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                                                                        ABSTRACT

The application of QED/QCD to the calculation of the muon’s magnetic anomaly has not 
achieved the same level of precision as in the case of the electron’s anomaly. This 
discrepancy has led many researchers to conjecture the existence of “new physics” capable 
of resolving the issue. In this work, we adopt a deterministic, non-local Bohm-like approach 
(dBBZ), as detailed in previous publications, analogously to the electron case, perform a 
structural analysis of the muon.                                                                                                      
The muon’s internal structure is examined via the (hybrid) Mz matrix method, in which the 
weak components are computed with high accuracy, reproducing the muon’s mass while 
exactly embedding the electron’s structure (and thus its charge and mass). Following the 
procedure already tested for the electron, we evaluate the anomalous moments of each 
orbital and impose entanglement through a calibrated normalization of the relevant 
parameters. The same “source parameter” used for the electron,  providing a double check 
on its precise value, is adopted here for calculating the electrostatic potentials.        
Magnetic-field effects are accounted for only on the masses carrying electric charge; 
however, in the overall energy balance of each orbital, the weak mass also plays an indirect 
yet essential role. The total anomalous moment calculation yields a direct determination of 
the muon’s magnetic anomaly with a precision on the order of 10⁻¹³.

1) INTRODUCTION

This work proceeds in parallel with the procedure used to determine the electron’s 
magnetic anomaly, to which explicit reference is made for shared derivations and common 
calculations. For necessary background, the reader is referred to earlier publications.

This document is organized into the following phases:

Determination and analysis of the muon’s hybrid orbital structure, with a 2–3-loop 
calculation of the weak coupling constant,  consistent with the muon’s mass and embedding 
the electron (which supplies its electric charge).

Energy balance for each orbital between the kinetic-plus-magnetic-energy condition and the 
pure-kinetic-energy condition. In this phase, only masses associated with charges generating 
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magnetic fields are considered (as in the electron case), not weak masses.

Further specialization of the model to include the role of weak masses in the total orbital 
energy, calculation of entanglement between electrostatic and weak masses, and improved 
fitting based on the increased precision in the muon mass determination.

Determination of the anomalous momentum for each orbital (defined solely for the 
electrostatic masses), imposition of entanglement, and computation of normalization 
coefficients.

Calculation of the total anomalous orbital momentum and of the muon’s magnetic 
anomaly.

Each phase refines the model, orbital by orbital and overall, while enforcing conservation of 
total energy. Since orbitals are treated as closed systems, any modification of one orbital 
may alter other internal parameters, particularly the velocities of the associated masses and 
charges.

The International System of Units (SI) is employed, with constants consistent with CODATA 
2022. Unless explicitly stated, the sign of electric charges is not considered. The spin value is 
always treated as a positive scalar.

2) MUON STRUCTURE

We describe the muon’s structure via the (hybrid) Mz   matrix:
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The hybrid orbitals (excluding the exclusively weak orbital              ) can be divided into 
electrostatic sub-orbitals             and weak sub-orbitals           . This subdivision is justified by 
population inversion: weak levels, having greater mass, occupy regions closer to the center 
than the electrostatic levels of the same orbital.

Notice that the muon’s structure fully contains the electron’s structure without alteration, 
thereby preserving both its mass and charge.

We can list the sequences of sub-orbitals separately as follows:

                         Weak sub-orbitals                                        Electrostatic sub-orbitals

To obtain the muon’s theoretical mass, one must define the value of           , which, in first 
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approximation, can be calculated via the 2–3-loop running equation of the SU(2) coupling at 
the length scale of the first weak orbital         .

We estimate, and then verify, a mass for the first weak orbital equal to approximately 80% 
of the muon’s weak mass (total muon mass minus electron mass). From this mass, one 
computes the corresponding reduced Compton wavelength:

1)

At that distance, we calculate the weak coupling constant via the 2-loop running formula 
and an approximate 3-loop extension. Temporarily adopting natural units:

Initial parameters at the Z-boson mass:

                                                        electromagnetic coupling constant at 

                                                                  Weinberg angle at 

Other parameters appearing in the running formulas: 

We define the reference energy for running as:

2)

We determine the weak coupling at the reference mass          :

3)

We compute the 2-loop running at energy          :

4) 

We add an approximation for the 3-loop term:
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5)

From (3) and (5) we obtain:

6)                                                                                                  and thus:

7)                                                                                              

Having determined                                 , we perform a detailed evaluation, considering that 
the muon mass calculation achieves an uncertainty comparable to that of the electron case 
(excluding the magnetic mass).

