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Gauge symmetry is a cornerstone of modern field theory, yet its conceptual status remains unsettled:
conventional formulations treat it as a redundancy in mathematical representation rather than a
physically grounded structure. Here we propose a realist reinterpretation of U(1) gauge symmetry in
electromagnetism, demonstrating how gauge freedom emerges from internal phase dynamics intrinsic
to the electron. Within the 0-Sphere model, the electron is modeled not as a point particle but as a
temporally structured system possessing internal harmonic motion between two thermal potential
energy kernels. This internal structure gives rise to deterministic, 4π-periodic dynamics and a
Zitterbewegung velocity vZB = 0.040374c, derived from first principles by combining special relativity
with geodesic precession from general relativity. Coherent phase transport across an ensemble of
such particles naturally induces a U(1) gauge connection, interpreted as a geometric synchronization
mechanism rather than a formal constraint. Furthermore, the internal energy structure encodes both
ωt and ωt/2 components, establishing a harmonic hierarchy that bridges bosonic gauge behavior with
fermionic spin. This framework offers a particle-based, ontologically grounded reinterpretation of
gauge symmetry, in which electromagnetic interactions emerge from the holonomy of internal phase
transport. The resulting picture opens a path toward unifying quantum structure with geometric
principles of interaction, without invoking non-Abelian complexity.

I. INTRODUCTION

Fundamental interactions in modern physics are
described by gauge theories, yet their gauge symmetry
remains conceptually problematic. Gauge transformations
connect mathematically equivalent representations of the
same physical state, introducing redundancy without clear
physical significance [1]. In quantum electrodynamics, the
U(1) phase freedom of the wavefunction necessitates gauge
potentials, but their microscopic origin is often imposed
axiomatically rather than derived, leaving their physical
role ambiguous.
Various approaches have sought to address this

conceptual redundancy. Lattice gauge theory eliminates
local gauge freedom by formulating interactions on
discrete spacetime points [2], while loop quantum
gravity re-expresses gauge fields through non-redundant,
holonomy-based variables such as Wilson loops [3].
These frameworks offer structural solutions but rely on
discretization or background independence. In contrast,
we propose a continuous, particle-centric model in which
the U(1) gauge connection emerges from synchronized
internal phase dynamics.
We propose a realist reinterpretation of U(1) gauge

symmetry, grounded in the internal phase dynamics
of electrons within the 0-Sphere model [4]. Electrons,
modeled as oscillators with thermal potential energy
(TPE) kernels—localized energy reservoirs—generate
a geometric gauge connection through synchronized
oscillations. The Aharonov-Bohm effect demonstrates the
physical significance of gauge potentials [5], supporting
our particle-based approach. Inspired by foundational
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work in gauge theory [6, 7], this framework unifies
quantum mechanics with electromagnetic interactions.

II. MOTIVATION AND CONCEPTUAL
TENSION IN GAUGE THEORY

In the conventional interpretation of gauge theory, the
gauge transformation of the wavefunction,

ψ(x) → eiα(x)ψ(x), (II.1)

is accompanied by a transformation of the gauge potential,

Aµ(x) → Aµ(x)−
1

e
∂µα(x), (II.2)

ensuring the invariance of the covariant derivative Dµψ =
(∂µ + ieAµ)ψ. However, this structure introduces a
paradox: the gauge field appears as a formal necessity,
with no intrinsic dynamics apart from its role in
maintaining local phase invariance. The Aharonov-Bohm
effect provided the first compelling evidence that gauge
potentials possess physical significance beyond their
classical role as mathematical conveniences. Tonomura’s
definitive experimental demonstration [8] showed that
electrons can be influenced by electromagnetic potentials
even in regions where classical fields vanish, suggesting
that the gauge structure encodes genuine physical
information rather than mere calculational redundancy.
The connection Aµ is introduced not because of a physical
mechanism, but because of a demand for local symmetry
in the mathematical formalism.
Gauge symmetry presents a fundamental conceptual

puzzle. While mathematically indispensable, it appears
to describe not physical reality but mathematical
redundancy. As Zee observes [1]:
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“But perhaps the most unsatisfying feature
of field theory is the present formulation of
gauge theories. Gauge “symmetry” does not
relate two different physical states, but two
descriptions of the same physical state. We
have this strange language full of redundancy
we can’t live without. We start with unneeded
baggage that we then gauge-fix away. We
even know how to avoid this redundancy
from the start but at the price of discretizing
spacetime.”

