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Abstract

We present a new, specific primality test for numbers of the form N = 4pn − 1,
where p is an odd prime and n ≥ 1. The test is a generalization of the Lucas-
Lehmer test for Mersenne numbers and relies on a sequence defined by Dickson
polynomials. We prove that, under a certain condition, N is prime if and only if
the n-th term of a specific sequence is congruent to zero modulo N . This provides
a deterministic primality test for this family of numbers.

1 Introduction and Main Result

The Lucas-Lehmer test provides an efficient primality test for Mersenne numbers (2k−1).
This work extends the principle of that test to a different family of numbers. We define a
sequence based on Dickson polynomials and use it to establish a necessary and sufficient
condition for the primality of N = 4pn − 1.

Definition 1.1 (Dickson Polynomials). The k-th Dickson polynomial of the first kind,
denoted Dk(x, a), is defined by the recurrence relation

Dk+2(x, a) = xDk+1(x, a)− aDk(x, a)

with initial conditions D0(x, a) = 2 and D1(x, a) = x.

A key property of these polynomials is that for x = u + a/u, we have Dk(x, a) =
uk + (a/u)k.

We define a sequence {Si} as follows:

S0 = 6, Si = Dp(Si−1, 1) for i ≥ 1. (1)

Our main result is the following theorem.

Theorem 1.2 (Main Theorem). Let p be an odd prime and n ≥ 1. Let N = 4pn − 1. If
the sequence {Si} is defined as above and Sn−1 ̸≡ 0 (mod N), then

N is prime ⇐⇒ Sn ≡ 0 (mod N).
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2 Properties of the Sequence

To prove the main theorem, we first establish a closed-form expression for the terms of
the sequence {Si}.

Lemma 2.1. The terms of the sequence {Si} are given by

Si = (
√
2 + 1)2p

i

+ (
√
2− 1)2p

i

.

Proof. We proceed by induction on i. For i = 0, we have

(
√
2 + 1)2 + (

√
2− 1)2 = (2 + 2

√
2 + 1) + (2− 2

√
2 + 1) = 3 + 2

√
2 + 3− 2

√
2 = 6 = S0.

So the base case holds.
Now, assume the formula holds for Si−1. Let u = (

√
2 + 1)2p

i−1
. Then u−1 = ((

√
2 +

1)−1)2p
i−1

= (
√
2− 1)2p

i−1
. By the inductive hypothesis, Si−1 = u+ u−1.

Using the property of Dickson polynomials with a = 1, we have:

Si = Dp(Si−1, 1) = Dp(u+ u−1, 1) = up + u−p.

Substituting the expression for u:

Si =
(
(
√
2 + 1)2p

i−1
)p

+
(
(
√
2− 1)2p

i−1
)p

= (
√
2 + 1)2p

i

+ (
√
2− 1)2p

i

.

This completes the induction.

Lemma 2.2. For N = 4pn − 1, where p is an odd prime, the Jacobi symbol
(

2
N

)
= −1.

Proof. Since p is an odd prime, p is congruent to 1, 3, 5, or 7 (mod 8). Its powers pn

will also be odd. Let pn = 2k + 1 for some integer k ≥ 1. Then N = 4(2k + 1) − 1 =
8k + 4 − 1 = 8k + 3. By the properties of the Jacobi symbol, for any integer m ≡ 3
(mod 8), we have

(
2
m

)
= −1. Therefore,

(
2
N

)
= −1.

Remark 2.3. Lemma 2.2 implies that 2 is a quadratic non-residue modulo any prime
factor of N . This justifies performing arithmetic in the finite field extension ZN(

√
2),

which is isomorphic to FN2 if N is prime.

3 Proof of the Main Theorem

Let α =
√
2 + 1. Then α−1 =

√
2 − 1. The sequence term Sn can be written as

Sn = α2pn + α−2pn .

