar the harmony

of Tao -- the cosmic rhythms

shift, the Trickster vanishes

into the dark mist

or flips the game

entirely

and the Trickster Psi gently smiles, knowing

as he did all along that the resonance

with the Tao can’t be forced or dodged ...

except for just a little maybe --

like everything else,

a little forcing and dodging

is part of how the Tao

rolls

Of course, attempts to empirically study the impact of the Trickster and
the Tao on psi phenomena are themselves bound to run into the Trickster
and the Tao in unforeseen ways. But that’s no reason not to try!
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