This redundancy becomes particularly problematic
when we consider what gauge transformations actually
represent physically. This concern has been echoed
in the philosophical literature as well. Teller [9], for
example, argues that gauge symmetry does not reflect a
physical transformation between distinct states but rather
encodes descriptive redundancy, raising questions about
its ontological status. In response to this, we consider
a particle-centric model in which the gauge degree of
freedom arises from an internal physical mechanism.
In the 0-Sphere model [10], the electron possesses two

thermal potential energy (TPE) kernels that exchange
mass-energy in a periodic fashion. This internal motion
defines a time-dependent phase θ(t) = ωt, leading to an
internal energy profile given by [4]:

E(t) = E0

[
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

]
,

(II.3)
which is strictly conserved and exhibits 4π periodicity.
This structure offers a natural explanation for fermionic
double-valuedness and the emergence of observable
quantities such as the Zitterbewegung.
Moreover, when energy transfer between these TPE

kernels is analyzed geometrically, it obeys a Snell-like
refraction condition [4],

sin θA
sin θB

=
vA
vB
, (II.4)

where the internal phase velocities vA and vB are
determined by local thermal gradients. This principle,
in turn, leads to geodesic phase transport governed by
a connection—identified with the electromagnetic gauge
potential.
Thus, instead of viewing gauge symmetry as a formal

redundancy, we propose it reflects a real physical structure:
the geometry of internal phase synchronization. This
reinterpretation not only grounds the U(1) gauge field
in particle dynamics, but also points toward a realist,
experimentally accessible foundation for electromagnetic
interaction.
In classical mechanics, the motion of a point particle

is fully determined by its position and momentum as
functions of time. These quantities form a curve in the
tangent bundle TM over the configuration space M , with
position corresponding to a point in the base manifold

and momentum to a vector in the fiber. This geometric
formulation reveals how physical degrees of freedom are
encoded in the structure of fiber bundles, where the
choice of fiber reflects the nature of the quantity—such
as position, velocity, spin, or charge.

This geometric picture extends to field theory, where
spacetime becomes the base manifold and internal degrees
of freedom form the fiber. In electromagnetism, gauge
transformations correspond to changes in the local
trivialization of the fiber bundle. Traditionally, these
were viewed as redundancies, lacking direct physical
consequences.

However, the Aharonov-Bohm effect [5] suggests that
this redundancy may harbor genuine physical content.
This insight was later extended by Berry [11], who
showed that geometric phase factors can accumulate in
adiabatically evolving quantum systems, thereby linking
gauge structure to observable holonomies in parameter
space. Tonomura’s experiments [8] demonstrated that
gauge potentials influence quantum interference even
where classical fields vanish, hinting that gauge structure
encodes real physical information rather than mere
mathematical convenience. This experimental evidence
motivates us to seek a physical foundation for gauge
freedom.

Quantum gauge theory, by contrast, treats gauge
symmetry as fundamental. Local phase invariance
underlies charge conservation and necessitates gauge fields
with real dynamical significance. Yet this conceptual
leap—from redundancy in classical potentials to a physi-
cally meaningful symmetry in quantum amplitudes—has
not been fully justified. It remains unclear whether
gauge transformations are merely computational artifacts
inherited from classical formalism or instead reflect
intrinsic physical structures.

The conventional framework circumvents this tension by
compartmentalizing the classical and quantum domains,
unifying them only through the correspondence principle.
However, such a division may reflect not a fundamental
dichotomy in nature, but a lack of physical grounding in
the underlying mathematical structures.

The present work proposes an alternative: that gauge
freedom originates in the internal temporal dynamics of
particles themselves. In the 0-Sphere model, each particle
is endowed with an internal phase structure evolving
in proper time, analogous to a clock. This phase is
not imposed externally, but arises from a well-defined
deterministic oscillation intrinsic to the particle’s ontology.
Gauge transformations then acquire a concrete physical
interpretation: they represent synchronizations or shifts
in this internal clock phase, akin to redefining the origin
of time for a localized periodic process.

