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Abstract
We show that a single finite field, built on any odd prime 𝑝, contains the entire scope of algebraic machinery to
support smooth geometry, differential calculus and continuous harmonic analysis. By arranging the field’s basic
arithmetic moves in a 4-dimensional “symmetry cube”, we obtain a finite lattice that has the combinatorial shape of
a 2-sphere. Completing the field via an internally defined infinitesimal extension turns this lattice into a genuinely
smooth surface with constant curvature. The field itself provides finite versions of the familiar constants 𝑖, 𝜋 and
𝑒, identified by their structural roles. Using these constants we build a Fourier kernel that works simultaneously
in the finite, discrete and continuous settings, merging the conventional and the finite harmonic analysis into one
algebraic framework. The resultant construct provides a common foundation for discrete mathematics, classical
analysis, and physical modelling within a single, gauge-covariant finite universe.

1. Introduction

In [1] we proposed the relativistic algebra over a finite field F𝑝 equipped with its gauge-covariant
symmetry triple—translation, dilation and powering—as an arithmetic object able to represent every
affine change-of-coordinates map 𝑘 ↦→ 𝑎𝑘 + 𝑏 (mod 𝑞) (see also [17, 25]). By arranging these three
operators orthogonally to a cardinality axis, we showed that F𝑝 forms a 2-spheroid (the discrete analog
of 𝑆2)—sitting diagonally in a 4-dimensional coordinate cube of symmetries—that already encodes the
combinatorial signature of the topological sphere [2]. Furthermore, in [1] we have demonstrated that
the resultant mathematical construct is capable of supporting the full extent of arithmetical apparatus
provided by the conventional number classes Z,Q,R and C.

The present work advances our program from purely discrete to pseudo-smooth geometry. Leveraging
a non-principal ultrafilter [12], we pass from the finite field F𝑝 to the ultrapower R𝑝 , a characteristic-𝑝
continuum whose diagonal copy of F𝑝 forms an infinitesimal lattice, where we let 𝑝 to be an odd prime
𝑝 ≡ 1 (mod 4), and R𝑝 :=

∏
𝑛 F𝑝/𝑈 for its ultrapower. Within R4

𝑝 we lift the discrete spheroid to the
internal surface

S𝑝 = {(𝜎(𝑢, 𝑣), 𝑐) : 𝑢, 𝑣, 𝑐 ∈ [0, 1] 𝑝},

where 𝜎 is the rational stereographic chart [20] and [0, 1] 𝑝 the pseudo-unit interval. Transfer princi-
ples [16] guarantee that S𝑝 is an internal 𝐶∞ two-manifold1, while its hyperfinite trace reproduces the
original (𝑝−1)2

2 + 1-point lattice exactly. Three consequences follow.

1In non-standard analysis a set, function, or manifold is called internal if it lives entirely inside the ultrapower universe: it can be represented by
an equivalence class of standard sequences and therefore inherits every first-order property of its classical counterpart via the Transfer Principle [12].
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(i) Every affine gauge of F𝑝 extends to an internal diffeomorphism of S𝑝 , so the pseudo-smooth surface
inherits the full relativistic covariance of the finite algebra.

(ii) Loeb-measure shadows [18] show that the combinatorial curvature of the lattice converges, up to
infinitesimals, to the Gauss curvature of S𝑝 [8]. This tangible bridge between discrete and smooth
geometry in characteristic 𝑝 also paves the way for harmonic analysis [19, 27], heat flow [13], and
gauge theory [3] on finite relativistic geometries.

(iii) The framed field F𝑝 contains three fundamental structural constants—𝑖𝑝 , 𝜋𝑝 , 𝑒𝑝—canonically
singled out by its cyclic order. These constants serve as finite-field analogs of the classical 𝑖, 𝜋, 𝑒 that
underpin calculus on R and C.

By exhibiting a genuine differential structure generated solely from the finite ring data, we provide
concrete evidence that the proposed relativistic algebra can support the full extent of modern geometric
ideas. This pseudo-smooth realization is therefore an essential incremental step toward our long-term
goal: a unified algebraic foundation capable of expressing and interrelating the languages of mathematics,
encompassing both the number theory, and the complete reconstruction of the classical analytic toolkit
within a single, finite and gauge-covariant framework.

2. Finite Fields and Arithmetic Symmetries

Figure 1: Diagram of a finite Ring Z13, typically visualized as a circle on a 2D plane that illustrates its
periodicity and rotational symmetry under the arithmetic operation of addition.

Let Z𝑞 := Z/𝑞Z = {0, 1, 2, . . . , 𝑞 − 1} be a finite ring of integers modulo a natural number 𝑞. The
elements ofZ𝑞 form a complete and closed set of relational representations ofZ𝑞 under modular addition
and multiplication. However, the specific numeric labels assigned to these elements—particularly the
designation of 0 and 1 as the additive and multiplicative identities—are intrinsically relative and carry
no absolute meaning within the ring itself [1].

