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Abstract

A quantum evidence theory is proposed for uncertainty modeling and rea-

soning in both closed-world and open-world environments, referred to as

QET and GQET, respectively. At the level of uncertainty representation, a

series of new concepts are introduced, including (generalized) quantum ba-

sic probability amplitude function, (generalized) quantum basic probability

distribution, (generalized) quantum belief function, (generalized) quantum

plausibility function, and others. At the fusion level, several (generalized)

quantum evidential combination rules are proposed to provide a dynamic

mechanism for updating and integrating uncertain information from multiple

sources, thereby flexibly accommodating diverse application requirements.

At the decision-making stage, (generalized) quantum Pignistic transforma-

tions are developed to support decision-making processes. In this context, the

quantum models of QET and GQET are constructed based on the quantum

state representation of the (generalized) quantum basic probability ampli-

tude function, the measurement operators for basis events, the (generalized)

quantum basic probability measurements, and the (generalized) belief and
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plausibility measurements. Quantum evidence theory integrates traditional

evidence theory with quantum probability theory, providing a more flexible

and powerful framework for uncertainty modeling and reasoning in artifi-

cial intelligence. By leveraging the expressive capabilities of quantum state

spaces and probability amplitudes, it not only handles incomplete and un-

certain information inherent in classical evidence theory but also captures

interference effects and non-classical correlations among pieces of informa-

tion. This enables dynamic information fusion and robust decision-making

in complex and uncertain environments.

Keywords: Quantum evidence theory, Uncertainty representation,

Uncertainty reasoning, Information fusion, Decision-making, Closed world,

Open world

1. Introduction

Representing knowledge in uncertain environments and processing it for

decision-making is a fundamental challenge in artificial intelligence (AI) sys-

tems. Dempster-Shafer evidence theory (DSET) provides a powerful mathe-

matical framework for uncertainty reasoning by generalizing Bayesian prob-

ability theory [1, 2]. Owing to its flexibility and capability of reasoning with

evidence in the absence of prior information, DSET has been extensively

studied and further extended from various perspectives.

Specifically, Yang and Xu presented the evidential reasoning approach

for multiple attribute decision analysis [3]. Smarandache and Dezert intro-

duced DSmT by extending DSET to a higher-dimensional space for infor-

mation fusion [4]. Deng further extended DSET to the open-world scenario
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and proposed the generalized evidence theory (GET) [5], which is capable

of modeling not only partial or complete ignorance but also the uncertainty

arising from the incompleteness of the frame of discernment. Xiao extended

Dempster-Shafer evidence theory (DSET) to a high-dimensional complex

plane and proposed the Complex Evidence Theory (CET) [6, 7]. Later on,

Deng [8] extended DSET to random permutation set through considering the

order of sets.

With the advancement of quantum information processing, increasing ef-

forts have been made to bridge classical evidence theory with the quantum

framework for addressing more complex problems. Recently, Xiao proposed

the generalized quantum evidence theory, which enables uncertainty reason-

ing within both closed-world and open-world environments from a quantum-

theoretic perspective [9, 10]. In this context, the theory is referred to as

quantum evidence theory (QET) for closed-world scenario, and as general-

ized quantum evidence theory (GQET) for open-world scenario, in order to

distinguish between the two.

The paper is organized as follows. In Section 2, some related concepts

including Dempster-Shafer evidence theory, generalized evidence theory and

quantum theory are reviewed. In Section 3 and Section 4, we study and

explore quantum evidence theory for uncertainty reasoning for the open world

and closed world, respectively.

2. Preliminaries

In this section, we review some basic concepts of Dempster-Shafer evi-

dence theory, generalized evidence theory, and quantum probability theory.

3



2.1. DSET: Dempster–Shafer evidence theory

Definition 1 (Frame of discernment). Let Ω be a frame of discernment

(FOD), consisting of a set of mutually exclusive and collectively nonempty

events:

Ω = {h1, ..., hi, ..., hg, ..., hn}, (1)

where ∀i, g = {1, ..., n}, hi and hg are two arbitrary nonempty events and

hi ∩ hg = ∅.

Definition 2 (Power set of Ω). Let 2Ω be the power set of Ω, denoted as:

2Ω = {∅, {h1}, {h2}, ..., {hn}, {h1, h2}, ..., {h1, h2, ..., hi}, ...,Ω}, (2)

where ∅ is an empty set.

Definition 3 (Hypothesis or proposition). Hj is defined as a hypothesis

or proposition when Hj ⊆ Ω.

Definition 4 (Mass function in DSET). In FOD Ω, a mass function m

in DSET is defined as a mapping:

m : 2Ω → [0, 1], (3)

satisfying

m(∅) = 0 and
∑
Hj⊆Ω

m(Hj) = 1, (4)

where m is also called a basic probability assignment (BPA) or a basic belief

assignment (BBA).

Definition 5 (Focal element in DSET). Let m be a BPA. ∀Hj ⊆ Ω, if

m(Hj) > 0, Hj is called a focal element in DSET.
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Definition 6 (Belief function). Let Hj and Hk be two propositions such

that Hj, Hk ⊆ Ω. A belief function Bel for Hj, mapping from 2Ω to [0, 1], is

defined by

Bel(Hj) =
∑

Hk⊆Hj

m(Hk). (5)

Definition 7 (Plausibility function). Let Hj and Hk be two propositions

such that Hj, Hk ⊆ Ω. A plausibility function Pl for Hj, mapping from 2Ω

to [0, 1], is defined by

Pl(Hj) =
∑

Hk∩Hj ̸=∅

m(Hk) = 1−Bel(H̄j), (6)

where H̄j = Ω−Hj.

Clearly, ∀Hj ⊆ Ω, Bel(Hj) ≤ Pl(Hj) where Bel(Hj) and Pl(Hj) are the

lower and upper limit functions to support Hj, respectively.

Definition 8 (Dempster’s rule of combination). Let m1 and m2 be two

independent BPAs in FOD Ω with propositions Hk, Hh ⊆ Ω, respectively.

Dempster’s rule of combination (DRC), represented in the form m1 ⊕m2, is

defined by

m1 ⊕m2(Hj) =


1

1−K

∑
Hk∩Hh=Hj

m1(Hk)m2(Hh), Hj ̸= ∅,

0, Hj = ∅,
(7)

with

K =
∑

Hk∩Hh=∅

m1(Hk)m2(Hh), (8)

where K is the conflict coefficient between m1 and m2.

Note that Eq. (7) is feasible under the condition K < 1.
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2.2. GET: Generalized evidence theory

Definition 9 (Mass function in GET). In FOD Ω, a mass function mG

in GET is defined as a mapping:

mG : 2Ω → [0, 1], (9)

satisfying ∑
Hj∈2Ω

mG(Hj) = 1, (10)

where mG is also called a generalized BPA (GBPA).

Definition 10 (Focal element in GET). Let mG be a GBPA. ∀Hj ∈ 2Ω,

if mG(Hj) > 0 , Hj is called a focal element in GET.