This interpretation has a clear geometric analog. In
classical mechanics, a particle’s motion defines a trajectory
in the tangent bundle over spacetime, where each point
in the base manifold corresponds to a position, and the
associated tangent vector encodes its velocity. Similarly,
the internal phase evolution defines a trajectory in a fiber



3

bundle whose base is spacetime and whose fiber encodes
internal degrees of freedom—here, the proper-time phase
associated with the particle’s internal oscillation, which
behaves analogously to an internal clock. Just as in
classical mechanics, the choice of local inertial frame in a
tangent bundle reflects the freedom to redefine velocity
coordinates without altering physical predictions, the
gauge degree of freedom in our framework reflects the
freedom to redefine internal phase origins across spacetime
— while preserving consistency of physical law as expressed
through covariant synchronization.
From this perspective, gauge symmetry ceases to be

a purely formal redundancy and instead emerges as
an expression of physical structure—one that unifies
the computational utility of classical gauge choice with
the geometric necessity of quantum field theory. This
realist interpretation not only bridges the conceptual
gap between classical and quantum gauge theories, but
also opens the door to interpreting other fundamental
symmetries as manifestations of internal geometric order
within matter itself.

III. INTERNAL STRUCTURE AND DYNAMICS
OF THE ELECTRON

In the 0-Sphere model, the electron is not treated
as a point particle but as an oscillator arising from
the periodic exchange of energy between two distinct
components: a radiation kernel and an absorption kernel.
These are identified with the positive- and negative-energy
solutions of the Dirac equation, reinterpreted as real-space
structures in continuous time.
The internal dynamics is governed by a deterministic

phase variable θ(t), which drives the oscillatory motion
between the two kernels. This harmonic-like motion
leads to an effective internal velocity, calculated as
vZB = 0.040374c. Although well below the speed
of light, this value emerges from the model’s closed
Hamiltonian dynamics, incorporating relativistic effects
such as internal-state precession and a geodesic precession
analysis applied to the kernel’s critical radius.
This framework provides a self-contained dynamical

origin for the electron’s intrinsic periodicity, independent
of quantum field theoretic assumptions. It offers
a physical interpretation of Zitterbewegung—rapid
oscillations originally predicted by Schrödinger [12]—as a
real oscillatory motion between localized substructures,
mediated by the internal clock θ(t), rather than as a mere
artifact of interference in the Dirac formalism.
The 0-Sphere model describes the electron not as a

point particle or an extended field excitation, but as
a bound interference pattern between a positive-energy
radiative kernel and a negative-energy absorptive kernel.
These two components oscillate with a phase difference
of π/2 and form a standing wave defined along the
geodesic connecting two discrete points—representing
the antipodes of a topological 0-sphere. The kernels are

separated by a distance on the order of the Compton
wavelength and are dynamically coupled through a
surrounding photon sphere. This internal structure
naturally gives rise to Zitterbewegung but here interpreted
as genuine physical motion between discrete energy
kernels, tied together through the internal clock of θ(t).
Such a model provides a self-contained dynamical basis
for the electron’s internal periodicity, without invoking
field-theoretic degrees of freedom.

The finite size of each electron kernel, derived from
relativistic and gravitational constraints in our model,
provides a natural length scale of approximately 3.43×
10−25 m [4]—much smaller than the Compton wavelength
but finite nonetheless. This prediction is obtained by
combining Lorentz contraction from special relativity with
geodetic precession from general relativity, linking internal
structure to both inertial and gravitational principles.
The internal temporal phase ωt governs oscillatory energy
exchange between the two kernels, endowing the electron
with a physically meaningful internal clock.

The relative phase between the two kernels evolves
in time as a deterministic oscillator. This gives rise
to a physically meaningful internal clock, or time
phase θ(t), associated with the particle’s state. The
evolution of this phase is governed by a closed-form
Hamiltonian previously derived [13], and leads directly to
the observable phenomenon of Zitterbewegung.

This internal phase introduces a new dimension to
the physical description of particles. While conventional
gauge theories model interactions via field-mediated
boson exchange across spacetime, the present approach
assigns to each particle a self-contained internal evolution
governed by its own phase dynamics. In this framework,
interaction may be understood not as a process of
continuous field propagation, but as the synchronization
of internal time phases across particles.