A typical diagram of a finite ringZ𝑞 , where 𝑞 = 13, is shown in Figure 1. We would like to specifically
note that such a diagram is typically visualized as a circle on a 2D plane that illustrates its periodicity and
rotational symmetry under the arithmetic operation of addition, thus assigning an intuitive geometric
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interpretation to the arithmetic structure of the additive group (Z𝑞 , +). However, the association between
arithmetic operations and symbolic geometry can be extended further. In the finite ring Z𝑞 , the basic
arithmetic operations of counting, addition, multiplication, and exponentiation can be all understood as
manifestations of the underlying symmetries of structural transformations of the field [9].

Counting corresponds to the selection of the cardinality 𝑞 of the underlying set. While typically taken
for granted, the act of counting is an ontologically and informationally significant degree of freedom that
both presupposes the existence of the ring Z𝑞 , and determines the entirety of its structural properties.
Furthermore, the counting operation establishes a translation symmetry successor map 𝑛 ↦−→ 𝑛 + 1
(mod 𝑞) that underpins the operation of addition as its iterative application.

Addition corresponds to the iterative application of counting. The additive group (Z𝑞 , +) forms a
finite cyclic group of order 𝑞, generated by the element 1. Each addition operation 𝑎 ↦→ 𝑎 + 𝑘 (mod
𝑞) can be viewed as a rotation by 𝑘 steps around a circular configuration of the elements of Z𝑞 . This
symmetry reflects the homogeneity and periodicity of the additive structure [9].

Multiplication corresponds to the iterative application of addition, and furthermore reflects a scaling
symmetry within the ring. The operation 𝑎 ↦→ 𝑎 ·𝑘 (mod 𝑞) corresponds to a dilation or contraction of the
additive structure, where the effect of multiplication is constrained by the modulus. The multiplicative
structure of Z𝑞 is more subtle: if 𝑞 is prime, Z×𝑞 = Z𝑞 \ {0} forms a finite multiplicative group, and
multiplication becomes a permutation of the nonzero elements. If 𝑞 is composite, the presence of zero
divisors disrupts this structure, but the operation still defines a transformation governed by modular
symmetry [23].

Exponentiation, or the operation 𝑎 ↦→ 𝑎𝑛 (mod 𝑞), represents iterative applications of multiplication.
When restricted to the multiplicative group Z×𝑞 , this operation defines power maps and automorphisms
that reveal the group-theoretic structure and internal symmetries of the ring. In particular, when 𝑞 is
prime, exponentiation captures cyclic subgroup structures and encodes deep number-theoretic properties
such as primitive roots and residue classes [6].

Thus, the basic arithmetic operations in Z𝑞 are not arbitrary—they are algebraic expressions of
the ring’s internal symmetries. They define how elements of the system transform under structured,
invertible actions, and they reveal the harmonious regularity inherent in finite arithmetic.

Proposition 1 (3-Manifold Geometry of Z𝑞). For a fixed value of cardinality 𝑞, the finite ring Z𝑞 ,
together with its triplet of arithmetic symmetries, may be interpreted as a discrete symbolic three-
dimensional manifold embedded in an abstract four-dimensional symmetry space.

The detailed proof and the precise description of the resultant mathematical structure for non-prime
values of 𝑞 involve additional complexities, such as zero divisors and loss of multiplicative inverses,
which are beyond the immediate scope of this publication and will be addressed in detail in our future
work. Here, we would like to restrict ourselves to the important case of odd prime 𝑞, where the structure
simplifies significantly, allowing for a clearer analysis and demonstration of the resultant symbolic
geometry.

More specifically, when 𝑞 is a prime, the ring Z𝑞 becomes a field, and the exponentiation symmetry
becomes algebraically reducible to multiplication due to the cyclic nature of Z×𝑞 . As a result, the
independent exponential symmetry collapses, and the effective symmetry structure reduces from three
to two dimensions. In this sense, the symbolic 3-manifold degenerates to a 2-spheroid within the same
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4D space, reflecting a reduction in the degrees of algebraic freedom. In order to emphasize that 𝑞 is an
odd prime, we will henceforth denote it as 𝑝 and the corresponding finite framed field as F𝑝 .

Figure 2: State diagram for finite framed field F13 as a 2D spheroid in 4D symmetry space combining the
symmetry dimensions of the additive group—along the prime meridian—, and multiplicative group—
along the latitudes for multiplicative generator 𝑔min = 2.

2.1. The discrete 2-spheroid inside symmetry space

Throughout this subsection 𝑝 denotes an odd prime and F𝑝 its finite field. Write F×𝑝 = F𝑝 \ {0} for the
multiplicative group, and fix a primitive root 𝑔 ∈ F×𝑝 .

Definition 1 (Arithmetic symmetries). For 𝑘, 𝑛 ∈ F𝑝 define endomorphisms of F𝑝

𝑇𝑘 (𝑎) = 𝑎 + 𝑘, 𝑆𝑘 (𝑎) = 𝑘𝑎, 𝑃𝑛 (𝑎) = 𝑎 𝑛, 𝑎 ∈ F𝑝 .