Definition 11 (Generalized belief function in GET). Let Hj and Hk

be two propositions such that Hj, Hk ∈ 2Ω. A generalized belief function

GBel for Hj in GET, mapping from 2Ω to [0, 1], is defined by

GBel(Hj) =
∑

Hk⊆Hj

mG(Hk), (11)

GBel(∅) = mG(∅). (12)

Definition 12 (Generalized plausibility function in GET). Let Hj and

Hk be two propositions such that Hj, Hk ∈ 2Ω. A generalized plausibility

function GPl for Hj in GET, mapping from 2Ω to [0, 1], is defined by

GPl(Hj) =
∑

Hk∩Hj ̸=∅

mG(Hk), (13)

GPl(∅) = mG(∅). (14)
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Definition 13 (Generalized combination rule in GET). Let mG1 and

mG2 be two independent GBPAs in FOD Ω with propositions Hk, Hh ∈ 2Ω,

respectively. The generalized combination rule (GCR), represented in the

form mG1 ⊕mG2 , is defined by

mG1 ⊕mG2(Hj) =


1−mG1(∅)mG2(∅)

1−KG

∑
Hk∩Hh=Hj

mG1(Hk)mG2(Hh), Hj ̸= ∅,

mG1(∅)mG2(∅), Hj = ∅,

(15)

with

KG =
∑

Hk∩Hh=∅

mG1(Hk)mG2(Hh), (16)

where mG(∅) = 1 if and only if KG = 1.

2.3. QPT: Quantum probability theory

Definition 14 (Hilbert space). Let |ϕg⟩ be a basis vector representing a

distinguishable event. A Hilbert space is spanned by a set of orthonormal

basis vectors:

H = {|ϕ1⟩, ..., |ϕg⟩, ..., |ϕn⟩}. (17)

Definition 15 (Quantum state). A quantum state, also called a superpo-

sition state is defined as:

|Ψ⟩ =
∑
g

αg|ϕg⟩, (18)

where αg denotes the probability amplitude expressed by a complex number,

Pr(|ϕg⟩) = |αg|2 representing the probability of |ϕg⟩, and
∑

g |αg|2 = 1.

Definition 16 (Quantum interference). Quantum interference from the

union of n mutually exclusive events {|ϕ1⟩, ..., |ϕf⟩, ..., |ϕg⟩, ..., |ϕn⟩} is defined
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as:

Pr(|Ψ1⟩ ∪ ... ∪ |Ψg⟩ ∪ ... ∪ |Ψn⟩) = |α1 + ...+ αg + ...+ αn|2

=
∑
g

|αg|2 + IntPr(|Ψ1⟩ ∪ ... ∪ |Ψg⟩ ∪ ... ∪ |Ψn⟩),

(19)

which composes of classical probability
∑

g |αg|2, and quantum interference:

IntPr(|Ψ1⟩ ∪ ... ∪ |Ψg⟩ ∪ ... ∪ |Ψn⟩) = 2
n−1∑
f=1

n∑
g=f+1

|αf ||αg| cos(θf − θg), (20)

where −1 ≤ cos(θf − θg) ≤ 1.

When cos(θf − θg) = 0, the interference term becomes zero, and Eq.(19)

converges to classical probability, such that:

Pr(|Ψ1⟩ ∪ ... ∪ |Ψg⟩ ∪ ... ∪ |Ψn⟩) =
∑
g

|αg|2. (21)

3. Quantum evidence theory for an open world

Recently, Xiao extended the DSET to Hilbert space and proposed the

generalized quantum evidence theory (GQET), which provides a promising

way to handle uncertainty in a new perspective of quantum framework in

an open world [9, 10]. The main concepts and knowledge of GQET are

introduced below.

3.1. GQET: Generalized quantum evidence theory

3.1.1. Basic concepts of the generalized quantum basic probability amplitude

function

Definition 17 (Quantum frame of discernment). Let |Φ⟩ be a quantum

frame of discernment (QFOD), consisting of a set of mutually exclusive and
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collectively nonempty events, each of which is expressed as an orthonormal

basis |ϕg⟩ in a Hilbert space:

|Φ⟩ = {|ϕ1⟩, ..., |ϕg⟩, ..., |ϕn⟩}. (22)

Definition 18 (Power set of |Φ⟩). Let 2|Φ⟩ be the power set of |Φ⟩, denoted

as:

2|Φ⟩ = {|∅⟩, {|ϕ1⟩}, {|ϕ2⟩}, ..., {|ϕn⟩}, {|ϕ1ϕ2⟩}, ..., {|ϕ1ϕ2...ϕg⟩}, ..., |Φ⟩},

(23)

where |∅⟩ represents an unknown event or unknown events. Eq. (23) can be

simply represented as:

2|Φ⟩ = {|∅⟩, |ϕ1⟩, |ϕ2⟩, ..., |ϕn⟩, |ϕ12⟩, ..., |ϕ12...g⟩, ..., |ϕ12...n⟩}. (24)

Definition 19 (Quantum hypothesis or proposition). |ψj⟩ is defined as

a quantum hypothesis or proposition when |ψj⟩ ∈ 2|Φ⟩.

Definition 20 (Generalized quantum basic probability amplitude

function). A generalized quantum basic probability amplitude (GQBPA)

function QM in QFOD |Φ⟩, also referred to as a generalized quantum mass

function (GQMF), is defined as a mapping:

QM : 2|Φ⟩ → C, (25)

satisfying

QM(|ψj⟩) = φ(|ψj⟩)eiθ(|ψj⟩), |ψj⟩ ∈ 2|Φ⟩,∑
|ψj⟩∈2|Φ⟩

|QM(|ψj⟩)|2 = 1,
(26)

in which i =
√
−1; φ(|ψj⟩) ∈ [0, 1] denotes the modulus of QM(|ψj⟩); θ(|ψj⟩)

denotes a phase term of QM(|ψj⟩); QM(|ψj⟩) denote a generalized quantum
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basic probability amplitude for |ψj⟩; and |QM(|ψj⟩)|2 denotes the modulus

squared of QM(|ψj⟩).

The QM(|ψj⟩) is called a generalized quantum basic probability ampli-

tude, and can be represented as Algebraic form:

QM(|ψj⟩) = xj + yji, x2j + y2j ∈ [0, 1], (27)

or alternatively, using Polar form:

QM(|ψj⟩) = φ(|ψj⟩)
(
cos θ(|ψj⟩) + i sin θ(|ψj⟩)

)
. (28)

Its modulus is expressed as:

|QM(|ψj⟩)| = φ(|ψj⟩) =
√
x2j + y2j . (29)

Definition 21 (Quantum focal element in GQET). LetQM be a GQBPA

function. ∀|ψj⟩ ∈ 2|Φ⟩, if |QM(|ψj⟩)| or φ(|ψj⟩) > 0, |ψj⟩ is called a focal ele-

ment in GQET.

Definition 22 (Bayesian GQBPA function). When the quantum fo-

cal element of QM are singletons, such that ∀|ψj⟩ ∈ 2|Φ⟩, ||ψj⟩| > 1 ⇒

|QM(|ψj⟩)|2 = 0, QM is called a Bayesian GQBPA function.

Definition 23 (Vacuous GQBPA function). In GQET, when |QM(|Φ⟩)|2 =

1, QM is called a vacuous GQBPA function.

As |QM(|∅⟩)|2 > 0 indicates an open world, a GQBPA is effective for

uncertainty reasoning from the view of the quantum framework in an open

world. The physical meaning of |QM(|∅⟩)|2 = 0 will be discussed in the next

section.
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3.1.2. Basic concepts of the generalized quantum basic probability distribution

Definition 24 (Generalized quantum basic probability distribution).

The generalized quantum basic probability distribution (GQBPD) of QM, is

defined as:

M : 2|Φ⟩ → [0, 1], (30)

and satisfies:

M(|ψj⟩) = |QM(|ψj⟩)|2, |ψj⟩ ∈ 2|Φ⟩, (31)∑
|ψj⟩∈2|Φ⟩

M(|ψj⟩) = 1,

where |QM(|ψj⟩)|2 = QM(|ψj⟩)Q̂M(|ψj⟩) = φ2(|ψj⟩) = x2j + y2j , in which

Q̂M(|ψj⟩) is the complex conjugate of QM(|ψj⟩), e.g., Q̂M(|ψj⟩) = xj − yji.