Although the current formulation focuses on the
internal structure of a single electron, it suggests a
new mechanism for interaction: the photon sphere that
mediates kinetic energy around the TPE kernel can,
under certain conditions, detach and transfer to another
electron. This dynamic exchange is treated as a physically
real process, not merely a virtual field fluctuation.
Moreover, the number of photons absorbed or emitted
by the photon sphere is not constrained by chemical
potential conservation in the usual sense, reflecting a
non-conservative interaction framework embedded in the
internal oscillatory geometry. Such a structure may
provide a future foundation for deriving interparticle
gauge interactions from purely particle-based principles.

Accordingly, in this model, interparticle interaction
is mediated by the real emission and absorption of
photons that detach from the photon sphere surrounding
a TPE kernel and deliver kinetic energy to neighboring
electrons. In this regard, the picture follows the structure
of Feynman diagrams, in which gauge bosons represent
physically exchanged quanta between fermionic lines.
However, unlike in conventional field theory, these photons
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are not virtual constructs arising from propagators, but
real, geometrically localized energy carriers. This physical
picture renders the invocation of a continuous thermal
potential energy field unnecessary. The electromagnetic
coupling emerges not from an underlying continuum,
but from discrete, geometrically constrained transfers
of energy between internal oscillators.

This reinterpretation leads to the hypothesis that U(1)
gauge symmetry reflects the freedom of choosing the
phase origin θ → θ + α(x) of each particle’s internal
clock. Crucially, unlike traditional formulations where
such transformations are considered gauge redundancies,
our model treats them as physically real: different phase
choices correspond to different initial conditions in the
particle’s internal evolution, and the gauge potential arises
as a geometric mechanism to coordinate them.
The total energy of the system remains exactly

conserved. Let E0 denote the rest energy of the electron,
i.e., E0 = mc2. Under this assumption, the following
identity holds [4, 10]:

E0 = E0

[
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

]
.

(III.1)
This expression guarantees exact conservation

of total energy without invoking external fields or
continuous media. At the same time, it introduces
a natural 4π periodicity in the internal dynamics,
providing a realist account of the spin-12 behavior that
is traditionally ascribed to the double-valued nature of
spinor representations.

The presence of this periodic internal degree of freedom,
characterized by the phase ωt, defines an autonomous
internal clock. This allows for a reinterpretation of gauge
freedom not as redundancy in the mathematical descrip-
tion, but as a manifestation of the relativity of internal
phase among discrete, mutually interacting quantum
objects. Local U(1) symmetry thus emerges from the
geometric requirement of synchronizing these internal
clocks, offering a realist alternative to field-theoretic
formulations.

The framework makes several testable predictions that
distinguish it from conventional interpretations. The
Zitterbewegung velocity vZB = 0.040374c should be
measurable as the characteristic oscillation speed of
internal phase dynamics, representing a concrete signature
of the electron’s internal structure. The spatial scale
over which phase synchronization occurs is expected to
be related to the Compton wavelength modified by the
Zitterbewegung factor, providing a geometric connection
between quantum mechanics and the proposed internal
dynamics. Additionally, the observed deviation of the
electron’s magnetic moment from the classical value g = 2
emerges from Lorentz contraction effects in the internal
oscillations, offering a particle-based explanation for this
fundamental quantum correction without invoking virtual
particle loops or radiative corrections in the traditional
sense.

IV. REALIST GAUGE GEOMETRY FROM
FIRST PRINCIPLES

A. Reinterpreting U(1) Gauge Symmetry

In conventional quantum field theory, U(1) gauge
symmetry is introduced by promoting the global phase
invariance of the wavefunction ψ → eiαψ to a local
symmetry ψ(x) → eiα(x)ψ(x). To maintain invariance
under this local transformation, a gauge field Aµ(x) is
introduced, transforming as Aµ → Aµ − ∂µα(x). The
field strength Fµν = ∂µAν − ∂νAµ emerges as a derived
quantity, and the electromagnetic interaction is described
by the coupling jµAµ.
However, as noted by Zee and others, this structure

introduces transformations that connect not physically
distinct states, but alternative mathematical descriptions
of the same configuration. This has long posed
a conceptual tension regarding the nature of gauge
symmetry—whether it should be viewed merely as a
descriptive artifact, or as a reflection of deeper physical
principles. The present work seeks to resolve this
ambiguity by grounding gauge structure in the observable
dynamics of internal temporal phase, thereby providing a
realist interpretation of gauge freedom.
In the 0-Sphere model, the structure of the theory

favors a realist interpretation. Each particle carries
an internal time phase θ(t), derived from a physical
harmonic oscillator governed by its own Hamiltonian.
The phase evolution is not a redundancy but a physical
observable. Consequently, allowing θ to vary locally
across an ensemble of particles introduces the need for a
compensating connection—a structure that ensures phase
coherence across the system. This connection is identified
with the electromagnetic gauge potential Aµ.

