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Abstract. We study certain weight functions on [−1, 1] which are particular cases of the general weights
considered by Bernstein and Szegö. These weights are numbered by two positive integers and when these
integers tend to infinity, these weights approximate weight functions on R considered by Ismail and Valent.
We also consider modifications of these weight functions by a continuous variable a > 0. These ideas are
then used to find finite analogs of some improper integrals first studied by Glaisher and Ramanujan.

1. Introduction

Entry 4.123.6 in Gradshteyn and Ryzhik’s Table of Integrals, Series, and Products [9] reads

∞∫
0

sin(ax) sinh(bx)

cos(2ax) + cosh (2bx)
xp−1dx =

Γ(p)

(a2 + b2)p/2
sin
(
p tan−1 a

b

) ∞∑
k=0

(−1)k

(2k + 1)p
, p > 0. (1)

Limiting case p → +0 of (1) is

∞∫
0

sin(x) sinh(x/a)

cos(2x) + cosh (2x/a)

dx

x
=

tan−1 a

2
. (2)

Also, when a = b and p/4 ∈ N one finds from (1)

∞∫
0

sin(x) sinh(x)

cos(2x) + cosh (2x)
x4k−1dx = 0, k ∈ N.

Integrals of this type were first studied by Glaisher [7]. Recently, they were studied in connection with
integrals of Dedekind eta-function in [8],[14],[6].

In [12], we have generalized (2) as

1∫
0

sin
(
n sin−1 t

)
sinh

(
n sinh−1(t/a)

)
cos
(
2n sin−1 t

)
+ cosh

(
2n sinh−1(t/a)

) dt

t
√

(1− t2)(1 + t2/a2)
=

tan−1 a

2
, (3)

where n is a positive odd integer , and we have also shown that

1∫
0

cos(n sin−1 t) cosh(n sinh−1 t)

cos(2n sin−1 t) + cosh(2n sinh−1 t)

dt√
1− t4

= 0, (4)

where n is a positive even integer. Our proof was based on explicit calculations using the fact, that
the roots of cos

(
2n sin−1 t

)
+ cosh

(
2n sinh−1(t/a)

)
(which is a polynomial in t) can be determined in

closed form (see also Section 9 of the present paper for a similar calculation). Two alternative proofs
of (3) can be found in [20] and [16]. Motivation for considering such integrals came from the mapping
αz = 2n sinh−1 sin πz

2n encountered in the theory of Dirichlet problem on finite nets [15], as discussed in
Section 5 of [12]. Note that αz ∼ πz, when n → ∞.

In this paper, we will be concerned with integration formulas similar to the following:

Theorem 1. Let n and m be positive odd integers. Then

1∫
−1

sin(n sin−1
√
t) sinh(m sinh−1

√
t)

cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t)

tjdt√
1− t2

=

{
π/2, j = −1,

0, j = 0, 1, . . . , m+n−2
2 ,

(5)
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1∫
−1

cos(n sin−1
√
t) cosh(m sinh−1

√
t)

cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t)

tjdt = 0, j = 0, 1, . . . , m+n−4
2 . (6)

Our proof of Theorem 1 is based on the theory of orthogonal polynomials in its elementary form. In
particular, we will use the concept of so-called Bernstein-Szegö polynomials, brief account of which is
given in Section 2. Modifications of Theorem 1 by a continuous parameter a > 0 will be studied in
Section 5, Theorem 4. The case of even parameters n and m is treated in Section 6. More complicated
weight functions are studied in Section 7. Resulting Gauss quadrature formulas are given in Section 8,
where we also discuss a finite analog of the generating function formula of Kuznetsov from [11].