Definition 25 (Bayesian GQBPD). When the generalized quantum basic

probabilities are only assigned to singleton states, M is called a Bayesian

GQBPD, and M(|ϕg⟩) is called a Bayesian GQBP. Mathematically, when

M(|∅⟩) = 0, a Bayesian GQBPD is just a quantum probability distribution.

Definition 26 (Vacuous GQBPD). In GQET, when M(|Φ⟩) = 1, M is

called a vacuous GQBPD.

Definition 27 (Generalized quantum basic probability). In GQET,

M(|ψj⟩) (|ψj⟩ ∈ 2|Φ⟩) is called generalized quantum basic probability (GQBP),

which represents the degree of belief or support to quantum proposition |ψj⟩.

The GQET inherits the merits of GET and has the following attractive

characteristics:

• The QM in GQET can be expressed by not only complex numbers but

also positive real numbers, while mG can only be expressed by positive
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real numbers in GET.

• In contrast to GET, ∀|ψj⟩ ∈ 2|Φ⟩, the value of |QM(|ψj⟩)|2 or φ2(|ψj⟩)

represents the degree of belief or support to |ψj⟩.

• When M = mG, the GQBPD M of GQET is in accordance with the

classical GBPA mG in GET.

3.1.3. Generalized quantum belief and plausibility functions

Taking into account application scenarios involving interference, the gen-

eralized quantum interference belief and plausibility functions in GQET are

defined as follows.

Definition 28 (Generalized quantum interference belief function in

GQET). Let QM be a GQBPA with proposition |ψj⟩ ∈ 2|Φ⟩. A generalized

quantum interference belief function GQIBel for |ψj⟩ in GQET, mapping

from 2|Φ⟩ to [0, 1], is defined by:

GQIBel(|ψj⟩) =


max
|ψp⟩

∣∣∣∣ ∑
|ψp⟩⊆|ψj⟩

QM(|ψp⟩)
∣∣∣∣2, |ψj⟩ ̸= ∅,

|QM(|ψj⟩)|2, |ψj⟩ = ∅.

(32)

According to Eq. (32), for |ψj⟩ ̸= ∅, we obtain:

|ΛA⟩ = argmax
|ψp⟩

∣∣∣∣ ∑
|ψp⟩⊆|ψj⟩

QM(|ψp⟩)
∣∣∣∣2, (33)

where |ΛA⟩ includes essential subsets, i.e., {|ψp⟩ ⊆ |ψj⟩}, to achieve the

maximal modulus squared of Eq. (32).
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Consider |ψs⟩, |ψt⟩ ⊆ |ΛA⟩ = {|ψp⟩ ⊆ |ψj⟩}, and |ψs⟩ ̸= |ψt⟩. According

to Feynman’s rule, and |QM|2 = φ2 = M, GQIBel(ψj⟩) is calculated as:

GQIBel(|ψj⟩) =
∑

|ψs⟩⊆|ΛA⟩

|QM(|ψs⟩)|2 + 2
∑

|ψs⟩⊆|ΛA⟩

∑
|ψt⟩⊆|ΛA⟩
|ψs⟩̸=|ψt⟩

|QM(|ψs⟩)||QM(|ψt⟩)| cos(θs − θt)

=
∑

|ψs⟩⊆|ΛA⟩

M(|ψs⟩) + 2
∑

|ψs⟩⊆|ΛA⟩

∑
|ψt⟩⊆|ΛA⟩
|ψs⟩̸=|ψt⟩

√
M(|ψs⟩)

√
M(|ψt⟩) cos(θs − θt),

(34)

where −1 ≤ cos(θs − θt) ≤ 1.

Definition 29 (Interference effect in GQIBel function within GQET).

Let QM be a GQBPA with proposition |ψj⟩ ∈ 2|Φ⟩. Let |ΛA⟩ = {|ψp⟩ ⊆ |ψj⟩ |

|ψj⟩ ̸= ∅} denote essential subsets to achieve the maximal modulus squared

of GQIBel, and |ψs⟩, |ψt⟩ ⊆ |ΛA⟩ with |ψs⟩ ̸= |ψt⟩. The interference effect in

the GQIBel function is given by:

IntGQIBel(|ψj⟩) = 2
∑

|ψs⟩⊆|ΛA⟩

∑
|ψt⟩⊆|ΛA⟩
|ψs⟩̸=|ψt⟩

|QM(|ψs⟩)||QM(|ψt⟩)| cos(θs − θt)

= 2
∑

|ψs⟩⊆|ΛA⟩

∑
|ψt⟩⊆|ΛA⟩
|ψs⟩̸=|ψt⟩

√
M(|ψs⟩)

√
M(|ψt⟩) cos(θs − θt), (35)

where −1 ≤ cos(θs − θt) ≤ 1.

When IntGQIBel = 0, Eq. (34) becomes:

GQIBel(|ψj⟩) =
∑

|ψs⟩⊆|ΛA⟩

|QM(|ψs⟩)|2 =
∑

|ψs⟩⊆|ΛA⟩

M(|ψs⟩).

Under the situation that IntGQIBel = 0, Eq. (32) turns into:

GQIBel(|ψj⟩) =


∑

|ψp⟩⊆ψj⟩

M(|ψp⟩), |ψj⟩ ̸= ∅,

M(|ψj⟩), |ψj⟩ = ∅.
(36)
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Therefore, when IntGQIBel = 0 and M = mG, Eq. (36) becomes:

GQIBel(|ψj⟩) =


∑

|ψp⟩⊆|ψj⟩

mG(|ψp⟩), |ψj⟩ ̸= ∅,

mG(|ψj⟩), |ψj⟩ = ∅,
(37)

which is consistent with the classical GBel in GET [5].

Definition 30 (Generalized quantum interference plausibility func-

tion in GQET). Let QM be a GQBPA with proposition |ψj⟩ ∈ 2|Φ⟩. A gen-

eralized quantum interference plausibility function GQIPl for |ψj⟩ in GQET,

mapping from 2|Φ⟩ to [0,1] is defined by:

GQIPl(|ψj⟩) =


max
|ψp⟩

∣∣∣∣ ∑
|ψp⟩∩|ψj⟩̸=∅

QM(|ψp⟩)
∣∣∣∣2, |ψj⟩ ̸= ∅,

|QM(|ψj⟩)|2, |ψj⟩ = ∅.

(38)

According to Eq. (38), for |ψj⟩ ̸= ∅, we have:

|ΛB⟩ = argmax
|ψp⟩

∣∣∣∣ ∑
|ψp⟩∩|ψj⟩̸=∅

QM(|ψp⟩)
∣∣∣∣2, (39)

where |ΛB⟩ includes essential subsets to achieve the maximal modulus squared

of Eq. (38).

