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Abstract.  This work discovers a unique, accurate, elementary formula for calculating 
the total perimeter of an ellipse demonstrably and heuristically consistently under the 
1% maximum error range for all values and eccentricities, which surpasses 
Ramanujan’s previous dominant formulas in terms of accuracy and simplicity. The 
formula also uniquely provides the definitive range of calculable deviation from any 
exact value, making it the optimal general approximation method. Several examples 
are provided which confirm the formula’s precision. The theorem also provides a 
corollary which derives a definitive metric bound on all parametric elliptic geometry, 
with application to all of physics and astronomy. 
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1. Formula 
 
  An elementary formula for the precise perimeter of the ellipse:  
 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1, (1) 

 
has eluded grasp since the beginning of history; and ancient Greek knowledge of geometry. 
This work derives the correct elementary parametric formulation for ascertaining the 
precise value of elliptic perimeter, according to all objective standards of optimization, the 
results of which apply to all measure-theoretic and scientific methodologies. 
  The formula for the exact value is the elliptic integral; however it gives less parametric 
information concerning general elliptic geometry than the optimization formula provided. 
The elliptic integral is defined as 
 

𝐶 = 4𝑎 ∫ √1 − 𝑒2 sin2 𝜃

𝜋
2

0

𝑑𝜃, (2) 

 
where 𝑒 is the eccentricity of the ellipse, measured as 
 

𝑒 = √1 −
𝑏2

𝑎2
, (3) 
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and the integral is also expressed as a function of the eccentricity, 
 

𝐶 = 4𝑎𝐸(𝑒), (4) 
 
as 
 

𝐸(𝑥) = ∫ √1 − 𝑥2 sin2 𝜃

𝜋
2

0

𝑑𝜃. (5) 

 
  However, this formula only gives a value of an ellipse circumference, whereas much more 
empirical parametric data is available—which applies to the elliptic geometry of physics—
by much more economical calculation method. This work derives such. 
  The formula is derived from taking the limit of the extreme limiting cases of ellipses for 
semi-major and semi-minor axes; circle, 2𝜋𝑎 (𝑎 = 𝑏), and maximum elongation limit, 4𝑎 
(𝑏 = 0), combining them through general term cancellation to a single limit formula.  
  It begins with the circle reduction: 𝜋(𝑎 + 𝑏), and the reductive combinatory cancellation 

term, 
(4−𝜋)(𝑎−𝑏)2

𝑎+𝑏
, to give the demonstrable reductive limit proportion: 

 
The elliptic bounds theorem 
 

𝐶 ~ 𝜋(𝑎 + 𝑏) + (4 − 𝜋)
(𝑎 − 𝑏)2

𝑎 + 𝑏
 (6) 

 
such that, 
 

lim
𝑏→0

𝜋(𝑎 + 𝑏) +
(4 − 𝜋)(𝑎 − 𝑏)2

𝑎 + 𝑏
= 𝜋(𝑎 + 0) + (4 − 𝜋)

(𝑎 − 0)2

𝑎 + 0
 (7)

= 𝑎𝜋 +
(4 − 𝜋)𝑎2

𝑎
= 𝑎𝜋 + 4𝑎 − 𝑎𝜋 = 4𝑎,

 

 
recovering the unique unitary limit; with unique base root exponent limit cancellation ratio 

of 𝑎: 1 for 
(𝑎−𝑏)2

𝑎+𝑏
 as 

𝑎2

𝑎
, with 𝑎 and 𝑏 in the total limit approaching sufficient calculable static 

components with respect to the reduced denominator for the extreme cases of elongated 
ellipse and circle mutually, in the most reduced fundamental unique root limit power ratio 
of 2: 1; and 
 

lim
𝑏→𝑎

𝜋(𝑎 + 𝑏) +
(4 − 𝜋)(𝑎 − 𝑏)2

𝑎 + 𝑏
= 𝜋(2𝑎) + (4 − 𝜋)

(0)2

2𝑎
= 2𝜋𝑎, (8) 

 
recovering the circle, in a unique dual limiting case. This proves the general uniqueness and 
calibrated optimization of limiting approach criteria of the formula for the elliptic parametric 
principle. Hence, this formula is analogous to recovering and deriving general term 



 

3 
 

cancellation, similar to completing the square for derivation of the quadratic formula, and is 
the proper substitution methodology, as in other general partial differential equation 
solutions. The core principle is complementarity of root binary component cancellation for 
elementary, reductive, precise contributing part; this formula also then providing the 
minimal general parametric upper bound on the ultimate value as limit of all ranges. Thus, 
this is by definition the preeminent formula for estimating generalized circumferences 
accurately, without competitor in arbitrary ranges, which is then demonstrably confirmable 
as such to random values. Q.E.D. 
  Hence, this formula may also be used to form a new, generalized, definitive expression for 
𝜋: 
 