Rather than being introduced axiomatically, the gauge
potential in our model emerges as a synchronization field
among many internally evolving phase oscillators. The
familiar U(1) transformation,

θ(x) → θ(x) + α(x), (IV.1)

then becomes a real physical operation: it corresponds
to resetting the internal phase of a particle at spacetime
point x.

B. Geometric Foundation: From Snell’s Law to
Geodesic Motion

In classical field theory, the gauge potential Aµ(x)
is introduced axiomatically to maintain local phase
invariance. However, this construct is inherently
Eulerian—it assumes a continuous field defined over
spacetime. In contrast, our approach follows the
Lagrangian method of fluid dynamics: rather than
defining fields at fixed spacetime points, we track
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individual particles as they move through spacetime, each
carrying an internal phase θ(t) that evolves according
to its own Hamiltonian as described by the 0-Sphere
model [4, 13]. This motivates the central inquiry of
this section: whether the gauge structure can emerge
from the physical geometry of internal phase transport,
independent of a continuous background field.
A key insight of the 0-Sphere electron model is that

the transport of energy between thermal potential energy
(TPE) kernels obeys a form of Snell’s law, arising not
in physical space but in the internal phase space of the
electron [4]. In this framework, each TPE kernel—such
as Kernel A located at position +a, and Kernel B at
−a—represents a localized bundle of mass energy that
has been thermalized. These kernels act as sources and
sinks of radiation-like energy that traverses a connecting
structure referred to as the “photon sphere” (γ∗K.E.), which
mediates the oscillatory energy exchange.
This internal radiative process can be described

schematically as:

TkernelA → γ∗K.E. → TkernelB , (IV.2)

where the directionality corresponds to energy flow from
the radiative source to the absorber. The resulting energy
transport follows a refraction-like rule:

sin θA
sin θB

=
vA
vB

≡ nA→B , (IV.3)

where Kernels A and B serve as the fixed starting and
ending points respectively, as determined by the principle
of least action. The angles θA and θB correspond to
the propagation angles of the photon sphere (γ∗K.E.) as it
mediates radiative energy transport between these fixed
endpoints. The phase velocities vA and vB characterize
the local oscillatory media through which the photon
sphere propagates in the vicinity of each kernel.

In this context, the media are not conventional optical
substances but instead represent regions of oscillatory
potential shaped by the local properties of the TPE
kernels. The photon sphere follows a geodesic path
between the fixed kernels A and B, analogous to how
light follows the shortest optical path in accordance with
Snell’s law. This geodesic motion represents the path that
minimizes the action integral, embodying the principle of
least action applied to internal radiative energy transfer.

Specifically, each region’s phase velocity v is determined
by the characteristic frequency of the internal oscillations
and the thermal density of the kernel. A higher local TPE
concentration—i.e., a steeper thermal gradient—yields a
higher-frequency Zitterbewegung component, and thus a
faster internal phase velocity. The ratio vA/vB quantifies
how the wavefront of internal energy, carried by the
photon sphere, refracts as it propagates through these
dynamically different regions.
This interpretation gives geometric and energetic

meaning to the refractive index nA→B, which reflects

how the photon sphere—mediating internal energy
transport—follows a geodesic path under the influence
of asymmetric thermal distributions between the fixed
kernel endpoints. The application of Snell’s law in this
setting is therefore not metaphorical but represents the
physical principle that radiative energy follows the path
of stationary action, grounded in the internal phase
dynamics and thermal gradients of the electron.
This adherence to Snell’s law leads to the principle of

least action. The energy transport follows the path that
minimizes the action integral:

S =

∫ B

A

ds, (IV.4)

subject to the boundary conditions that TPE is localized
at fixed points A and B. As demonstrated by
Hanamura [4], this constraint leads directly to geodesic
motion in the internal phase space, connecting quantum
oscillations with the geometric principles of general
relativity.