Consider |ψu⟩, |ψv⟩ ⊆ |ΛB⟩ = {|ψp⟩ ∩ |ψj⟩ ̸= ∅}, and |ψu⟩ ̸= |ψv⟩. Accord-

ing to Feynman’s rule, and |QM|2 = φ2 = M, GQIPl(ψj⟩) is given by:

GQIPl(|ψj⟩) =
∑

|ψu⟩⊆|ΛB⟩

|QM(|ψu⟩)|2 + 2
∑

|ψu⟩⊆|ΛB⟩

∑
|ψv⟩⊆|ΛB⟩
|ψu⟩̸=|ψv⟩

|QM(|ψu⟩)||QM(|ψv⟩)| cos(θu − θv)

=
∑

|ψu⟩⊆|ΛB⟩

M(|ψu⟩) + 2
∑

|ψu⟩⊆|ΛB⟩

∑
|ψv⟩⊆|ΛB⟩
|ψu⟩̸=|ψt⟩

√
M(|ψu⟩)

√
M(|ψv⟩) cos(θu − θv),

(40)

where −1 ≤ cos(θu − θv) ≤ 1.
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Definition 31 (Interference effect in GQIPl function within GQET).

Let QM be a GQBPA with proposition |ψj⟩ ∈ 2|Φ⟩. Let |ΛB⟩ = {|ψp⟩ ⊆ |ψj⟩ |

|ψj⟩ ̸= ∅} denote essential subsets to achieve the maximal modulus squared

of GQIPl, and |ψu⟩, |ψv⟩ ⊆ |ΛB⟩ with |ψu⟩ ̸= |ψv⟩. The interference effect in

the GQIPl function is given by:

IntGQIPl(|ψj⟩) = 2
∑

|ψu⟩⊆|ΛB⟩

∑
|ψv⟩⊆|ΛB⟩
|ψu⟩̸=|ψv⟩

|QM(|ψu⟩)||QM(|ψv⟩)| cos(θu − θv)

= 2
∑

|ψu⟩⊆|ΛB⟩

∑
|ψv⟩⊆|ΛB⟩
|ψu⟩̸=|ψv⟩

√
M(|ψu⟩)

√
M(|ψv⟩) cos(θu − θv), (41)

where −1 ≤ cos(θu − θv) ≤ 1.

When IntGQIPl = 0, Eq. (40) becomes:

GQIPl(|ψj⟩) =
∑

|ψu⟩⊆|ΛB⟩

|QM(|ψu⟩)|2 =
∑

|ψu⟩⊆|ΛB⟩

M(|ψu⟩). (42)

Under the situation that IntGQIPl = 0, Eq. (38) turns into:

GQIPl(|ψj⟩) =


∑

|ψp⟩∩|ψj⟩̸=∅

M(|ψp⟩), |ψj⟩ ̸= ∅,

M(|ψj⟩), |ψj⟩ = ∅.
(43)

Therefore, when IntGQIPl = 0 and M = mG, Eq. (43) becomes:

GQIPl(|ψj⟩) =


∑

|ψp⟩∩|ψj⟩̸=∅

mG(|ψp⟩), |ψj⟩ ̸= ∅,

mG(|ψj⟩), |ψj⟩ = ∅,
(44)

which is consistent with the classical GPl in GET [5].

The functions of GQIBel and GQIPl in GQET have the following prop-

erties:
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• Similar to those in GET, GQIBel(|ψj⟩) and GQIPl(|ψj⟩) in GQET are

the lower and upper limit probabilities for |ψj⟩, respectively.

• When the GQBPD M is in accordance with the GBPA mG, and there

are no interferences involving in the functions of GQIBel and GQIPl,

GQIBel and GQIPl in GQET degrade into the classical GBel and GPl

in GET, respectively.

Moreover, in scenarios where interference is absent, the alternative gen-

eralized quantum belief and plausibility functions in GQET are defined as

follows.

Definition 32 (Generalized quantum belief function in GQET). Let

QM be a GQBPA with proposition |ψj⟩ ∈ 2|Φ⟩. A generalized quantum belief

function GQBel for |ψj⟩ in GQET, mapping from 2|Φ⟩ to [0, 1], is defined by:

GQBel(|ψj⟩) =


∑

|ψp⟩⊆|ψj⟩

∣∣∣∣QM(|ψp⟩)∣∣∣∣2, |ψj⟩ ̸= ∅,

|QM(|ψj⟩)|2, |ψj⟩ = ∅.

(45)

According to Eq. (31), Eq. (45) can also be represented as:

GQBel(|ψj⟩) =


∑

|ψp⟩⊆ψj⟩

M(|ψp⟩), |ψj⟩ ̸= ∅,

M(|ψj⟩), |ψj⟩ = ∅,
(46)

which is consistent with the GQIBel in Eq. (36) in the case without interfer-

ence.
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Therefore, when M = mG, Eq. (46) becomes:

GQBel(|ψj⟩) =


∑

|ψp⟩⊆|ψj⟩

mG(|ψp⟩), |ψj⟩ ̸= ∅,

mG(|ψj⟩), |ψj⟩ = ∅,
(47)

which is consistent with the classical GBel in GET [5].

Definition 33 (Generalized quantum plausibility function in GQET).

Let QM be a GQBPA with proposition |ψj⟩ ∈ 2|Φ⟩. A generalized quantum

plausibility function GQIPl for |ψj⟩ in GQET, mapping from 2|Φ⟩ to [0,1] is

defined by:

GQPl(|ψj⟩) =


∑

|ψp⟩∩|ψj⟩̸=∅

∣∣∣∣QM(|ψp⟩)∣∣∣∣2, |ψj⟩ ̸= ∅,

|QM(|ψj⟩)|2, |ψj⟩ = ∅.

(48)

According to Eq. (31), Eq. (48) can also be represented as:

GQPl(|ψj⟩) =


∑

|ψp⟩∩|ψj⟩̸=∅

M(|ψp⟩), |ψj⟩ ̸= ∅,

M(|ψj⟩), |ψj⟩ = ∅,
(49)

which is consistent with the GQIPl in Eq. (43) in the case without interfer-

ence.

Therefore, when M = mG, Eq. (49) becomes:

GQPl(|ψj⟩) =


∑

|ψp⟩∩|ψj⟩̸=∅

mG(|ψp⟩), |ψj⟩ ̸= ∅,

mG(|ψj⟩), |ψj⟩ = ∅,
(50)

which is consistent with the classical GPl in GET [5].

The functions of GQBel and GQPl in GQET have the following proper-

ties:
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• When considering scenarios in the absence of interference, GQBel(|ψj⟩)

and GQPl(|ψj⟩) in GQET are the lower and upper probabilities for |ψj⟩,

respectively.

• In GQET, when there are no interferences involving in the function of

GQIBel and GQIPl, GQIBel and GQIPl degrade into the GQBel and

GQPl, respectively.

• When GQBPD M are in accordance with GBPAmG, GQBel and GQPl

in GQET degrade into the classical GBel and GPl in GET, respectively.

3.1.4. Generalized quantum evidential combination rules

Definition 34 (Generalized quantum evidential combination rule).