𝜋 = lim
𝑏→𝑎

𝐶
𝑎 + 𝑏

− ℎ + √(ℎ −
𝐶

𝑎 + 𝑏
)

2

− 16ℎ

2
, ℎ = (

𝑎 − 𝑏

𝑎 + 𝑏
)

2

,  (9)
 

 
confirmable as the generalization of the direct, special case of the circle, 
 
 

2𝜋𝑎
2𝑎 − 0 + √(0 −

2𝜋𝑎
2𝑎 )

2

− 16(0)

2
=

𝜋 + √(−𝜋)2

2
=

2𝜋

2
= 𝜋 . (10)

 

 
  Other common but less acute, accurate, useful (or directly interrelated to the structure of 
the ellipse) approximations have included Euler’s arithmetic-geometric mean 
approximation [1]: 
 

𝐶 ≈ 2𝜋√
𝑎2 + 𝑏2

2
, (11) 

 
and Ramanujan’s completely random, non-rigorously founded first and second 
approximations, respectively, 
 

𝐶 ≈ 𝜋 (3(𝑎 + 𝑏) − √(𝑎 + 3𝑏)(3𝑎 + 𝑏)) , (12) 

 

𝐶 ≈ 𝜋(𝑎 + 𝑏) (1 +
3ℎ

10 + √4 − 3ℎ
) , (13) 

 
which, by already established mathematical proof of the original elliptic bounds theorem, by 
definition cannot compare in terms of consistent accuracy. 
 
2. Precision 
 
  This result consistently maintains an accuracy of an error percentage under 1% across all 
eccentricities, and gives the maximum upper bound within that percent range on an ellipse 
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perimeter, and is particularly precise the closer the ellipse is to a circle, or the more 
elongated it is. For 𝑎 = 85, 𝑏 = 43, the result is 413.95, whereas the exact (corresponding 
decimal expansion) result is 413.02, deriving the optimal maximum upper limit within less 
than 1%. Increased by an order of magnitude to 𝑎 = 850, 𝑏 = 430, the result is 4139.53, and 
the exact result 4130.22, under 0.3% error; and for even 𝑎 =  850, 𝑏 =  43, it gives 3431.46 
compared to 3416.85, maintaining an error percentage still well under 1% with arbitrary 
eccentricity, demonstrating immense superiority over Euler’s geometric mean 
approximation formula—which in this case gives 3781.27, a 10% error. The closer the 
eccentricity is to 1, the more precise the elliptic bounds formula is in fact; for example, for 
𝑎 = 1000000, 𝑏 = 0.0000001, the result is 4000000, compared to the answer, 4000000, still 
well under 1% error; the factor of error only decreasing as the sum eccentricity increasingly 
approaches the infinite limit—in this case, Ramanujan’s second approximation, previously 
considered the most accurate, gives 3998391, completely off the mark, and gets even less 
close as the eccentricity increases. Therefore, that is ultimately comparatively ineffectual for 
the general case, without the same general consistency of optimized error margin as well.  
 
Other examples:
 
Low eccentricity 
 

𝒂 𝒃 𝑪 using (6) Exact value of 𝑪 Relative error % 
88 77 518.99 518.93 under 0.01% 
96 85 569.20 569.15 under 0.0001% 

1200 1000 6927.11 6925.79 under 0.02% 
5022 4999 31481.94 31481.94 under 0.00002% 

 
Moderate eccentricity 
 

𝒂 𝒃 𝑪 using (6) Exact value of 𝑪 Relative error % 
459 221 2207.78 2202.22 under 0.3% 

1000 500 4855.45 4844.22 under 0.3% 
6800 4500 35901.85 35868.63 under 0.1% 

10000 5000 48554.56 48442.24 under 0.3% 
 
High eccentricity 
 

𝒂 𝒃 𝑪 using (6) Exact value of 𝑪 Relative error % 
44 2 177.43 176.72 under 0.5% 

100 15 415.21 412.61 under 0.631% 
900 25 3616.47 3606.20 under 0.3% 

10000 100 40060.03 40010.98 under 0.2% 
 
Table 1: Results for the perimeter proportion of a standard ellipse with arbitrary 
eccentricity, with a fixed semi-major axis  𝑎 = 1 and varying semi-minor axis 𝑏 from 1 to 0. 
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For Table 1, it is observed that all relative error percentages are beneath 0.64%. 
 