The translation maps 𝑇𝑘 form the additive group (F𝑝 , +); the scaling maps 𝑆𝑘 form F×𝑝; and 𝑃𝑛 is called
exponentiation.

Lemma 2.1 (Exponentiation collapses to scaling). For every 𝑛 ∈ F𝑝 there exists a unique 𝑚 ∈
{0, . . . , 𝑝 − 2} such that 𝑃𝑛 = 𝑆𝑔𝑚 on F𝑝 .

Proof. Because F×𝑝 is cyclic of order 𝑝 − 1 there is 𝑚 with 𝑔𝑚 ≡ 𝑔 𝑛 (mod 𝑝); hence 𝑎 𝑛 = 𝑔𝑚 log𝑔 𝑎 =

𝑔𝑚𝑎 for all 𝑎 ∈ F×𝑝 , and trivially for 𝑎 = 0. □

The symmetry triple (𝑇𝑘 , 𝑆𝑘 , 𝑃𝑛) therefore contains only two algebraically independent directions,
namely translation and scaling.
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Definition 2 (Carrier cube and diagonal embedding). Set

S𝑝 := (F𝑝)4 = {(𝑐, 𝑎, 𝑚, 𝑒) | 𝑐, 𝑎, 𝑚, 𝑒 ∈ F𝑝},

the carrier cube whose coordinates record
count (c), add (a), multiply (m), exponentiate (e).

Embed the field diagonally by 𝜄 : F𝑝 ↩→ S𝑝 , 𝑎 ↦→ (𝑎, 𝑎, 𝑎, 𝑎).

Definition 3 (Orbit complex). Let

N𝑝 :=
{
𝑇𝑘1 𝑆𝑘2

(
𝜄(𝑎)

) �� 𝑎, 𝑘1, 𝑘2 ∈ F𝑝

}
⊂ S𝑝 .

Equip S𝑝 with the cubical adjacency relation: two vertices are adjacent when they differ in exactly one
coordinate by 1 modulo 𝑝. The sub-complex N𝑝 inherits this incidence structure.

Proposition 2 (Finite 2-spheroid). The orbit complex N𝑝 is a regular CW-complex [14] whose links
of vertices are combinatorial circles; consequently N𝑝 is combinatorially isomorphic to the boundary
of a 3-simplex, i.e. to the 2-sphere 𝑆2. Thus, F𝑝 , together with translation and scaling, realizes a finite
discrete 2-spheroid embedded in the 4-dimensional lattice S𝑝 as depicted in Figure 2.

Proof.

1. Two-parameter generation. By the lemma any composition of 𝑇𝑘 , 𝑆𝑘 , 𝑃𝑛 reduces to 𝑇𝑘′𝑆𝑘′′ ; hence
N𝑝 is exactly the orbit of 𝜄(0) under the commuting group F𝑝 × F×𝑝 .

2. Dimension. Each orbit point is obtained by at most two independent moves (𝑇 and 𝑆), so every cell
in the induced cubical structure has dimension ≤ 2. Non-degeneracy of the actions ensures that
two-dimensional faces do appear, making the complex pure of dimension 2.

3. Local sphericality. At a vertex 𝑣 adjacent vertices differ from 𝑣 in exactly one of the two active
coordinates. The four resulting neighbours form a 4-cycle, i.e. the link of 𝑣 is a combinatorial
1-sphere.

4. Global structure. A finite, pure 2-dimensional CW-complex with cyclic vertex links is necessarily a
triangulation of a topological 2-sphere (Alexander duality or direct enumeration). Hence N𝑝 � 𝑆

2.

□

Remark 2.2. No additional topology is required—the compactness ofN𝑝 follows from finiteness. The
term “spheroid” refers to the regular 2-sphere CW-structure obtained above, serving as the symbolic
analogue of a smooth sphere.

2.2. Pseudo-Smooth Lift to 𝑆2

Let 𝑝 be a fixed odd prime. All constructions below are carried out inside one and the same finite field
F𝑝 .

Definition 4 (Pseudo-reals [1]). Fix a non-principal ultrafilterU on N and set

R𝑝 :=
∏
𝑛∈N

F𝑝

/
U, 𝜄 : F𝑝 ↩→ R𝑝 , 𝑎 ↦−→ [(𝑎, 𝑎, 𝑎, . . . )]U .



6 Yosef Akhtman

𝑅𝑝 is an internal field of characteristic 𝑝 that is 𝜅-saturated for every standard 𝜅 < card(R). The
diagonal copy 𝜄(F𝑝) is a hyperfinite lattice which is 𝜀-dense in every compact interval of R𝑝 for any
infinitesimal 𝜀.

We write [0, 1] 𝑝 := {𝑥 ∈ R𝑝 : 0 ≤ 𝑥 ≤ 1} for the pseudo-unit interval, a totally ordered, internally
compact subset of R𝑝 .

Definition 5 (Internal stereographic map). Define

𝜎 : R 2
𝑝 \ {𝑢2 + 𝑣2 = −1} −→ R 3

𝑝 , 𝜎(𝑢, 𝑣) :=
(2𝑢
𝐷
,

2𝑣
𝐷
,
𝑢2 + 𝑣2 − 1

𝐷

)
, 𝐷 := 𝑢2 + 𝑣2 + 1.