In a series of papers [1],[10], Berg, Valent, and Ismail have considered orthogonal polynomials on R
related to elliptic functions. Weight function for these orthogonal polynomails is equivalent to

1

cos
(
2
√
x
)
+ cosh

(
2
√

x/a
) (7)

after rescaling of the variable. Recently, there has been a flurry of activity in studying different aspects
of the integrals with weight function (7), e.g. [2],[11],[21],[3],[13],[18],[22]. The weight functions

1

cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t)

1√
1− t2

, (8)

numbered by two positive integers n and m, approximate the weight functions (7) in the limit n,m → ∞.
For example, (5) is a finite analog of∫

R

sin
(√

x
)
sinh

(√
x/a

)
cos
(
2
√
x
)
+ cosh

(
2
√
x/a

) xjdx =

{
π/2, j = −1,

0, j = 0, 1, 2, . . .

As can be seen from (5), sin(n sin−1
√
t) sinh(m sinh−1

√
t) is an (m+ n)/2-th degree orthogonal polyno-

mial corresponding to the weight function (8). Thus, our paper provides an elementary setting for the
orthogonal polynomials studied in [1],[10].

There is an integral looking similar to (2) but somewhat different

∞∫
0

sin(kx)

cos(x) + cosh (x)

dx

x
=

π

4
, (9)

where k is a positive odd integer. It was submitted by Ramanujan to the Journal of the Indian Math-
ematical Society as problem number 353 [17]. More information on the history of (9), and also on the
Ismail and Valent integral, including further references can be found in [2]. [2] also contains direct proof
of (9) using contour integration. In Section 9, we will prove a finite analog of (9) that contains an
additional integer parameter. When this integer parameter goes to infinity, one recovers (9) in the limit.

2. General Bernstein-Szego polynomials

In this section, we closely follow the book [19]. The trigonometric polynomial in θ of degree k is

g(θ) = a0 +

k∑
j=1

{aj cos(jθ) + bj sin(jθ)} .

Theorem 2 ([19], Theorem 1.2.2). Let g(θ) be a trigonometric polynomial with real coefficients which is
nonnegative for all real values of θ and g(θ) ̸≡ 0. Then a representation g(θ) = |h(eiθ)|2 exists such that
h(z) is a polynomial of the same degree as g(θ), with h(z) ̸= 0 in |z| < 1, and h(0) > 0. This polynomial
is uniquely determined. If g(θ) is a cosine polynomial, h(z) is a polynomial with real coefficients.

Let ρ(t) be a polynomial of precise degree l and positive in [−1, 1]. Then, orthonormal polynomials
pk(t), which are associated with weight functions

w(t) =
1

ρ(t)
√
1− t2
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can be calculated explicitly provided l < 2k. Namely, let ρ(cos θ) = |h(eiθ)|2 be the normalized represen-
tation of ρ(cos θ) in the sense of Theorem 2. Then, writing h(eiθ) = c(θ) + is(θ), c(θ) and s(θ) real, we
have

pk(t) =

√
2

π
Re
{
eikθh(eiθ)

}
=

√
2

π
{c(θ) cos kθ + s(θ) sin kθ} . (10)

These formulas must be modified for l = 2k by multiplying the right-hand member of (10) by a certain
constant factor. However, we will only consider l < 2k.

3. Some properties of the function cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t)

The integral I(n,m, j) on the left-hand side of (5) satisfies

I(n,m, j) = (−1)j−1 I(m,n, j).

This symmetry means that it is enough to consider m ≥ n. The expression

ρ(t) = cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t) (11)

is an even polynomial in t of degree

deg ρ =

{
m, m > n,

2⌊m2 ⌋, m = n.

One can write for t ∈ [−1, 1]

ρ(t) =
∣∣∣√2 cos

(
n sin−1

√
t− im sinh−1

√
t
)∣∣∣2 .