𝒂 𝒃 𝑪 using (6) Exact value of 𝑪 Relative error % 

     1 0.999900 6.282871152206479 6.282871152 0.000000003286370 

     1 0.990000 6.251812516691246 6.251808848    0.000058682076436 

     1 0.900000 5.973543975222766 5.973160433    0.006421093608111 

     1 0.800000 5.673942495270743 5.672333578    0.028364292202121 

     1 0.700000 5.386152605912600 5.382368981    0.070296646810291 

     1 0.600000 5.112388980384690 5.105399773    0.136898336965742 

     1 0.500000 4.855456871453057 4.844224110    0.231879475391522 

     1 0.400000 4.618963032674049 4.602622519    0.355026153167994 

     1 0.300000 4.407623987929040 4.385910070    0.495083519326230 

     1 0.200000 4.227728435726529 4.202008908    0.612076944376833 

     1 0.100000 4.087851874032652 4.063974180    0.587545416753912 

     1 0.050000 4.036493838779008 4.019425619    0.424643254954792 

     1 0.040000 4.027937331321507 4.013143313    0.368639173028884 

     1 0.030000 4.019991377117258 4.007909450    0.301452097857597 

     1 0.020000 4.012673933614886 4.003839160    0.220657555457002 

     1 0.010000 4.006003669449100 4.001098330    0.122599822461768 

     1 0.005000 4.002917266738105 4.000309233    0.065195803279170 

     1 0.004000 4.002320201650834 4.000205049    0.052876105722701 

     1 0.003000 4.001729922076847 4.000120518    0.040233889694192 

     1 0.002000 4.001146448332054 4.000568070    0.014457405096835 

     1 0.001000 4.000569800813546 4.000155880    0.010347617091997 

     1 0.000100 4.000056671394296 4.000002020    0.001366284167433 

     1 0.000001 4.000000566374047 4.000000000    0.000014159351180 

 
And so on, well under 1% error for all arbitrary eccentricities. 
 
3. Deviation calculation 
 
  Specifically, the maximum error or deviation range is given by the maximum-to-minimum 
extrema general limiting ratio of maximum elongation to perfect circle, through all variable 
limit parameters, 
 

4𝑎

2𝜋𝑎
=

2

𝜋
, (14) 
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which when converted to percentage value of such precise upper limit of deviation, becomes 
2

100𝜋
≈ 0.00636619772 .  .  . ; or less than 0.64% precise deviation, statically and arbitrarily 

empirically verifiably; which, when thus subtracted as the maximum deviation fraction of 
the result from the result, can only give the minimum possible accurate perimeter range as 
the lower bound, through numeric calibration, as the total limit—deriving a minimum–
maximum objective sufficient limit of general “ellipse cohesiveness” parameter, and a 
corollary, which may be called the elliptic squeeze theorem, where the original upper limit 
of 𝐶 is technically 𝐶max: 
 
The elliptic squeeze theorem 
 

𝐶min ≤ 𝐶 ≤ 𝐶max, (15) 
 
where 𝐶min is calculated as exactly  
 

𝐶min = 𝐶max −
2

100𝜋
𝐶max = 𝐶max −

𝐶max

50𝜋
, (16)   

 
the denominator factor of 100 necessary when correctly calibrated to base-10 decimal 
expansion to take into account the actual error percentage, or standard deviation.  
 
Examples: 
 
𝑎 = 80, 𝑏 = 4 
 

(𝐶min = 320.86) ≤ (𝐶 = 321.55) ≤ (𝐶max = 322.91) (17) 
 
𝑎 = 2, 𝑏 = 1 
 

(𝐶min = 9.64) ≤ (𝐶 = 9.68) ≤ (𝐶max = 9.71) (18) 
 
𝑎 = 90, 𝑏 = 45 
 

(𝐶min = 434.20) ≤ (𝐶 = 435.98) ≤ (𝐶max = 436.99) (19) 
 
𝑎 = 9536, 𝑏 = 322.15 
 

(𝐶min = 38118.37) ≤ (𝐶 = 38237.06) ≤ (𝐶max = 38362.60)  (20) 
 
Table 2: Results for the parametric bounds of a standard ellipse of arbitrary eccentricity, with 
a fixed semi-major axis  𝑎 = 1 and varying semi-minor axis 𝑏 from 1 to 0. 
 