Let {QM1 , . . . , QMh
, . . . , QMk

} be a set of independent GQBPAs with propo-

sition |ψj⟩ in QFOD |Φ⟩. The generalized quantum evidential combination

rule (GQECR), denoted as QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

, is defined as:

QM1⊕· · ·⊕QMh
⊕· · ·⊕QMk

(|ψj⟩) =

∣∣∣∣ ∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

QMh
(|ψp⟩)

∣∣∣∣2
∑

|ψv⟩⊆|Φ⟩

∣∣∣∣ ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

QMh
(|ψp⟩)

∣∣∣∣2 + ∣∣∣∣ ∏
1≤h≤k

QMh
(|∅⟩)

∣∣∣∣2 ,
(51)

QM1⊕· · ·⊕QMh
⊕· · ·⊕QMk

(|∅⟩) =

∣∣∣∣ ∏
1≤h≤k

QMh
(|∅⟩)

∣∣∣∣2
∑

|ψv⟩⊆|Φ⟩

∣∣∣∣ ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

QMh
(|ψp⟩)

∣∣∣∣2 + ∣∣∣∣ ∏
1≤h≤k

QMh
(|∅⟩)

∣∣∣∣2 ,
(52)
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Using Feynman’s rule, due to |QMh
|2 = φ2

h = Mh, Eqs. (51) and (52) can

be rewritten as:

QM1⊕· · ·⊕QMh
⊕· · ·⊕QMk

(|ψj⟩) =

∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

Mh(|ψp⟩) + IntGQECR

∑
|ψv⟩⊆|Φ⟩

( ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

Mh(|ψp⟩) + IntGQECR

)
+

∏
1≤h≤k

Mh(|∅⟩)
,

(53)

QM1⊕· · ·⊕QMh
⊕· · ·⊕QMk

(|∅⟩) =

∏
1≤h≤k

Mh(|∅⟩)

∑
|ψv⟩⊆|Φ⟩

( ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

Mh(|ψp⟩) + IntGQECR

)
+

∏
1≤h≤k

Mh(|∅⟩)
,

(54)

where the interference term IntGQECR is given by:

IntGQECR = 2
∑

∩|ψp⟩=|ψj⟩

∑
∩|ψq⟩=|ψj⟩
|ψp⟩̸=|ψq⟩

∏
1≤h≤k

√
Mh(|ψp⟩)

∏
1≤h≤k

√
Mh(|ψq⟩) cos(θp−θq),

(55)

with −1 ≤ cos(θp − θq) ≤ 1.

Definition 35 (Interference effect in GQECR function). Let {QM1 ,

. . . , QMh
, . . . , QMk

} be a set of independent GQBPAs with propositions |ψp⟩

and |ψq⟩ (|ψp⟩ ̸= |ψq⟩) in QFOD |Φ⟩. The interference effect in GQECR

function is defined as:

IntGQECR = 2
∑

∩|ψp⟩=|ψj⟩

∑
∩|ψq⟩=|ψj⟩
|ψp⟩̸=|ψq⟩

∏
1≤h≤k

|QMh
(|ψp⟩)|

∏
1≤h≤k

|QMh
(|ψq⟩)| cos(θp − θq)

= 2
∑

∩|ψp⟩=|ψj⟩

∑
∩|ψq⟩=|ψj⟩
|ψp⟩̸=|ψq⟩

∏
1≤h≤k

√
Mh(|ψp⟩)

∏
1≤h≤k

√
Mh(|ψq⟩) cos(θp − θq),

(56)
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where −1 ≤ cos(θp − θq) ≤ 1.

When IntGQECR = 0 and Mh = mGh , Eqs. (53) and (54) become:

QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|ψj⟩) =

∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

mGh(|ψp⟩)

∑
|ψv⟩⊆|Φ⟩

{ ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

mGh(|ψp⟩)
}
+

∏
1≤h≤k

mGh(|∅⟩)

=

∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

mGh(|ψp⟩)

1−KG

, (57)

QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|∅⟩) =

∏
1≤h≤k

mGh(|∅⟩)∑
|ψv⟩⊆|Φ⟩

{ ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

mGh(|ψp⟩)
}
+

∏
1≤h≤k

mGh(|∅⟩)

=

∏
1≤h≤k

mGh(|∅⟩)

1−KG

, (58)

in which

KG =
∑

∩|ψp=∅
∪|ψp ̸=∅

∏
1≤h≤k

mGh(|ψp⟩). (59)

From Eqs. (57)-(59), it is learned that in the case of Mh = mGh and

IntGQECR = 0, GQECR degrades into GCR of GET [5].

Definition 36 (Generalized quantum evidential conflict coefficient).

The generalized quantum evidential conflict coefficient (GQECC) among

GQBPAs {QM1 , · · · ,QMh
, · · · ,QMk

}, denoted as KQ, is defined by:

KQ =

∣∣∣∣∣∣∣∣
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∏
1≤h≤k

QMh
(|ψp⟩)

∣∣∣∣∣∣∣∣
2

. (60)
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According to Feynman’s rule, since |QMh
|2 = φ2

h = Mh, Eq. (60) can also

be expressed as:

KQ =
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∏
1≤h≤k

|QMh
(|ψp⟩)|2

+ 2
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∑
∩|ψq⟩=∅
∪|ψq⟩̸=∅

∏
1≤h≤k

|QMh
(|ψp⟩)|

∏
1≤h≤k

|QMh
(|ψq⟩)| cos(θp − θq)

=
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∏
1≤h≤k

Mh(|ψp⟩)

+ 2
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∑
∩|ψq⟩=∅
∪|ψq⟩̸=∅

∏
1≤h≤k

√
Mh(|ψp⟩)

∏
1≤h≤k

√
Mh(|ψq⟩) cos(θp − θq),

(61)

in which −1 ≤ cos(θp − θq) ≤ 1.

Definition 37 (Interference effect in GQECC function). The interfer-

ence effect involved in GQECC function among GQBPAs {QM1 , · · · ,QMh
,

· · · ,QMk
}, denoted as IntKQ , is defined by:

IntKQ = 2
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∑
∩|ψq⟩=∅
∪|ψq⟩̸=∅

∏
1≤h≤k

|QMh
(|ψp⟩)|

∏
1≤h≤k

|QMh
(|ψq⟩)| cos(θp − θq)

= 2
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∑
∩|ψq⟩=∅
∪|ψq⟩̸=∅

∏
1≤h≤k

√
Mh(|ψp⟩)

∏
1≤h≤k

√
Mh(|ψq⟩) cos(θp − θq),

(62)

in which −1 ≤ cos(θp − θq) ≤ 1.

When IntKQ = 0 and Mh = mGh , Eq. (61) becomes:

KQ =
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∏
1≤h≤k

mGh(|ψp⟩), (63)
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which is consistent with the conflict coefficient KG in GET [5].

GQECR has the following characteristics:

• When the GQBPDs of GQET are in accordance with the GBPAs of

GET, and there are no interferences involving in GQECR, GQECR

reduces to the GCR in GET.

• When the GQBPDs of GQET are in accordance with the GBPAs of

GET, and there are no interferences involving in GQECR, GQECC KQ

reduces to the conflict coefficient KG in GET.

• When the GQBPDs of GQET are in accordance with the BPAs of

DSET, and there are no interferences involving in GQECR, GQECR

reduces to the DRC in DSET.

• When the GQBPDs of GQET are in accordance with the BPAs of

DSET, and there are no interferences involving in GQECR, GQECC

KQ reduces to the conflict coefficient K in DSET.

• If the sum of the GQBPDs of all nonempty sets is zero or GQECC is

equal to 1, the whole belief is reallocated to |∅⟩.

To support a wide range of applications, an alternative generalized pro-

gressive quantum evidential combination rule is proposed to enable the con-

tinuous, progressive, and incremental fusion of GQBPAs.