Using logarithmic form of the functions sin−1, sinh−1, we obtain the representation
√
2 cos

(
n sin−1

√
cos θ − im sinh−1

√
cos θ

)
= ine−i(n+m)θ/2 h

(
eiθ
)
,

h(z) =
1√
2

{(√
z2 + 1 + 1

)m+n
2
(√

z2 + 1 + z
)m−n

2

+ (−1)n
(√

z2 + 1− 1
)m+n

2
(√

z2 + 1− z
)m−n

2

}
. (12)

Obviously, h(z) is a polynomial in z.

Lemma 3. (i) deg h = deg ρ.
(ii) h(0) > 0.
(iii) h(z) ̸= 0 in |z| < 1.

Proof. Parts (i) and (ii) are obvious. Part (iii) can be proved by Rouché’s theorem as follows. Let

f(z) = (−1)n
(
1 +

√
z2 + 1

)m+n (
z +

√
z2 + 1

)m−n
/zm+n.

Unlike h(z), f(z) is a multivalued function. We choose brunch cuts on [i,+i∞) and [−i,−i∞). The
roots of h(z) coincide with the roots of equation f(z) − 1 = 0. Consider the contour C composed of 4
arcs: two arcs of radius 1 centered at the origin, and two arcs of small radius ε centered at ±i. We will
show that |f(z)| > 1 on C. Since f(z) does not have zeroes inside the unit circle, according to Rouché’s
theorem it will follow that f(z)− 1 does not vanish inside the unit circle.

One can easily show that |f(z)| > 1 when |z| = 1, with the exception of two points ±i. The arc around
+i can be parametrized as

z = i+ εe−2iφ, φ ∈ (0, π/2).

Since ∣∣f(i+ εe−2iφ)
∣∣ = 1 + 2

√
ε (m cosφ+ n sinφ) +O(ε), φ ∈ (0, π/2).

and m cosφ+ n sinφ is strictly positive when φ ∈ (0, π/2) and m, n positive, we deduce that |f(z)| > 1
on the arc around +i. The arc around −i is dealt with in the same manner. □

Hence, ρ(cos θ) = |h(eiθ)|2 is the normalized representation of ρ(cos θ) in the sense of Theorem 2. The
resulting formulas are simpler when m and n have the same parity: when they are both odd (the next
Section), or both even, Section 6.
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4. Proof of Theorem 1

Defining the functions

ξ = cos(n sin−1
√
t) cosh(m sinh−1

√
t), (13a)

η = sin(n sin−1
√
t) sinh(m sinh−1

√
t), (13b)

we find from (12) taking into account that m and n are odd
√
2(iξ + η) = ei(n+m)θ/2h

(
eiθ
)
. (14)

Using (10) we find two orthogonal polynomials

pm+n
2

(t) = 2π−1/2η = 2π−1/2 sin(n sin−1
√
t) sinh(m sinh−1

√
t), (15a)

pm+n
2

+1(t) = 2π−1/2
(
η t− ξ

√
1− t2

)
. (15b)

This settles j ≥ 0 in both equations (5), (6). To deal with j = −1 in (5) we will need the kernel
polynomials ([4], Chapter I, eq. 4.11) defined as

Kk(t, u) =
k∑

j=0

pj(t)pj(u) =
κk

κk+1

pk+1(t)pk(u)− pk(t)pk+1(u)

t− u
, (16)

where κj is the leading coefficient of pj(t). Since pm+n
2

(0) = 0, this simplifies to

Km+n
2

(t, 0) = −κm+n
2

κ−1
m+n

2
+1

pm+n
2

+1(0) pm+n
2

(t)/t

From (13) and (15), one can work out the values of the constants in the last formula

κm+n
2

= π−1/2(−1)(n−1)/2 2m+n−1, κm+n
2

+1 = 2κm+n
2

, pm+n
2

+1(0) = −2π−1/2. (17)

To finish the proof, we use the reproducing property of the kernel polynomials with k = (m+ n)/2

1∫
−1

Kk(t, 0)
dt

ρ(t)
√
1− t2

= 1.