3.1 Proof of Necessity (=⇒)

Assume N = 4pn − 1 is a prime number. We must show that Sn ≡ 0 (mod N).
We work in the finite field ZN(

√
2) ∼= FN2 . We use the Frobenius automorphism,

which states that xN = x for x ∈ ZN and (a + b
√
2)N ≡ aN + bN(

√
2)N (mod N). By
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Fermat’s Little Theorem, aN ≡ a (mod N) and bN ≡ b (mod N). By Euler’s criterion
and Lemma 2.2:

(
√
2)N = 2N/2 = 2(N−1)/2

√
2 ≡

(
2

N

)√
2 = −1 ·

√
2 = −

√
2 (mod N).

Applying this to α = 1 +
√
2:

αN = (1 +
√
2)N ≡ 1N + (

√
2)N ≡ 1−

√
2 (mod N).

Note that 1 −
√
2 = −(

√
2 − 1) = −α−1. So we have the key relation αN ≡ −α−1

(mod N).
Now, we use this to evaluate αN+1:

αN+1 = α · αN ≡ α · (−α−1) = −1 (mod N).

Since N + 1 = (4pn − 1) + 1 = 4pn, we have:

α4pn ≡ −1 (mod N).

This can be rewritten as α4pn + 1 ≡ 0 (mod N). Since α is invertible, we can divide by
α2pn :

α2pn + α−2pn ≡ 0 (mod N).

By Lemma 2.1, the left side is exactly Sn. Therefore, Sn ≡ 0 (mod N).

3.2 Proof of Sufficiency (⇐=)

Assume Sn ≡ 0 (mod N) and Sn−1 ̸≡ 0 (mod N). We must show that N is prime.
Let q be any prime divisor of N . All congruences modulo N must also hold modulo

q. The condition Sn ≡ 0 (mod q) means α2pn + α−2pn ≡ 0 (mod q). Multiplying by α2pn

yields α4pn + 1 ≡ 0 (mod q), which implies:

α4pn ≡ −1 (mod q). (2)

Squaring this gives:
α8pn ≡ 1 (mod q). (3)

Let k = ordq(α) be the order of α in the multiplicative group of the field Zq(
√
2).

From (3), k must divide 8pn. From (2), k cannot divide 4pn. This implies that the highest
power of 2 dividing k is exactly 23 = 8.

Now consider the condition Sn−1 ̸≡ 0 (mod N), which implies Sn−1 ̸≡ 0 (mod q).
This means α2pn−1

+α−2pn−1 ̸≡ 0 (mod q), which implies α4pn−1 ̸≡ −1 (mod q). This tells
us that k does not divide 8pn−1. If it did, then since we know v2(k) = 3, k would divide
8pn−1 but not 4pn−1, which would mean α4pn−1 ≡ −1 (mod q). This is a contradiction.

So, the order k divides 8pn but does not divide 8pn−1. This means that the highest
power of p dividing k must be pn. Combining our findings, the order of α modulo q is
exactly k = 8pn.

By Lagrange’s theorem, the order of an element must divide the order of the group.
The group is (Zq(

√
2))×, which has order q2 − 1. Therefore, we must have 8pn | (q2 − 1).

Now, suppose for the sake of contradiction that N is composite. Then N must have
a prime factor q such that q ≤

√
N . This leads to q2 ≤ N = 4pn − 1.
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From 8pn | (q2 − 1), we can write q2 − 1 = m · 8pn for some positive integer m ≥ 1.
This gives q2 = 8mpn + 1.

Combining the two inequalities for q2:

8mpn + 1 ≤ 4pn − 1

8mpn ≤ 4pn − 2

m ≤ 4pn − 2

8pn
=

1

2
− 1

4pn
.

Since p ≥ 3 and n ≥ 1, the term 1/(4pn) is positive. The inequality implies m < 1/2.
However, m must be a positive integer. This is a contradiction.

The assumption that N has a prime factor q ≤
√
N must be false. This means N has

no prime factors other than itself, and therefore N must be prime. This completes the
proof of the theorem.

4 Conclusion

The theorem provides a deterministic primality test for the entire family of numbers
N = 4pn − 1. This result is an elegant instance of the general theory of Lucas-Lehmer
type tests, which have been developed for numbers of the form A · Bn ± 1. The specific
choice of the base sequence (S0 = 6) provides the necessary properties for the argument to
hold for this particular number form. This demonstrates how a general number-theoretic
framework can be applied to produce a simple and definitive test for a specific case.
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