Definition 38 (Generalized progressive quantum evidential com-

bination rule). Let {QM1 , . . . , QMh
, . . . , QMk

} be a set of independent

QBPAs with proposition |ψj⟩ in QFOD |Φ⟩. The generalized progressive
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quantum evidential combination rule (GPQECR), denoted as QM1 ⊕ · · · ⊕

QMh
⊕ · · · ⊕QMk

, is defined as:

QM1⊕· · ·⊕QMh
⊕· · ·⊕QMk

(|ψj⟩) =

∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

QMh
(|ψp⟩)∑

|ψv⟩⊆|Φ⟩

∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

QMh
(|ψp⟩) +

∏
1≤h≤k

QMh
(|∅⟩)

,

(64)

QM1⊕· · ·⊕QMh
⊕· · ·⊕QMk

(|∅⟩) =

∏
1≤h≤k

QMh
(|∅⟩)∑

|ψv⟩⊆|Φ⟩

∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

QMh
(|ψp⟩) +

∏
1≤h≤k

QMh
(|∅⟩)

.

(65)

Definition 39 (Generalized progressive quantum evidential conflict

coefficient). The generalized progressive quantum evidential conflict coef-

ficient (GPQECC) among QBPAs {QM1 , · · · ,QMh
, · · · ,QMk

}, denoted as

KQ, is defined by:

KQ =
∑

∩|ψp⟩=∅
∪|ψp⟩̸=∅

∏
1≤h≤k

QMh
(|ψp⟩). (66)

GPQECR has the following characteristics:

• When the GQBPDs of GQET are in accordance with the GBPAs of

GET, GPQECR reduces to the GCR in GET.

• When the GQBPDs of GQET are in accordance with the GBPAs of

GET, GPQECC KQ reduces to the conflict coefficient KG in GET.

• When the GQBPDs of GQET are in accordance with the BPAs of

DSET, GPQECR reduces to the DRC in DSET.

23



• When the GQBPDs of GQET are in accordance with the BPAs of

DSET, GPQECC KQ reduces to the conflict coefficient K in DSET.

• If the sum of the GQBPDs of all nonempty sets is zero or GPQECC is

equal to 1, the whole belief is reallocated to |∅⟩.

3.1.5. Generalized quantum Pignistic transformations

When considering the interference during the process of decision-making,

a generalized quantum interference Pignistic transformation is defined to

transform a GQBPA into a generalized quantum interference Pignistic prob-

ability function.

Definition 40 (Generalized quantum interference Pignistic trans-

formation). Let QM be a GQBPA function on QFOD |Φ⟩ and |ψj⟩ be a

quantum proposition with |ψj⟩ ∈ |Φ⟩. Its generalized quantum interference

Pignistic probability function, denoted as BetGQIP, is defined as:

BetGQIP(|ψj⟩) =

∣∣∣∣∣∣
∑

|ψp⟩⊆|Φ⟩

QM(|ψp⟩)
1−QM(|∅⟩)

· ||ψp⟩ ∩ |ψj⟩||
||ψp⟩||

∣∣∣∣∣∣
2

, (67)

where ||ψ⟩| represents the cardinality of |ψ⟩. The transformation between QM

and BetGQIP is called a generalized quantum interference Pignistic trans-

formation.

∀|ϕg⟩ ∈ |Φ⟩, Eq. (67) can be expressed as:

BetQIP(|ϕg⟩) =

∣∣∣∣∣∣
∑

|ϕp⟩⊆|Φ⟩

QM(|ψp⟩)
1−QM(|∅⟩)

· ||ψp⟩ ∩ |ϕg⟩||
||ψp⟩||

∣∣∣∣∣∣
2

. (68)

When considering scenarios in the absence of interference, a generalized

quantum Pignistic transformation is defined to transform a GQBPA into a

generalized quantum Pignistic probability function.
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Definition 41 (Generalized quantum Pignistic transformation). Let

QM be a GQBPA on QFOD |Φ⟩ and |ψj⟩ be a quantum proposition with

|ψj⟩ ∈ |Φ⟩. Its generalized quantum Pignistic probability function, denoted

as BetGQP, is defined as:

BetGQP(|ψj⟩) =
∑

|ψp⟩⊆|Φ⟩

|QM(|ψp⟩)|2

1− |QM(|∅⟩)|2
· ||ψp⟩ ∩ |ψj⟩||

||ψp⟩||
, (69)

where ||ψ⟩| represents the cardinality of |ψ⟩. The transformation between

QM and BetGQP is called a generalized quantum Pignistic transformation.

Since |QM|2 = φ2 = M, Eq. (69) can be expressed as:

BetGQP(|ψj⟩) =
∑

|ψp⟩⊆|Φ⟩

M(|ψp⟩)
1−M(|∅⟩)

· ||ψp⟩ ∩ |ψj⟩||
||ψp⟩||

. (70)

∀|ϕg⟩ ∈ |Φ⟩, Eq. (69) and Eq. (70) can be expressed as:

BetGQP(|ϕg⟩) =
∑

|ψp⟩⊆|Φ⟩

|QM(|ψp⟩)|2

1− |QM(|∅⟩)|2
· ||ψp⟩ ∩ |ϕg⟩||

||ψp⟩||
, (71)

BetGQP(|ϕg⟩) =
∑

|ψp⟩⊆|Φ⟩

M(|ψp⟩)
1−M(|∅⟩)

· ||ψp⟩ ∩ |ϕg⟩||
||ψp⟩||

. (72)

3.2. A quantum model of GQET

3.2.1. Quantum state representation of a GQBPA

Definition 42 (Basis event in GQET). Let |Φ⟩ be a QFOD consisting of a

set of mutually exclusive and collectively nonempty events {|ϕ1⟩, ..., |ϕg⟩, ..., |ϕn⟩}.

Let |∅⟩ be an unknown event or unknown events, except for the events of |Φ⟩.

A set of basis events in GQET is defined as:

E = {|∅⟩, |ϕ1⟩, . . . , |ϕg⟩, . . . , |ϕn⟩}, (73)
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where |ew⟩ ∈ E is called a basis event (0 ≤ w ≤ n).

When w = 0, |eo⟩ denotes an unknown event of |∅⟩; when w = g (1 ≤

g ≤ n), |eg⟩ denotes an event in QFOD.

Definition 43 (Vector representation of a basis event in GQET).

Let |ew⟩ be a basis event, where |ew⟩ ∈ E = {|∅⟩, |ϕ1⟩, . . . , |ϕg⟩, . . . , |ϕn⟩},

0 ≤ w ≤ n. A vector representation of a basis event is defined as:

|ejw⟩ = [η0, η1, . . . , ηl, . . . , ηn]
T , ηl =

1, l = w,

0, l ̸= w.

(74)

where any two basis events |ejw⟩ and |ejs⟩ (0 ≤ s, w ≤ n; s ̸= w) are orthonor-

mal, namely, ⟨ejw|ejw⟩ = 1, and ⟨ejw|ejs⟩ = 0.

Definition 44 (Quantum state representation of a quantum proposi-

tion in GQET). Let |ψj⟩ (|ψj⟩ ∈ 2|Φ⟩) be a proposition in GQBPA function

QM with orthonormal basis event |ejw⟩ ∈ |ψj⟩ (0 ≤ w ≤ n). A pure quantum

state of the quantum proposition |ψj⟩ is defined as:

|ψj⟩ =
∑
w

λjw|ejw⟩, |ψj⟩ ∈ 2|Φ⟩, (75)

where λjw = ajw + bjwi is a complex number satisfying
∑

w |λjw|2 = 1.

In Eq. (75), quantum superposition is considered in the quantum state

representation of a quantum proposition. In this context, a corresponding

density operator of a quantum proposition is represented as follows.

Definition 45 (Density operator of a quantum proposition in GQET).

Let |ψj⟩ be a pure quantum state of its quantum proposition on QFOD |Φ⟩

(|ψj⟩ ∈ 2|Φ⟩). A density operator of the quantum proposition |ψj⟩ is defined

as:

ρj = |ψj⟩⟨ψj|. (76)
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On this basis, a GQBPA function is expressed as an ensemble of pure

states as follows.