5. Generalization that includes an additional continuous parameter a > 0

Theorem 1 can be generalized. Let t ∈ [−a, 1]. It is known that the substitution

t =
1

2
{1− a− (1 + a) cos θ} , θ ∈ [0, π]

uniformizes the square root expression√
(1− t)(a+ t) =

1

2
(a+ 1) sin θ.

After some tedious but quite straightforward algebra we obtain the representation

√
2 cos

(
n sin−1

√
t− im sinh−1

√
t/a
)
= in e−i(n+m)θ/2

(
a+ 1

2
√
a

)m

h
(
eiθ
)
,

h(z) =
1√
2

{(√
z2 + 2bz + 1 + 1 + bz

)m+n
2
(√

z2 + 2bz + 1 + b+ z
)m−n

2

+ (−1)n
(√

z2 + 2bz + 1− 1− bz
)m+n

2
(√

z2 + 2bz + 1− b− z
)m−n

2

}
,

where we have denoted b = 1−a
1+a . This is a generalization of the representation (12). One can show that

this representation also satisfies all three conditions of Lemma 3.
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Theorem 4 (1*). Let n and m be positive odd integers and a > 0. Then

1∫
−a

sin
(
n sin−1

√
t
)
sinh

(
m sinh−1

√
t/a
)

cos
(
2n sin−1

√
t
)
+ cosh

(
2m sinh−1

√
t/a
) tj dt√

(1− t)(1 + t/a)
=

{
π/2, j = −1,

0, j = 0, 1, . . . , m+n−2
2 ;

(18)

1∫
−a

cos(n sin−1
√
t) cosh(m sinh−1

√
t/a)

cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t/a)

tjdt = 0, j = 0, 1, . . . , m+n−4
2 . (19)

The symmetric case m = n of (18) also follows from (3) and the identity tan−1(x) + tan−1(1/x) = π/2.
Equation (18) has an additional (integer) parameterm compared to (3). However, this extra parameter

comes at a cost: The integration range now covers the entire interval [−a, 1]. There does not seem to be
a closed-form evaluation of the integral in (18) when the integration range is [0, 1] (in other words, there
do not seem to be any extensions of (3) that include an additional parameter).

6. The case of even integers m and n

Again, one can restrict consideration to m ≥ n. Then, the degree of the polynomial ρ(t) (11) is
deg ρ = m. Taking into account that n and m are even we get with (13a),(13b)

−
√
2(ξ − iη) = ei(n+m)θ/2h

(
eiθ
)
.

where h(z) is given by (12). The difference from (14) is the phase factor of −1 instead of i. Orthogonal
polynomials of interest are

pm+n
2

(t) = 2π−1/2 ξ = 2π−1/2 cos(n sin−1
√
t) cosh(m sinh−1

√
t),

pm+n
2

+1(t) = 2π−1/2
(
ξt+ η

√
1− t2

)
.

Since pm+n
2

+1(0) = 0, equation (16) simplifies to

Km+n
2

(t, 0) = κm+n
2

κ−1
m+n

2
+1

pm+n
2

(0) pm+n
2

+1(t)/t,

where
κm+n

2
= π−1/2(−1)n/22m+n−1, κm+n

2
+1 = 2κm+n

2
, pm+n

2
(0) = 2π−1/2.

The resulting theorem is stated in general form, modified by a continuous parameter:

Theorem 5. Let n and m be positive even integers and a > 0. Then

1∫
−a

sin(n sin−1
√
t) sinh(m sinh−1

√
t/a)

cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t/a)

tjdt =

{
π/2, j = −1

0, j = 0, 1, . . . , m+n−4
2 ,

(20)

1∫
−a

cos(n sin−1
√
t) cosh(m sinh−1

√
t/a)

cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t/a)

tjdt√
(1− t)(1 + t/a)

= 0, j = 0, 1, . . . , m+n−2
2 . (21)

(21) is a two-parameter generalization of (4).