We compute the muon’s theoretical mass, including all electrostatic and weak components:

8)                                                                                      with:

9)                                                                                         Insert relativistic correction term

By iterating the total mass calculation (via             ) and imposing an allowed error:

10)                                                                                          we obtain:

11)

Let us carry out a verification, adopting the (11) of the estimate of the first weak orbital .

Let's take the mass of the first weak orbital and divide it by the total weak mass :

12)                                                                                        in accordance with the initial estimate .
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3) ENERGY BALANCES

For the i-th orbital, the energy balances enable the matching (in total-energy terms) of a 
purely dynamical model with the next, more sophisticated model, thus improving 
performance.                                                                                                                                      
We reuse the electron’s anomaly results to account for the muon’s electric charges.

Regarding the total electric charge, the electrostatic and magnetic fields of the electrostatic 
sub-orbitals (and their derivatives) are identical to those in the electron case; we refer to 
those previous results for brevity.

The source charge          is chosen via the partial electroweak unification parameter (within a 
permitted range)                                           enabling the expression of the source potential at 
distance       :

13) 

Taking into account, in the charge “seen” by the i-th orbital, the stationarity constraints 
(“Poincaré belt” problem), and applying Gauss’s theorem, the electrostatic energy on the 
orbital is:

14) 

From (14) one derives the magnetic energy for the i-th orbital:

15)

We then write the first energy balance between the purely dynamical model and the 
dynamical + electromagnetic model:
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16)

where the term :                     because the magnetic field does not affect the velocities of the 
weak masses, and the magnetic term :                          contains no weak-mass velocities, as 
weak charges do not generate a magnetic field.

Thus (16) reduces to:

17) 

Equation (17) is exactly the same energy balance as in the electron case.

Because the electron’s masses and orbitals are entangled (per previous work), we propose 
that, to advance beyond the prior model, one must impose entanglement between the 
electrostatic and weak masses for each orbital where both are present. The previously 
computed refinement parameter  z   also plays a role in defining this new model.

Finding how entanglement and refinement jointly affect the results is nontrivial. Therefore, 
we first present the definitive solution, validated by its results, then discuss alternative 
options whose outcomes proved inadequate or only partially adequate.

The chosen solution introduces an additional parameter  z   only in the new model and 
imposes the cited entanglement alongside the magnetic field. We write separately the 
expressions for the two models which, due to these considerations, can no longer reduce to 
(16) and (17), but must include weak-mass contributions.

Considering that:

The pure dynamical term:

18)

Term including magnetic effects, entanglement, and refinement:

19) 
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The magnetic energy in (19) must be positive, being an additional energy term, so since the 
term           is always negative, it must appear with a negative sign. 

We clarify the presence of              and                          in the previous expression.

We consider the refinement parameter z   : multiplying the weak coupling constant, it 
affects the various weak sub-orbitals depending on the exponent present in them. 
Therefore, we substitute :                            and :                                         Where: 

We then determine the normalization coefficients needed to impose entanglement 
between electrostatic and weak masses, considering only the terms                 , since the 
constants                cancel in the calculation. We adopt a common calculation method for 
quantities defined on each individual orbital:

20) 

Recall that the          must also be inserted into (20); substituting :             a            , (20) 
becomes:

21)

We can rewrite (21) accounting for the latest implementations:

22) 

Equating (18) with (22):

23) 
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From (23) one calculates the velocity             for the last implemented model (ede):

24) 

Analogous to the transition from dynamical to electrodynamic model, we set:

25)                                                                        where the                   are:

26)

4) ENTANGLEMENT OF ORBITAL ANOMALOUS MOMENTS

Analogous to the electron’s magnetic-anomaly case, we write the anomalous orbital 
moment of the i-th orbit solely in terms of the electrostatic-orbital components:

27) 

We impose entanglement on the terms          by determining normalization coefficients. The 
sum of the entangled terms constitutes the total anomalous orbital moment             . 

The parameters defining                                    themselves depend on          .

28) 
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The appropriate way to calculate normalization coefficients here is to use the squared 
probabilities of the individual orbital parameters , after a change of variables to make their 
probability distributions compatible.

Compute derivatives of (28) with respect to           :

29) 

Obtain the probabilities of the single parameters:

30) 

31) 

32) 

Determine the total probability squared for each i-th orbital:

33) 

We then sum the squares over all orbitals to obtain the normalization constants:

34) 

It is immediate to verify that :

5) DETERMINATION OF THE MUON MAGNETIC ANOMALY
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With the modified velocities of the electrostatic masses obtained, we write the total 
anomalous orbital moment:

35) 

Recall the definition of the muon’s anomalous magnetic moment:

36)                                                               where:

37)                                                                 is defined as the muon’s magnetic anomaly.