Definition 46 (Density operator of a GQBPA function). Let QM

be a GQBPA function with QM(|ψj⟩) on QFOD |Φ⟩ (|ψj⟩ ∈ 2|Φ⟩), and

{QM(|ψj⟩), |ψj⟩} be an ensemble of pure quantum states. The density oper-

ator of a GQBPA function is defined as:

ρQM =
∑
j

QM(|ψj⟩)|ψj⟩⟨ψj| =
∑
j

QM(|ψj⟩)ρj, (77)

where a GQBPA function QM is expressed as a quantum system of mixed

quantum states.

Definition 47 (Normalized density operator of a GQBPA function).

Let ρQM be a density operator of a GQBPA function QM with quantum

proposition QM(|ψj⟩) on QFOD |Φ⟩ (|ψj⟩ ∈ 2|Φ⟩). The normalized density

operator of a GQBPA function is defined as:

ρ̂QM =
∑
j

|QM(|ψj⟩)|2ρj =
∑
j

|QM(|ψj⟩)|2|ψj⟩⟨ψj|, (78)

where | · |2 is the modulus squared function.

From Eq. (78), it is obvious that

ρ̂QM > 0,

and

tr(ρ̂QM) =
∑
j

|QM(|ψj⟩)|2 tr(|ψj⟩⟨ψj|) =
∑
j

|QM(|ψj⟩)|2 = 1.

Therefore, ρ̂QM is a positive and normalized density operator.
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Let Êν be the eigenvalues of ρ̂QM . It follows that:

Êν ≥ 0,
∑
ν

Êν = 1.

Since |QM|2 = φ2 = M, a normalized density operator of a GQBPA

function can be expressed as:

ρ̂QM =
∑
j

M(|ψj⟩)|ψj⟩⟨ψj| =
∑
j

M(|ψj⟩)ρj.

3.2.2. Measurement operator for basis event in GQET

Definition 48 (Measurement operator for basis event in GQET). Let

QM be a GQBPA function on QFOD |Φ⟩. A measurement operator to mea-

sure the belief value of basis event |ew⟩ ∈ E = {|∅⟩, |ϕ1⟩, . . . , |ϕg⟩, . . . , |ϕn⟩}

is defined as:

Mew = |ew⟩⟨ew|, 0 ≤ w ≤ n, (79)

satisfying
n∑

w=0

M†
ewMew = I, (80)

where M†
ew is the Hermitian conjugate or adjoint of the Mew matrix, e.g.,

M†
ew =

(
MT

ew

)∗
; and I denotes the identity matrix.

3.2.3. Basis event measurement function in GQET

Definition 49 (Basis event measurement function in GQET). Let

ρ̂QM be a normalized density operator of GQBPA function QM on QFOD

|Φ⟩ with basis event |ew⟩ ∈ E = {|∅⟩, |ϕ1⟩, . . ., |ϕg⟩, . . ., |ϕn⟩}, and
{
Mew =

|ew⟩⟨ew|, 0 ≤ w ≤ n
}
be a set of measurement operators. The basis event

measurement function in GQET is defined as:

P(QM(|ew⟩)) = Tr
(
M†

ewMew ρ̂QM
)
, 0 ≤ w ≤ n, (81)
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where M†
ew is the Hermitian conjugate or adjoint of the Mew matrix, e.g.,

M†
ew =

(
MT

ew

)∗
; and Tr is a function of the trace of a matrix.

3.2.4. GQBP measurement function

Definition 50 (GQBP measurement function). Let ρ̂QM be a normal-

ized density operator of GQBPA function QM on QFOD |Φ⟩ with quantum

proposition |ψj⟩ ∈ 2|Φ⟩, and
{
Mew = |ew⟩⟨ew|, 0 ≤ w ≤ n

}
be a set of

measurement operators. The GQBP measurement function is defined as:

M(|ψj⟩) =
∑

|ew⟩∈|ψj⟩

P(QM(|ew⟩)), |ψj⟩ ∈ 2|Φ⟩, (82)

satisfying

P(QM(|ew⟩)) = Tr
(
M†

ewMew ρ̂QM
)
,

where M†
ew is the Hermitian conjugate or adjoint of the Mew matrix, e.g.,

M†
ew =

(
MT

ew

)∗
; and Tr is a function of the trace of a matrix.

3.2.5. Belief and plausibility measurement functions in GQET

Definition 51 (Belief and plausibility measurement functions in

GQET). Let ρ̂QM be a normalized density operator of GQBPA function

QM on QFOD |Φ⟩ with quantum proposition |ψj⟩ ∈ 2|Φ⟩, and
{
Mew =

|ew⟩⟨ew|, 0 ≤ w ≤ n
}

be a set of measurement operators. The belief and

plausibility measurement functions are defined as:
GQBel(|ψj⟩) = min

{ ∑
|ew⟩∈|ψj⟩

P(QM(|ew⟩))

}
, |ψj⟩ ∈ 2|Φ⟩,

GQPl(|ψj⟩) = max

{ ∑
|ew⟩∈|ψj⟩

P(QM(|ew⟩))

}
, |ψj⟩ ∈ 2|Φ⟩,

(83)
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satisfying

P(QM(|ew⟩)) = Tr
(
M†

ewMew ρ̂QM
)
,

where M†
ew is the Hermitian conjugate or adjoint of the Mew matrix, e.g.,

M†
ew =

(
MT

ew

)∗
; and Tr is a function of the trace of a matrix.

According to Eqs. (82) and (83), we have:

GQBel(|ψj⟩) ≤ M(|ψj⟩) ≤ GQPl(|ψj⟩). (84)

The belief and plausibility measurement functions represent the lower and

upper probabilities for |ψj⟩.

4. Quantum evidence theory for a closed world

The previous section introduces the GQET in an open world. When

|QM(|∅⟩)| = 0, the quantum evidence theory (QET) is defined in a closed

world. The main concepts and knowledge of QET are proposed in this sec-

tion.

4.1. QET: Quantum evidence theory

4.1.1. Basic concepts of the quantum basic probability amplitude function

Definition 52 (Quantum basic probability amplitude function). A

quantum basic probability amplitude (QBPA) function QM in QFOD |Φ⟩,

also referred to as a generalized quantum mass function (QMF), is defined

as a mapping:

QM : 2|Φ⟩ → C, (85)
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satisfying

QM(|∅⟩) = 0,

QM(|ψj⟩) = φ(|ψj⟩)eiθ(|ψj⟩), |ψj⟩ ⊆ |Φ⟩,∑
|ψj⟩⊆|Φ⟩

|QM(|ψj⟩)|2 = 1, (86)

in which i =
√
−1; φ(|ψj⟩) ∈ [0, 1] represents the modulus of QM(|ψj⟩);

θ(|ψj⟩) denotes a phase term of QM(|ψj⟩); QM(|ψj⟩) denote a quantum basic

probability amplitude for |ψj⟩; and |QM(|ψj⟩)|2 denotes the modulus squared

of QM(|ψj⟩).

The QM(|ψj⟩) is called a quantum basic probability amplitude, and can

be represented as Algebraic form:

QM(|ψj⟩) = xj + yji, x2j + y2j ∈ [0, 1],

or alternatively, using Polar form:

QM(|ψj⟩) = φ(|ψj⟩)
(
cos θ(|ψj⟩) + i sin θ(|ψj⟩)

)
.