C. Discrete Bundle Structure vs. Continuous Field
Theory

The fiber bundle structure in our framework mirrors
the geometric formulation of classical mechanics, where
each particle carries its own tangent bundle. In classical
mechanics, a point particle’s motion is completely
determined by its position and momentum as functions
of time. When the forces acting on the particle are
known, the equations of motion uniquely determine the
trajectory—that is, the position and momentum for all
times. This creates a curve in the space of position and
momentum with time as a parameter. Geometrically,
this corresponds to assigning a single vector bundle (the
tangent bundle) to each particle, encoding its degrees of
freedom along its worldline.
The 0-Sphere model adopts precisely this particle-

centric approach. Just as classical mechanics assigns
a tangent bundle to each particle to encode its kinematic
degrees of freedom, our model assigns a discrete U(1)
fiber bundle to each individual electron to encode its
internal phase degree of freedom. This bundle is attached
to the particle’s worldline trajectory and evolves along
with the particle’s motion through spacetime. This stands
in fundamental contrast to conventional quantum field
theory, where the U(1) bundle is defined continuously
over the entire spacetime manifold. In standard gauge
field theory, the gauge field Aµ(x) represents a connection
that exists at every point in space, creating a continuous
structure that accommodates the superposition principle
and field quantization procedures leading to quantum
electrodynamics.
Crucially, the discrete bundles in our model do not

achieve the dense coverage characteristic of quantum
fields. Unlike continuous field theories where field values
are defined at every spacetime point, our discrete fiber
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Fig. 1. Energy conservation and hierarchical phase structure in the 0-Sphere electron model. The graph illustrates
the coexistence of 4π periodicity (fermionic kernels: blue dashed and orange dotted lines) and 2π periodicity (bosonic
photon sphere: green dotted line) within a unified temporal framework. The constant total energy (red solid line,
H(ϕ) = 1) demonstrates perfect energy conservation throughout the oscillation cycle. This visualization reveals how
spin (half-frequency) and gauge (full-frequency) degrees of freedom emerge from a single internal clock, providing a
geometric foundation for unifying fermionic and bosonic behaviors within a U(1) framework.

bundles exist only along particle worldlines. The gauge
connection Aµ emerges not as a fundamental
field permeating spacetime, but as a geometric
synchronization mechanism operating between
spatially separated, discrete phase-bearing par-
ticles—analogous to how classical forces coordinate the
motion of discrete particles without requiring a continuous
medium.

While our model assigns discrete internal bundle
structures to individual electrons, the background
spacetime itself remains a smooth, differentiable manifold.
This continuity is essential for the validity of general
relativity, which requires a well-defined energy-momentum
tensor and the capacity to express spacetime curvature
as a smooth deformation. Our proposal does not
abandon this continuum, but rather considers it as the
differentiable background across which discrete electrons
are distributed—each acting as a localized oscillator that
exchanges thermal potential and kinetic energy along
a photon-mediated internal trajectory governed by a
sinusoidal gradient. These internal phase dynamics,
while discrete in origin, interact through the manifold by
synchronizing their phases, giving rise to emergent gauge
connections that geometrize inter-particle correlations
without invoking a globally defined quantum field.

A differentiable manifold arises within each electron
from the continuous trajectory of the photon sphere
oscillating between Kernel A and Kernel B. This internal
motion, governed by a thermal gradient that follows a
sin θ profile [10], creates a well-defined geodesic structure
along which internal gauge connections can be assigned.
The photon sphere does not move uniformly, but rather
undergoes harmonic oscillation as it experiences varying
refractive conditions along the gradient, analogous to

Snell’s law. A local vector bundle structure can be
defined along the centerline of this trajectory, establishing
a continuous geometric substrate on which internal gauge
phases evolve.

The reconciliation of discrete internal structure with the
smooth geometry of spacetime represents a key conceptual
innovation of the present work. It suggests a realist reinter-
pretation in which electromagnetic fields emerge not from
continuous quantum fields defined over spacetime, but
from geometric relations among discrete phase-bearing
particles embedded in a continuous manifold. This
framework offers a novel basis for unifying the gauge
principle with general relativity without appealing to
field quantization, instead grounding interactions in the
geometric and thermodynamic properties of structured
quantum matter.