Transfer of the classical estimate shows that 𝜎 is internally 1-Lipschitz on [0, 1] 2
𝑝 .

Definition 6 (Pseudo-smooth surface and lattice). Set

S𝑝 :=
{
(𝜎(𝑢, 𝑣), 𝑐)

�� 𝑢, 𝑣, 𝑐 ∈ [0, 1] 𝑝} ⊂ (R𝑝)4, 𝐿𝑝 := S𝑝 ∩
(
𝜄(F𝑝)

)4
.

The set 𝐿𝑝 is finite with 𝑝3 points and inherits from the cubical lattice 𝜄(F𝑝)4 a regular CW–complex
isomorphic to the discrete 2-spheroid of Proposition 2 (each vertex link is a 4-cycle).

Theorem 2.3 (Pseudo-smooth realisation for fixed 𝑝). Let 𝑝 be any odd prime and R𝑝 the pseudo-real
field from Definition 4. Then:

1. S𝑝 is an internal 𝐶∞ two-dimensional submanifold of (R𝑝)4.
2. 𝐿𝑝 is a finite 2-sphere CW-complex combinatorially identical to the discrete 2-spheroid of F𝑝 .
3. For every infinitesimal 𝜀 ∈ 𝑅𝑝 the lattice 𝐿𝑝 is an 𝜀-net in S𝑝; equivalently, 𝐿𝑝 = S𝑝 in the

internal topology.
4. The internal Gaussian curvature of S𝑝 , computed by infinitesimal triangles, is identically 1. (Proof:

transfer of the classical formula for 𝜎.)

Proof. (a) Smoothness follows from transfer of the real inverse-function theorem applied to 𝜎 and the
coordinate projection 𝑐 ↦→ 𝑐. (b) Each vertex of 𝐿𝑝 has valency 4; the link is a square; the resulting
complex is a flag triangulation of 𝑆2. (c) Given 𝑥 = (𝜎(𝑢, 𝑣), 𝑐) ∈ S𝑝 choose 𝑘1, 𝑘2, 𝑘3 ∈ F𝑝 with
|𝑢− 𝜄(𝑘1) |, |𝑣− 𝜄(𝑘2) |, |𝑐− 𝜄(𝑘3) | < 𝛿 for an arbitrary infinitesimal 𝛿. Lipschitz continuity of 𝜎 yields a
point of 𝐿𝑝 within distance 𝐶𝛿. (d) Because 𝜎 is the standard rational stereographic chart, the induced
first fundamental form satisfies 𝐸 = 𝐺 = 4

𝐷2 , 𝐹 = 0; direct transfer of the classical Gauss formula gives
𝐾 ≡ 1. □

The pseudo-smooth 2-spheroidS𝑝 provides the geometric arena on which finite analogs of differential
forms, spinors, and gauge fields can be developed. In forthcoming sections we connect the algebraic
observer formalism of the companion paper [1] with the differential geometry of S𝑝 , paving the way
toward a finite-field approach to relativistic dynamics.

Remark 2.4 (Optional characteristic-zero shadow). If one embeds R𝑝 into a characteristic-0 non-
standard field (e.g. via Witt vectors), the standard-part map sends S𝑝 to an honest smooth round
2-sphere in R4, while collapsing 𝐿𝑝 to a 1

𝑝
-mesh refinement thereof. No such embedding is needed

for the internal differential calculus used in this paper, but it can be convenient when comparing with
classical geometry.
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The theorem shows that every finite framed field F𝑝 already carries within itself—via its pseudo-
real completion—a fully fledged smooth-like 2-sphere on which the lattice of field elements forms an
arbitrarily fine pixelation.

2.3. Intrinsic curvature of the pseudo-smooth 2-spheroid S𝑝

Recall the internal stereographic chart

𝜎(𝑢, 𝑣) =

(
𝑋 (𝑢, 𝑣), 𝑌 (𝑢, 𝑣), 𝑍 (𝑢, 𝑣)

)
=

(
2𝑢
𝐷
, 2𝑣

𝐷
, 𝑢2+𝑣2−1

𝐷

)
, 𝐷 := 𝑢2 + 𝑣2 + 1,

defined for (𝑢, 𝑣) ∈ [0, 1] 2
𝑝 ⊂ R2

𝑝 . The pseudo-smooth surface of Section 2.2 is S𝑝 =
{
(𝜎(𝑢, 𝑣), 𝑐) |

𝑢, 𝑣, 𝑐 ∈ [0, 1] 𝑝
}
⊂ (R𝑝)4.

Set 𝜎𝑢 := 𝜕𝑢𝜎, 𝜎𝑣 := 𝜕𝑣𝜎 and abbreviate 𝐸 := ⟨𝜎𝑢, 𝜎𝑢⟩, 𝐹 := ⟨𝜎𝑢, 𝜎𝑣⟩, 𝐺 := ⟨𝜎𝑣 , 𝜎𝑣⟩ for the
metric coefficients with respect to the ⟨ · , · ⟩ coming from the standard dot-product on (R𝑝)3. A direct
internal computation—identical to the real one—gives

𝐸 =
4
𝐷2 , 𝐹 = 0, 𝐺 =

4
𝐷2 .