We show that (36) is equivalent to:

38)                                                                         hence:

39)                                                                        and it follows immediately:

40)

We can compute the relative error:

41)

    ) We extracted the weak coupling constant value           via a 3-loop perturbative 
evolution (approximate) up to the necessary scale. Although the perturbative regime may 
be contaminated by non-perturbative effects, we conservatively adopt a 1% uncertainty 
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margin on the coupling ,   also accounting for the adjustment of this constant in            to 
reproduce the muon mass with precision comparable to that in the electron case. This 
choice ensures internal consistency and stability of the results within the required accuracy.

6) DISCUSSION AND FURTHER STUDIES

All calculations were performed with custom-developed software, enabling simulations of 
various scenarios to evaluate the impact of different approaches on partial and final results. 
We report the most relevant cases, comparing the magnetic anomaly, the relative error, 
and the velocity increase in the first mixed orbital (the most significant) between the 
proposed model and the previous energy-balance model for the same case. The models 
considered are:

AB – Model without entanglement and without refinement :

A – Model without refinement :

B – Model without entanglement :

C – Model without electric charge :

D – Proposed model :

From the first three, we observe that the absence of entanglement, refinement, or both 
leads to a decrease in velocities          , whereas their presence causes an increase  , 
consistent with the hypothesis that weak masses (generally faster) “drag” the electrostatic 
masses. 

From model C, we see that the absence of charge, and thus of magnetic field, allows 
velocities          to increase, in line with the hypothesis of a “braking” function of the 
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magnetic field on electrostatic masses.

Model D achieves the necessary balance of these effects, producing a system consistent 
with experimental results.

We consider an additional in-depth study of refinement, particularly concerning the 
modulation of the coupling constant via parameter z. 

The z parameter acquires a structural role, affecting not only mass and velocity modulation 
but also entanglement itself. Here, its numerical value must be precise, even if applied 
equally to all weak sub-orbitals.

We analyze the weak sub-orbitals in detail to calculate, via the previously used running 
formulas, the ratio between each individual weak coupling constant and its weighted value 
across all orbitals, accounting for the 1% running-formula uncertainty.

By performing these calculations, we determine, for each sub-orbital, the specific weak 
coupling constants as functions of their respective distances ,            , which replace          . 
We compute extrema due to the 1% error:

42) 

We then determine the minimum and maximum values of the relative            and their 
sums, via application of                   :

43)

44) 

Thus we obtain reference minima and maxima of a weak coupling constant               
weighted across the orbitals.                                                                                                               
We note that                lies between                  and                    .

We determine the deviation, as a ratio from these reference values, of the coupling 
constants for each orbital , calculated via their running,  thus providing greater detail than a 
simple substitution of         with         . We compute the maximum amplitude of these ratios 
as a function of the extrema from the 1% running error:

45) 
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We report the results as reference intervals:

46) 

By substituting         with values within these reference intervals for            , we obtain a 
relative error on the magnetic anomaly of:

The chosen values based on (46) are:

47) 

We observe that only the first 2–3 hybrid orbitals significantly influence the determination 
of the magnetic anomaly at the considered precision level.

7) CONCLUSIONS

The determination of the muon’s magnetic anomaly fits seamlessly within the modeling 
framework developed for the electron’s anomaly. Both systems share not only the same 
procedural method but also the same source-parameter value, analogous structure, and the 
electron’s charge and mass, whether free or embedded in the muon.

The muon’s hybrid nature required additional effort to describe its structure and to 
establish energy balances for each orbital, due to the necessary entanglement of weak 
masses in the muon’s overall dynamics.

This integrated structure, accounting for kinetic, electromagnetic, entanglement of 
electrostatic and weak masses, and entanglement of anomalous orbital moments, can be 
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termed the Hybrid Entangled Electro-Dynamic Model (H.E.E.D.M.).

A detailed analysis of the weak sub-orbitals, aimed at characterizing the peculiarities of the 
weak coupling constant in each, allowed us to assign a physical meaning and numeric value 
to the refinement parameter z , essential for result convergence.

The methodology has no connection with QED or QCD techniques, thus overcoming the 
latter’s computational difficulties and assigning clear physical meaning to the quantities and 
parameters within the deterministic, non-local dBBZ framework, which treats the muon as a 
distributed entangled structure, just as for the electron.

We have calculated the muon’s magnetic anomaly with a relative error on the order of 10⁻¹³ 
whereas current theoretical methods reach a relative error of about 2.5×10⁻⁹. 

These results, together with those for the electron, may provide a solid foundation for a 
deterministic, non-local, and more physically meaningful reinterpretation of the quantum 
world.
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