D. Unification without Non-Abelian Complexity

A natural objection to any gauge-theoretic unification
based solely on U(1) is that it cannot reproduce the rich
non-Abelian structure required by the standard model,
particularly for the weak and strong interactions. In
conventional field theory, non-Abelian gauge groups such
as SU(2) and SU(3) are indispensable because they allow
for gauge bosons that interact with one another, producing
nonlinear dynamics and self-coupling effects.
However, in the present realist framework, the role

of the gauge field is reinterpreted not as a fundamental
degree of freedom but as a geometric synchronization
mechanism among internal temporal phases. From this
perspective, interaction is not mediated by field quanta
with nontrivial group structure, but rather emerges from



7

the exchange and coordination of internal phase dynamics.
This shift allows for an alternative route to describing

non-Abelian-like phenomena. For example, internal
phase spaces may be extended to include multiple
independent oscillatory modes θ1(t), θ2(t), . . . , each
corresponding to a distinct synchronization
channel. Asymmetries in the coordination of these
modes, or order-dependent phase relationships, may give
rise to effectively non-Abelian behavior—analogous to
the commutation structure in groups like SU(2)—even
if the underlying gauge group remains U(1). Similarly,
the directionality or sequential nature of energy transfer
processes may encode interaction asymmetries that mimic
gauge boson self-coupling in conventional theories.
Thus, while the present model does not yet explicitly

incorporate non-Abelian group structures, it opens a
pathway for realizing comparable dynamics through
internal geometric degrees of freedom. In this view,
non-Abelian gauge behavior could arise not from algebraic
constraints imposed at the field level, but from emergent
properties of internal temporal geometry.

E. Hierarchical Phase Periodicity as a Bridge
Between Spin and Gauge

An essential structural feature of the present model lies
in the coexistence of two distinct temporal periodicities
embedded within a single internal energy identity. As
expressed in Eq. (IV.5), the internal dynamics of the
electron involve oscillatory components at both ωt and
ωt/2:

E0 = E0

[
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

]
.

(IV.5)
The energy identity of Eq. (IV.5) and its constituent

oscillatory terms are visualized in Fig. 1, where the
4π periodicity of the kernel components and the 2π
periodicity of the radiative photon sphere are depicted
as phase-dependent energy distributions. This figure
supports the interpretation that the spin and gauge
components, though differing in periodicity, emerge from
a unified temporal evolution—a physical basis for treating
them as harmonic layers of the same internal geometry.
Here, the ωt/2 terms are associated with the internal

dynamics of the fermionic kernel and give rise to
4π periodicity, while the ωt term corresponds to the
photon sphere—the radiative structure surrounding the
kernel—and exhibits 2π periodicity. Remarkably, both
components evolve under the same temporal parameter
t, governed by a common internal clock. This implies
that the fermionic and bosonic characters of the electron
are not fundamentally disjoint, but rather represent
harmonically related expressions of a unified temporal
phase geometry. Such a structure allows the spin and
gauge degrees of freedom to be viewed not as separate

fields or symmetries, but as multiple scales of a single
phase-coherent system.
This perspective gains further support from a reinter-

pretation of the origin of spin angular momentum. In
relativistic kinematics, an electron undergoing accelera-
tion experiences a precession of its local frame relative
to the laboratory frame. This effect, known as Thomas
precession [14, 15], leads to an angular velocity of the
internal coordinate system given by [13]

Ω =
1

2c2
[a× v], (IV.6)

where a is the acceleration and v is the velocity of
the electron. In the 0-Sphere model, the internal
kernel undergoes simple harmonic oscillation (not uniform
circular motion) with θ(t) = ωt. Substituting the
corresponding acceleration and velocity of this harmonic
oscillator into Eq. (IV.6) yields a remarkable result: the
precessional angular velocity contains a sin(2ωt) term,
exhibiting precisely double the frequency of the underlying
oscillation. This frequency doubling provides a natural
geometric explanation for spin-1/2 quantization—the
requirement of a 720° rotation for the electron to return
to its original state arises not from abstract quantum
postulates, but from the relativistic kinematics of the
internal structure [13].
Hence, the spin emerges not as a static intrinsic

quantum number, but as a dynamic consequence of
precession-driven phase accumulation at ωt/2, consistent
with the 4π periodicity of fermionic behavior.