Because ∥𝜎∥ = 1 we may take the inward unit normal n := 𝜎. Let 𝐿 := ⟨𝜎𝑢𝑢, n⟩, 𝑀 :=
⟨𝜎𝑢𝑣 , n⟩, 𝑁 := ⟨𝜎𝑣𝑣 , n⟩ denote the second-fundamental-form coefficients. Using ⟨𝜎𝑢, 𝜎⟩ = ⟨𝜎𝑣 , 𝜎⟩ = 0
one finds

𝐿 =
2
𝐷2 , 𝑀 = 0, 𝑁 =

2
𝐷2 .

With 𝐾 =
𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹2 , 𝐻 =
𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀

2(𝐸𝐺 − 𝐹2)
(see, e.g., [8]) one obtains

𝐾 (𝑢, 𝑣) = 1, 𝐻 (𝑢, 𝑣) = 1, for all (𝑢, 𝑣) ∈ [0, 1]2𝑝 .

In conclusion, every point of the pseudo-smooth surfaceS𝑝 has constant positive Gaussian curvature
𝐾 ≡ 1 and mean curvature 𝐻 ≡ 1. This explicit calculation confirms Theorem 2.3(d).

Remark. Because the fourth “count” coordinate in 𝐹 (𝑢, 𝑣, 𝑐) := (𝜎(𝑢, 𝑣), 𝑐) is flat, all curvature is
carried by the three stereographic coordinates. Hence S𝑝 is internally isometric to the unit round sphere
in (R𝑝)3.

3. Canonical Constants in F𝑝

3.1. The quarter-turn generator 𝑖𝑝

Recall from [1] that, for every prime 𝑝 ≡ 1 (mod 4), −1 is a quadratic residue in F𝑝 . Define the
imaginary unit

𝑖𝑝 := min
{
𝑥 ∈ F𝑝

�� 𝑥2 = −1, 1 ≤ 𝑥 < 𝑝−1
2

}
.

The interval restriction makes 𝑖𝑝 the unique square-root in the forward half-cycle of the frame order.
On the additive circle C𝑝 := {(𝑥, 𝑦) ∈ F2

𝑝 : 𝑥2 + 𝑦2 = 1} the map 𝑄 : (𝑥, 𝑦) ↦→ (−𝑦, 𝑥) corresponds
to multiplication by 𝑖𝑝; it is the quarter-turn rotation, the discrete analog of 𝑒𝑖 𝜋/2.
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3.2. The natural exponential base 𝑒𝑝

In the real calculus the number 𝑒 is characterized by the minimal-deviation property
𝑑

𝑑𝑥
𝑒𝑥
��
𝑥=0 = 1, i.e.

the exponential map coincides with the identity to first order at the origin. We translate this idea into the
finite setting by choosing, among the primitive roots of F×𝑝 , the one that sits closest to 0 in the chosen
cyclic order 0 ≺ 1 ≺ 2 ≺ · · · ≺ 𝑝 − 1 ≺ 0.

Cyclic distance. For 𝑥 ∈ F𝑝 define the additive-circle distance to the origin

𝑑0 (𝑥) := min
{
𝑥, 𝑝 − 𝑥

}
∈

{
0, 1, . . . , 𝑝−1

2
}
.

Forward-time convention. To avoid the duplicity (𝑔,−𝑔) of primitive roots we restrict attention to the
forward half-circle

P+ :=
{
𝑔 ∈ F×𝑝 primitive : 0 < 𝑔 < 𝑝−1

2
}
.

Every unordered pair {𝑔,−𝑔} of primitive roots contributes exactly one element to P+, so the selection
below is unambiguous for all odd primes 𝑝.

Definition 7 (Natural base 𝑒𝑝). Set

𝑒𝑝 := arg min
𝑥∈P+

𝑑0 (𝑥) = minP+. (3.1)

Lemma 3.1 (Uniqueness and minimal increment). 𝑒𝑝 is the unique primitive root in the interval
(0, 𝑝−1

2 ), hence the unique primitive root that minimizes both 𝑑0 (𝑥) and |𝑥 − 1|.

Proof. The interval (0, 𝑝−1
2 ) contains no pair of additive inverses, so minP+ is a single element. For any

primitive root 𝑔 ≠ 𝑒𝑝 we have 𝑑0 (𝑔) ≥ 𝑑0 (𝑒𝑝) +1, whence |𝑔−1| ≥ 𝑑0 (𝑔) −1 ≥ 𝑑0 (𝑒𝑝) = |𝑒𝑝 −1|. □

Discrete exponential and logarithm. Using 𝑒𝑝 as base define

exp𝑝 : Z −→ F×𝑝 , exp𝑝 (𝑘) := 𝑒 𝑘
𝑝 , log𝑒𝑝 : F×𝑝 −→ Z/(𝑝 − 1)Z, log𝑒𝑝 (𝑥) = 𝑘 ⇐⇒ 𝑥 = 𝑒 𝑘

𝑝 .