7. Some other theorems

One can take as ρ(t) a product of several expressions like (11) with different integer parameters. Here
we restrict our attention to the simplest of such functions

ρ(t) =
{
cos(2n sin−1

√
t) + cosh(2m sinh−1

√
t)
}2

,

where m,n are positive integers. From (14) we immediately obtain the representation

2(ξ − iη)2 = ei(n+m)θ h2
(
eiθ
)

with h(z) defined by (12). This leads to

pm+n(t) = (8/π)1/2(ξ2 − η2),

pm+n+1(t) = tpm+n(t) + 4π−1/2ξη
√
1− t2.



6

Since pm+n+1(0) = 0, (16) simplifies to

Km+n(t, 0) = κm+nκ−1
m+n+1 pm+n(0) pm+n+1(t)/t,

where

κm+n = (2π)−1/2(−1)n 22m+2n−1, κm+n+1 = 2κm+n, pm+n(0) = 4π−1/2.

Thus, we obtain after redefining the integers n,m (again, the theorem is stated in general form, modified
by a continuous parameter):

Theorem 6. Let n and m be positive even integers. Then

1∫
−a

sin(n sin−1
√
t) sinh(m sinh−1

√
t/a){

cos(n sin−1
√
t) + cosh(m sinh−1

√
t/a)

}2 tjdt =
{
π/2, j = −1,

0, j = 0, 1, . . . , n+m
2 − 2.

(22)

(22) is related to the integral
∞∫
0

sin(x sinα) sinh(x cosα)

{cosh(x cosα) + cos(x sinα)}2
dx

x
=

α

2
, (23)

mentioned in section 7 of [12]. Integrals similar to (23) were also studied in [5].

8. Application to certain Gauss quadratures

Theorem 7. Let n and m be positive odd integers, and define

αz = 2n sinh−1 sin
πz

2n
, βz = 2m sinh−1 sin

πz

2m
. (24)

Then for any polynomial p(t) of degree at most m+ n− 1

1∫
−1

p(t)

cos(2n sin−1
√
t) + cosh(2m sinh−1

√
t)

dt√
1− t2

=
π

2mn
p(0)

+
2π

n

⌊n
2
⌋∑

i=1

tanh α2i
2n

sinh
(
m
n α2i

) p(sin2 πi
n

)
+

2π

m

⌊m
2
⌋∑

j=1

tanh
β2j

2m

sinh
(
n
mβ2j

) p(− sin2
πj

m

)
.

Proof. According to Theorem 1, the k = (m+ n)/2-th degree orthonormal polynomial corresponding to

the weight function 1/
{
ρ(t)

√
1− t2

}
, where ρ(t) = cos(2n sin−1

√
t) + cosh(2m sinh−1

√
t), is

pk(t) = 2π−1/2 sin(n sin−1
√
t) sinh(m sinh−1

√
t).

Its k roots xs are

0; sin2
πi

n
, i = 1, 2, . . . , n−1

2 ; − sin2
πj

m
, j = 1, 2, . . . , m−1

2 .

Gauss quadrature formula [19] now takes the form

1∫
−1

p(t)
dt

ρ(t)
√
1− t2

=
k∑

s=1

wsp(xs), ws =
κk+1

κkpk+1(xs)p
′
k(xs)

.

The factors entering the formula for the weights ws can be calculated using formulas (13),(15),(17) from
Section 4. □

This theorem can be extended to a pair of positive even integers using the results of Section 6, and
also to include an additional parameter a > 0. Applying these theorems to certain polynomials, one can
obtain finite analogs of generating functions in Kuznetsov’s paper [11], e.g.,

Theorem 8. Let n, m and u be integers such that |u| < n, and αz be defined as in (24). Then