This construction reveals that the same internal phase
variable θ(t), when expressed at different harmonic levels,
accounts simultaneously for the spin degree of freedom
and the electromagnetic interaction. The gauge field Aµ

arises to synchronize the ωt dynamics of the radiative shell
across particles, while the spin emerges from the ωt/2
component tied to kernel precession. Both are governed by
the same time-dependent oscillator, leading to a hierarchy
of phase structures encoded within a single U(1) geometry.
The implication is that the diversity of interaction

channels—traditionally modeled by multiple gauge
symmetries such as SU(2) and SU(3)—might instead
arise from structured internal phase harmonics within
a unified U(1) framework. The nontrivial behavior
typically attributed to non-Abelian symmetry groups
could be emergent from the dynamics of internal phase
synchronization among layered temporal modes. In this
sense, what appears as group-theoretic complexity may
reflect the rich structure of hierarchical phase geometry
internal to each particle.
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Table. I. Conceptual comparison between the conventional interpretation of gauge theory and the present realist
model based on internal phase dynamics.

Concept Conventional Interpretation Present Model (0-Sphere)

Nature of electromagnetic field Fundamental continuous field on
spacetime

Geometric manifestation of internal phase
synchronization among discrete particles

Meaning of gauge symmetry Mathematical redundancy in field
description

Physical degree of freedom associated with
internal temporal phase

Fiber bundle structure Continuous U(1) bundle over a differen-
tiable manifold

Discrete U(1) fiber assigned to each internally
oscillating electron

Gauge potential Aµ Introduced to maintain local phase
invariance

Connection enforcing phase coherence across
distributed internal clocks

Field strength Fµν Curvature of the gauge connection Holonomy induced by desynchronization of
internal phases along closed paths

V. CONCLUSION

This work proposes a reconceptualization of gauge
theory based on internal temporal structure. Departing
from the conventional view that local gauge symmetry
reflects a formal redundancy in field-theoretic descriptions,
the present model interprets it as a geometric necessity
arising from phase synchronization among discrete,
oscillating particles. The time phase θ(t) is not an
auxiliary construct but a physically meaningful degree
of freedom whose evolution governs electromagnetic
phenomena.

In this realist framework, gauge freedom is not a
redundancy to be eliminated but an expression of the
intrinsic autonomy of each particle’s internal temporal
state. The gauge potential Aµ arises as the geometric
connection required to ensure covariant transport of
internal temporal phase across spacetime, within a
discrete ensemble of locally oscillating particles. Rather
than being imposed externally, Aµ encodes the necessary
connection for synchronizing these internal time phases
across spacetime.

This interpretation is summarized conceptually in
Table I, which contrasts the conventional field-theoretic
approach with the present particle-based model. While
traditional gauge theories derive interactions from
imposed symmetries on continuous fields, the present
framework derives them from the coordination of internal
oscillations among discrete phase-bearing particles. By
attributing the emergence of gauge degrees
of freedom to physically observable internal
structure—specifically, temporal phase dynamics
induced by spacetime deformation—this model
offers one of the first concrete attempts to resolve the
long-standing problem of gauge redundancy through
physical geometry.

Furthermore, the inclusion of internal harmonic motion
within each electron allows the model to accommodate
not only special relativistic effects such as Lorentz
contraction, but also geometric principles from general

relativity, including geodesic precession. This embedding
of both relativistic frameworks into a single particle-based
structure underscores the foundational scope of the
internal phase geometry proposed here.

Of particular note, the model offers an experimentally
testable prediction: the internal Zitterbewegung velocity
vZB = 0.040374c, obtained from a closed-form algebraic
framework grounded in special relativity [16]. This
value, though not yet experimentally verified, is a
first-principles calculation refined by incorporating the
concept of geodesic precession from general relativity.
This synthesis demonstrates how quantum behavior can
emerge from deterministic internal dynamics subject to
relativistic geometric constraints, offering a new algebraic
bridge between quantum mechanics and gravity—beyond
the language of gauge symmetry alone.
This framework establishes the foundational principle

that discrete internal structures—localized fiber bundles
encoding internal phase dynamics—can coexist with
continuous spacetime geometry. While each electron
carries its own autonomous phase evolution, the global
coordination of such discrete fibers across the manifold
remains an open theoretical frontier. By recasting gauge
interaction as geometric synchronization among these
internal clocks, the model offers a particle-based pathway
toward unifying quantum mechanics and general relativity
without invoking field quantization.

As Zee has suggested [1], the redundancy inherent in
current gauge theory formulations may eventually give
way to a more physically grounded approach. The present
work aims to advance that transition, showing that local
symmetry may emerge not from formal constraints, but
from the geometry of internal phase evolution itself.
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