Because |𝑒𝑝 − 1| is minimal among primitive roots, exp𝑝 realises the smallest forward difference at the
origin, Δ exp𝑝 (0) = 𝑒𝑝 − 1, mirroring 𝑒′ (0) = 1.

Gauge covariance. Let 𝑥 ↦→ 𝑎 𝑥 + 𝑏 be an affine gauge transformation with 𝑎 ∈ F×𝑝 . Multiplication by
𝑎 is an automorphism of the cyclic group F×𝑝 , so it permutes primitive roots and preserves the order of
their residues in (0, 𝑝−1

2 ). Translation by 𝑏 fixes F×𝑝 . Consequently the image of 𝑒𝑝 under the gauge is
the minimiser of (3.1) in the new frame; hence 𝑒𝑝 is a frame-invariant constant of the theory.

Remark 3.2. For primes 𝑝 ≡ 1 (mod 4) the forward-time convention coincides with choosing the
representative of a {±𝑔} pair that is closest to 0; for 𝑝 ≡ 3 (mod 4) it simply avoids the fact that −1
itself is a primitive root.

Thus the number 𝑒𝑝 inherits inside F𝑝 the defining property of the real constant 𝑒: it generates
the discrete exponential map that deviates least from the identity at the origin, and its logarithm turns
multiplicative structure into additive increments with maximal linear fidelity.
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3.3. The finite-field half-period 𝜋𝑝

The real number 𝜋 is simultaneously a half-period for the rotation group of the unit circle and the factor
that converts the sphere’s constant curvature into the length of a half-meridian. Both rôles have exact
analogs in every finite field F𝑝 .

Primitive root and half-turn. Fix an odd prime 𝑝 and let

𝑔min := min
{
𝑥 ∈ {2, . . . , 𝑝 − 1} | 𝑥 generates F×𝑝

}
be the least positive primitive root in the framed order 0 ≺ 1 ≺ · · · ≺ 𝑝 − 1 ≺ 0. Euler’s criterion gives
the well-known identity 𝑔 (𝑝−1)/2

min = −1.

Definition 8 (Half–period integer). Set

𝜋𝑝 :=
𝑝 − 1

2
∈ Z.

𝜋𝑝 is the unique positive integer for which 𝑔 𝜋𝑝

min = −1.

Because (𝑝 − 1)/2 depends only on 𝑝, the quantity 𝜋𝑝 is gauge-covariant: any affine relabelling
𝑥 ↦→ 𝑎𝑥 + 𝑏 of the frame transports 𝑔min to the new least primitive root but leaves the integer 𝜋𝑝
unchanged.

Rotation-group interpretation. Define the additive circle C𝑝 := {(𝑥, 𝑦) ∈ F2
𝑝 : 𝑥2 + 𝑦2 = 1}.

Multiplication by 𝑔min acts on C𝑝 by

𝜌 : (𝑥, 𝑦) ↦−→ (𝑔min𝑥, 𝑔min𝑦),

and the map ⟨𝜌⟩ �−→ F×𝑝 , 𝜌
𝑘 ↦→ 𝑔𝑘min identifies the rotation group of C𝑝 with the cyclic group of units.

Under this identification

𝜌 𝜋𝑝 (𝑥, 𝑦) = (−𝑥,−𝑦)

is the half-turn (antipodal) map, so 𝜋𝑝 counts exactly half the lattice points around the discrete circle,
mirroring the classical equation 𝑒𝑖 𝜋 = −1.

Geometric role on the pseudo-smooth spheroid. Embed F𝑝 diagonally into the pseudo-real line 𝑅𝑝

and let

S𝑝 :=
{
(𝜎(𝑢, 𝑣), 𝑐) : 𝑢, 𝑣, 𝑐 ∈ [0, 1] 𝑝

}
⊂ (𝑅𝑝)4

be the pseudo-smooth 2-spheroid of Theorem 2.3. Its prime meridianM𝑝 := {(0, 𝑦, 𝑧, 0) ∈ S𝑝} inherits
the same rotation group as C𝑝 . Stepping 𝜋𝑝 times along the lattice 𝐿𝑝 = S𝑝 ∩

(
𝜄(F𝑝)

)4 therefore

• advances halfway aroundM𝑝;
• sends each lattice point to its meridian antipode; and
• realizes a geodesic length proportional to 𝜋𝑝 .

Since S𝑝 has constant internal curvature 𝐾 ≡ 1 (Section 2.3), the Gauss-Bonnet integrand along any
meridian satisfies

∫
half-meridian 𝐾 𝑑𝑠 = 𝜋𝑝 . Thus, 𝜋𝑝 converts the local curvature normalized to 1 into the

global half-circumference factor, exactly as real 𝜋 does on the classical unit sphere.
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In summary, the constant 𝜋𝑝 =
𝑝−1

2 plays inside F𝑝 the dual rôle of the real constant 𝜋: 1. It is the half-
period of the discrete rotation group on the framed circle C𝑝; and 2. It supplies the universal conversion
factor between constant curvature and half-meridian length on the pseudo-smooth spheroid S𝑝 .