1∫
−1

cos
(
2u sin−1

√
t
)

cos
(
2n sin−1

√
t
)
+ cosh

(
2m sinh−1

√
t
) dt√

1− t2
=

π

2n

2n∑
j=1

(−1)j−1

coth
αj

2n

{
tanh

mαj

2n

}(−1)j

· cos πju
n

.
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As well as some other integrals with cos
(
2u sin−1

√
t
)
replaced by sin

(
2u sin−1

√
t
)
/
√
t(1− t). Theorem

8 is a non-symmetric m ̸= n extention of Theorem 4 from [12]. The case u = 0 is a finite analog of Ismail
and Valent’s integral [10]. When n = 1, we obtain the following curious formula:

Corollary 9. For any positive even integer m

1∫
−1

1

1 + 2t+ cos
(
m sin−1

√
t
) dt√

1− t2
=

π√
8

(√
2 + 1

)m
+ 1(√

2 + 1
)m − 1

.

9. Finite analog of the integral in Ramanujan’s question 353

Theorem 10. Let n be a positive even integer and k a positive odd integer. Then

1∫
0

sin(kn sin−1 t)

cos(n sin−1 t) + cosh(n sinh−1 t)

dt

t
=

π

4
. (25)

Proof. Let n = 2ν, k = 2µ+ 1, where ν is a positive integer, and µ is a nonnegative integer. Similar to
that of section 3 of [12], or by other means, one can derive the partial fractions expansion

1

cos(2ν sin−1 t) + cosh(2ν sinh−1 t)

sin(2ν sin−1 t)

t
√
1− t2

=
1

ν

ν∑
j=1

i− cos π(2j−1)
2ν

2t2 cos π(2j−1)
2ν + i sin2 π(2j−1)

2ν

.

Further calculations assume that ν is even. For ν odd, calculations are similar, except that one has to
take special care of the term with j = (ν + 1)/2. Thus, define

qj =
1− sin π(2j−1)

2ν

cos π(2j−1)
2ν

e−i
π(2j−1)

2ν , j = 1, 2, . . . , ν.

Obviously,
|qj | < 1, j = 1, 2, . . . , ν.

We are going to make change of variables

t = sin(φ/2), φ ∈ (0, π),

in the integral (9). Thus 2t2 = 1− cosφ, and 4
√
1− t2 dt = (1 + cosφ) dφ. By simple algebra

1 + cosφ

(1− cosφ) cos π(2j−1)
2ν + i sin2 π(2j−1)

2ν

=
−2

(1− qj) cos
π(2j−1)

2ν

(
1 + (1 + qj)

1− q cosφ

1− 2qj cosφ+ q2j

)
.

According to well known formulas

1− q cosφ

1− 2qj cosφ+ q2j
=

∞∑
r=0

qrj cos(rφ),

sin(kνφ)

sin(νφ)
= 1 + 2

µ∑
l=1

cos(2νlφ).

Thus, the integral (9) becomes

I =
1

2ν

ν∑
j=1

cos π(2j−1)
2ν − i

(1− qj) cos
π(2j−1)

2ν

π∫
0

(
1 + (1 + qj)

∞∑
r=0

qrj cos(rφ)

)(
1 + 2

µ∑
l=1

cos(2νlφ)

)
dφ.

The integrals are easily calculated using orthogonality of cosines on (0, π):

I =
π

2ν

ν∑
j=1

f(j), f(j) =
cos π(2j−1)

2ν − i

(1− qj) cos
π(2j−1)

2ν

(
2 + qj + (1 + qj)

µ∑
l=1

q2νlj

)
.

Trivial algebra (under the transformation j → n+1−j the expressions sin π(2j−1)
2ν and q2νj do not change,

and cos π(2j−1)
2ν changes sign) shows that

f(j) + f(n+ 1− j) = 1, j = 1, 2, . . . , ν.

Thus
∑n

j=1 f(j) = ν/2, and I = π/4. □
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One can obtain a finite analog of Theorem 4.2 from [2] multiplying the integrand in (25) by t4b, b ∈ N.
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