For Table 2, it is observed that the exact perimeter is always bounded from below by 𝐶min, 
and from above by 𝐶max.  
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𝒂 𝒃 𝑪𝐦𝐢𝐧 Exact value of 𝑪 𝑪𝐦𝐚𝐱 

     1 0.999900 6.242873152179153 6.282871152 6.282871152206479 

     1 0.990000 6.212012242078639 6.251808848 6.251812516691246 

     1 0.900000 5.935515213165425 5.973160433 5.973543975222766 

     1 0.800000 5.637821055473083 5.672333578 5.673942495270743 

     1 0.700000 5.351863293453468 5.382368981 5.386152605912600 

     1 0.600000 5.079842501295220 5.105399773 5.112388980384690 

     1 0.500000 4.824546072970607 4.844224110 4.855456871453057 

     1 0.400000 4.589557800729697 4.602622519 4.618963032674049 

     1 0.300000 4.379564182130267 4.385910070 4.407623987929040 

     1 0.200000 4.200813880582687 4.202008908 4.227728435726529 

     1 0.100000 4.061827800737461 4.063974180 4.087851874032652 

     1 0.050000 4.010796720890942 4.019425619 4.036493838779008 

     1 0.040000 4.002294685851739 4.013143313 4.027937331321507 

     1 0.030000 3.994399317163057 4.007909450 4.019991377117258 

     1 0.020000 3.987128457952854 4.003839160 4.012673933614886 

     1 0.010000 3.980500658007617 4.001098330 4.006003669449100 

     1 0.005000 3.977433903946535 4.000309233 4.002917266738105 

     1 0.004000 3.976840639893663 4.000205049 4.002320201650834 

     1 0.003000 3.976254118156156 4.000120518 4.001729922076847 

     1 0.002000 3.975674358920589 4.000568070 4.001146448332054 

     1 0.001000 3.975101382454200 4.000155880 4.000569800813546 

     1 0.000100 3.974591519718292 4.000002020 4.000056671394296 

     1 0.000001 3.974535771873695 4.000000000 4.000000566374047 

 
 
  According to this precise elliptic range principle, all spatial orbits, as approached general 
ellipsoid limits, must fall within the range of this governing elliptic squeeze theorem, 
otherwise they will sufficiently deviate from geometric ellipsoid phenomena generally at a 
tangent, according to all limits of measure. With Earth’s semi-major axis of orbit at measure 
1 𝐴𝑈, and its semi-minor axis of orbit at 0.99986 𝐴𝑈, the stable orbital circumference of the 
Earth thus cannot exceed the exact calculated parametric range of 6.24274 𝐴𝑈 and 
6.28274 𝐴𝑈 (0.04 𝐴𝑈 difference).  
  For Earth’s moon, with semi-major axis of 0.00257 𝐴𝑈 and semi-minor axis of 0.00256 𝐴𝑈, 
the stable orbital circumference parametric range is precisely 0.01601 𝐴𝑈 and 0.01611 𝐴𝑈 
(or 0.0001 𝐴𝑈 difference), any other range predictable as anomalous.  
  For Mercury, with semi-major axis of 0.38709 𝐴𝑈, and semi-minor axis of 0.37881 𝐴𝑈, the 
formula gives a precise stable orbital circumference parametric range of 2.39090 𝐴𝑈 and 
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2.40622 𝐴𝑈 (0.01532 𝐴𝑈 difference), any other, all things considered, indicating a spacetime 
geometric anomaly, which could be chiefly due to gravity of other orbital bodies. And thus 
this formula can predict any anomalous geometric orbits as approached measurable limit—
in all limits, as precise general calculable elliptic limit; namely, classical, general relativistic, 
and quantum—which happen to for whatever reason exceed the limiting elliptic squeeze 
theorem’s range. 
   
4. Conclusions 
 
  This precise elliptic measurable range principle extends to all of physics as well, indicating 
the range of a predictably stable orbit, for example. Any deviation from this precise range 
thus indicates an unstable orbit according to precise numerical analysis, and then the elliptic 
squeeze theorem’s range in astronomy may be referred to as “the anomalous orbit indicator 
(AOI) formula”, a correct cornerstone of the field (as well as for classical and quantum 
physics in relation to precise measurable deviating influences on elliptic orbital trajectories), 
which can track anomalous influences on all orbital bodies, including satellites.  
  The rarity of eons of orbital formation and evolution being so stable as to allow life and 
intelligent life to develop explains its empirical rarity in cosmology and biology as well, in 
application; hence, life on Earth is an anthropic limit as such. The ellipse is the generalized 
symmetry principle, and as such, this optimal unique precision general formula in all its basic 
applications may be referred to centrally as the fundamental theorem of numerical analysis. 
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