Figure 3: Diagram of the finite field Z13, showing the canonical constants 𝑖13 = 5, 𝜋13 = 6, and 𝑒13 = 2
as elements of the field.

Table 1: Canonical constants in classical calculus and their counterparts in F𝑝 .

classical finite-field counterpart
0, 1 0, 1 (identities, framing)

𝑖 (quarter-turn) 𝑖𝑝 (root of −1)
𝜋 (half-turn, arc-ratio) 𝜋𝑝 = (𝑝 − 1)/2 (half-turn, step-count)

𝑒 (base of exp) 𝑒𝑝 (nearest primitive root, base of exp𝑝)

Together with the imaginary unit 𝑖𝑝 = −1 from Section 3.1 and 𝑒𝑝 from Section 3.2, the value 𝜋𝑝
completes the triple of canonical constants 𝜋𝑝 , 𝑒𝑝 , 𝑖𝑝 underpinning finite-field calculus over R𝑝 and C𝑝 .
The triplet of canonical constants for the finite field F13 is summarized in Table 1 and further depicted
in Figure 3, where the three constants 𝑖13 = 5, 𝜋13 = 6, 𝑒13 = 2 are represented as specific elements of
the finite field F13.

4. Harmonic Analysis in Finite Relativistic Algebra

Building on the broader aims outlined in [1]—notably the links to Approximate Lie Groups and a finite-
field analog of the Langlands programme—we now turn our attention to the harmonic analysis. We show
how the constants 𝑖𝑝 , 𝜋𝑝 , 𝑒𝑝 ∈ F𝑝 constructed in Section 3 provide a bridge between the continuous
and finite harmonic analysis. The key idea is to embed the finite field F𝑝 into its pseudo-real completion
R𝑝 and to interpret the primitive root 𝑒𝑝 as an infinitesimal rotation. This allows us to define a kernel
that simultaneously serves as a Fourier kernel for both the continuous and finite cases.
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Classical Fourier theory over R or the circle T = R/Z decomposes functions into additive characters
𝑥 ↦→ 𝑒−2𝜋𝑖 𝜉 𝑥 , 𝜉 ∈ R [24, 26]. Its finite analog on a prime field F𝑝 uses the discrete additive characters
𝜒𝑎 (𝑥) = 𝑒−2𝜋𝑖Tr(𝑎𝑥 )/𝑝 , 𝑎 ∈ F𝑝 [17, 28]. Although the two theories are usually presented separately,
they share a common algebraic skeleton: every cyclic group is Pontryagin self-dual. In this section we
show how the constants 𝑖𝑝 , 𝜋𝑝 , 𝑒𝑝 constructed earlier provide an explicit bridge between the continuous
and finite cases.

4.1. Additive characters: continuous and finite

Continuous. On (R, +) the dual group is again R; the Fourier kernel is

𝐾∞ (𝑥, 𝜉) = 𝑒−2𝜋𝑖 𝜉 𝑥 .

Finite. On (F𝑝 , +) the dual group is F̂𝑝 � F𝑝 via

𝜒𝑎 (𝑥) := 𝑒−2𝜋𝑖 Tr(𝑎𝑥 )/𝑝 .

The discrete Fourier transform

FF𝑝
[ 𝑓 ] (𝑎) =

∑︁
𝑥∈F𝑝

𝑓 (𝑥)𝜒𝑎 (𝑥)

satisfies the finite Plancherel identity [28]∑︁
𝑥

| 𝑓 (𝑥) |2 = 𝑝−1
∑︁
𝑎

|FF𝑝
𝑓 (𝑎) |2.

The analytic and arithmetic kernels differ only by the ambient field in which the additive characters
live.

4.2. Primitive roots as infinitesimal rotations

Inside the pseudo-real completion R𝑝 (Definition 4) the primitive root 𝑒𝑝 ∈ 𝜄(F𝑝) ⊂ R𝑝 acts like an
infinitesimal rotation:

𝑒−2𝜋𝑖 𝛿︸ ︷︷ ︸
continuous generator

←→ 𝑒𝑝︸︷︷︸
finite generator

, 𝛿 ∈ ∗R infinitesimal.

Repeated multiplication by 𝑒𝑝 generates the cyclic subgroup ⟨𝑒𝑝⟩ of order 𝑝 − 1; its logarithm
log𝑒𝑝 : F×𝑝 → Z/(𝑝 − 1)Z linearizes multiplicative structure (Section 3.2).

4.3. Kernel correspondence

Embed F𝑝 diagonally: 𝜄 : F𝑝 ↩→ R𝑝 , 𝑎 ↦→ [(𝑎, 𝑎, 𝑎, . . . )] . For each 𝑎 ∈ F𝑝 define the pseudo-
continuous character

𝜒̃𝑎 (𝑥) := exp
(
−2𝜋𝑖 𝜄(𝑎) 𝑥/𝑝

)
, 𝑥 ∈ R𝑝 .
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Sampling 𝜒̃𝑎 at 𝑥 ∈ 𝜄(F𝑝) recovers the finite character 𝜒𝑎; sampling at infinitesimal increments 𝑥 = 𝛿𝑘
with 𝛿 ∈ ∗R yields the continuous kernel. Thus, a single analytic expression lives simultaneously in the
finite and continuous worlds.

𝑒−2𝜋𝑖𝑎𝑥/𝑝 = 𝜒𝑎 (𝑥) for 𝑥 ∈ F𝑝 , 𝑒−2𝜋𝑖 𝜉 𝑥 for 𝜉 =
𝑎

𝑝
∈ R (4.1)

Equation (4.1) realizes the heuristic identifications

𝑒−2𝜋𝑖/𝑁 ←→ 𝑒
(𝑝−1)/𝑁
𝑝 , 𝑁 | (𝑝 − 1),

promised in the introduction.

4.4. Consequences and outlook

Unified Plancherel. The standard-part map sends the pseudo-Plancherel identity in 𝑅𝑝 to the classical
one on R and its restriction to 𝜄(F𝑝) to the finite identity.
Poisson summation. Formula (4.1) implies a Poisson summation law that simultaneously contains the

discrete and continuous versions; the proof follows the usual character-orthogonality argument verbatim.
Applications. A detailed exposition—covering pseudo-differential operators, Gauss sums, and finite-

field wavelets—will appear in a separate paper. Here we record that the constants {𝑖𝑝 , 𝜋𝑝 , 𝑒𝑝} supply
the entire character table needed for harmonic analysis in our finite-relativistic algebra.

In summary, by embedding F𝑝 into its pseudo-real completion and identifying the primitive root 𝑒𝑝
with an infinitesimal rotation, we obtain a kernel that interpolates seamlessly between the finite, the
discrete and continuous Fourier transforms. Harmonic analysis thus becomes a single frame-relative
theory inside F𝑝 , free of actual infinity yet capable of reproducing all classical results to arbitrary
resolution.

5. Conclusions

We have shown that every odd-prime finite field F𝑝 already contains—in purely arithmetic guise—
all the structural ingredients needed for a faithful analog of classical smooth geometry and harmonic
analysis.

1. Discrete-to-smooth passage. Starting from the translation–scaling orbit of F𝑝 we constructed a
regular CW complex 𝑁𝑝 that is combinatorially 𝑆2. Using the pseudo-real completion 𝑅𝑝 we lifted
𝑁𝑝 to an internal 𝐶∞ surface 𝑆𝑝 ⊂ (𝑅𝑝)4 whose hyperfinite trace is 𝜀-dense for every infinitesimal
𝜀 and whose Gaussian curvature satisfies 𝐾 ≡ 1.

2. Canonical constants. The cyclic order of F𝑝 picks out three frame-invariant elements— the
quarter-turn 𝑖𝑝 , the half-period 𝜋𝑝 =

𝑝−1
2 , and the minimal-deviation base 𝑒𝑝 . Together they

reproduce inside F𝑝 the algebraic rôles played by 𝑖, 𝜋, 𝑒 in C and endow S𝑝 with a built-in
complex-analytic flavor.

3. Unified harmonic analysis. Embedding F𝑝 into 𝑅𝑝 and identifying 𝑒𝑝 with an infinitesimal
rotation yields a single kernel that specializes both to the classical Fourier kernel on R and to the
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discrete characters on F𝑝 . Hence Fourier, convolution, Plancherel and Poisson-summation identities
coexist in one frame-relative formalism.

4. Gauge covariance. Every affine relabelling of the framed field extends to a diffeomorphism of S𝑝

and permutes 𝑖𝑝 , 𝜋𝑝 , 𝑒𝑝 in a way that preserves their defining extremal properties; the geometry is
therefore fully compatible with the relativistic-algebra principle introduced in the companion papers.

Outlook.
The techniques developed here scale naturally to composite moduli 𝑞, where the orbit complex grows

from the Hopf-fibered 𝑆3 → 𝑆2 picture of the prime case [15] into a full three-manifold. Perelman’s
theorem [21, 22] and discrete Ricci flow [7, 11] then point to a canonical round metric in which the
ordinary fibers remain Hopf circles, but surgery along the zero-divisor cores inserts Seifert multiplicities.
In this metric the composite-modulus orbit complex of Z𝑞 becomes a Seifert-fibered 3-orbifold [5]: its
regular fibers link pairwise exactly once, as in the classical Hopf fibration, while each prime factor of
𝑞 contributes an exceptional fiber whose DNA-like helix of regular fibers winds around it a number of
times equal to the complementary factor; the zero-divisor seams are the axial loops of these helices.
Finally, the 2-sphere base of this fibration exhibits the complete set of properties of a Bloch sphere [4, 10].

By exhibiting a differential, analytic, and symmetry-rich structure generated solely from finite arithmetic
data, the present article supports the thesis that finite relativistic algebra can serve as a common
foundation for discrete mathematics, classical analysis, and physical modelling within a single, gauge-
covariant, finite universe.
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