Its amplitude is expressed as:

|QM(|ψj⟩)| = φ(|ψj⟩) =
√
x2j + y2j .

Definition 53 (Quantum focal element in QET). Let QM be a QBPA

function. ∀|ψj⟩ ⊆ |Φ⟩, if |QM(|ψj⟩)| or φ(|ψj⟩) > 0, |ψj⟩ is called a focal

element in QET.

Definition 54 (Bayesian QBPA function). When the quantum focal el-

ement of QBPA function QM are singletons, such that ∀|ψj⟩ ⊆ |Φ⟩, ||ψj⟩| >

1 ⇒ |QM(|ψj⟩)|2 = 0, QM is called a Bayesian QBPA function.
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Definition 55 (Vacuous QBPA function). In QET, when |QM(|Φ⟩)|2 =

1, QM is called a vacuous QBPA function.

As |QM(|∅⟩)|2 = 0 indicates a closed world, a QBPA function is effective

for uncertainty reasoning from the view of the quantum framework in a closed

world.

4.1.2. Basic concepts of the quantum basic probability distribution

Definition 56 (Quantum basic probability distribution). The quan-

tum basic probability distribution (QBPD) of QM, is defined as:

M : 2|Φ⟩ → [0, 1], (87)

and satisfies:

M(|∅⟩) = 0,

M(|ψj⟩) = |QM(|ψj⟩)|2, |ψj⟩ ⊆ |Φ⟩,∑
|ψj⟩⊆|Φ⟩

M(|ψj⟩) = 1,

where |QM(|ψj⟩)|2 = QM(|ψj⟩)Q̂M(|ψj⟩) = φ2(|ψj⟩) = x2j + y2j , in which

Q̂M(|ψj⟩) is the complex conjugate of QM(|ψj⟩), e.g., Q̂M(|ψj⟩) = xj − yji.

Definition 57 (Bayesian QBPD). When the quantum basic probabilities

are only assigned to singleton states, M is called a Bayesian QBPD, and

M(|ϕg⟩) is called a Bayesian QBP. Mathematically, a Bayesian QBPD is just

a quantum probability distribution.

Definition 58 (Vacuous QBPD). In QET, when M(|Φ⟩) = 1, M is called

a vacuous QBPD.
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Definition 59 (Quantum basic probability). In QET, M(|ψj⟩) (|ψj⟩ ⊆

|Φ⟩) is called quantum basic probability (QBP), which represents the degree

of belief or support to |ψj⟩.

The QET inherits the merits of DSET and has the following attractive

characteristics:

• The QBPA function QM in QET can be expressed by not only complex

numbers but also positive real numbers, while the BPA m can only be

expressed by positive real numbers in DSET.

• In contrast to DSET, ∀|ψj⟩ ⊆ |Φ⟩, the value of |QM(|ψj⟩)|2 or φ2(|ψj⟩)

represents the degree of belief or support to |ψj⟩.

• When M = m, the QBPD M of QET is in accordance with the classical

BPA m in DSET.

Comparison of QET with GQET, the following interpretations and prop-

erties can be obtained:

• It is unnecessary for |QM(|∅⟩)| = 0 in GQET, such that |QM(|∅⟩)| ≥ 0,

while |QM(|∅⟩)| must be equal to 0 in QET.

• |∅⟩ can be a focal element as |QM(|∅⟩)| > 0 in GQET, but |∅⟩ cannot

be a focal element in QET.

• When |QM(|∅⟩)| > 0, it is utilized to model an open world in GQET,

indicating that |∅⟩ is a focal element or the union of focal elements

not within the QFOD, rather than the empty set of QBPA function in

QET.
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• When |QM(|∅⟩)| = 0, the GQBPA function QM in GQET degrades into

the QBPA function in QET.

4.1.3. Quantum belief and plausibility functions

Definition 60 (Quantum interference belief function in QET). Let

QM be a QBPA function with proposition |ψj⟩ ⊆ |Φ⟩. A quantum interfer-

ence belief function QIBel for |ψj⟩ in QET, mapping from 2|Φ⟩ to [0, 1], is

defined by:

QIBel(|ψj⟩) = max
|ψp⟩

∣∣∣∣ ∑
|ψp⟩⊆|ψj⟩

QM(|ψp⟩)
∣∣∣∣2, |ψj⟩ ⊆ |Φ⟩. (88)

According to Eq. (88), for |ψj⟩ ⊆ |Φ⟩, we obtain:

|ΛA⟩ = argmax
|ψp⟩

∣∣∣∣ ∑
|ψp⟩⊆|ψj⟩

QM(|ψp⟩)
∣∣∣∣2,

where |ΛA⟩ includes essential subsets, i.e., {|ψp⟩ ⊆ |ψj⟩}, to achieve the

maximal modulus squared of Eq. (88).

Consider |ψs⟩, |ψt⟩ ⊆ |ΛA⟩ = {|ψp⟩ ⊆ |ψj⟩}, and |ψs⟩ ̸= |ψt⟩. According

to Feynman’s rule, and |QM|2 = φ2 = M, QIBel(ψj⟩) is calculated as:

QIBel(|ψj⟩) =
∑

|ψs⟩⊆|ΛA⟩

|QM(|ψs⟩)|2 + 2
∑

|ψs⟩⊆|ΛA⟩

∑
|ψt⟩⊆|ΛA⟩
|ψs⟩̸=|ψt⟩

|QM(|ψs⟩)||QM(|ψt⟩)| cos(θs − θt)

=
∑

|ψs⟩⊆|ΛA⟩

M(|ψs⟩) + 2
∑

|ψs⟩⊆|ΛA⟩

∑
|ψt⟩⊆|ΛA⟩
|ψs⟩̸=|ψt⟩

√
M(|ψs⟩)

√
M(|ψt⟩) cos(θs − θt),

(89)

where −1 ≤ cos(θs − θt) ≤ 1.

Definition 61 (Interference effect in the QIBel function within QET).

Let QM be a QBPA function with proposition |ψj⟩ ⊆ |Φ⟩. Let |ΛA⟩ = {|ψp⟩ ⊆
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|ψj⟩ | |ψj⟩ ⊆ |Φ⟩} denote essential subsets to achieve the maximal modulus

squared of QIBel, and |ψs⟩, |ψt⟩ ⊆ |ΛA⟩ with |ψs⟩ ̸= |ψt⟩. The interference

effect in the QIBel function is defined by:

IntQIBel(|ψj⟩) = 2
∑

|ψs⟩⊆|ΛA⟩

∑
|ψt⟩⊆|ΛA⟩
|ψs⟩̸=|ψt⟩

|QM(|ψs⟩)||QM(|ψt⟩)| cos(θs − θt)

= 2
∑

|ψs⟩⊆|ΛA⟩

∑
|ψt⟩⊆|ΛA⟩
|ψs⟩̸=|ψt⟩

√
M(|ψs⟩)

√
M(|ψt⟩) cos(θs − θt), (90)

where −1 ≤ cos(θs − θt) ≤ 1.

When IntQIBel = 0, Eq. (89) becomes:

QIBel(|ψj⟩) =
∑

|ψs⟩⊆|ΛA⟩

|QM(|ψs⟩)|2 =
∑

|ψs⟩⊆|ΛA⟩

M(|ψs⟩). (91)

Therefore, when IntQIBel = 0 and M = m, Eq. (88) becomes:

QIBel(|ψj⟩) =
∑

|ψp⟩⊆|ψj⟩

m(|ψp⟩), |ψj⟩ ⊆ |Φ⟩.

which is consistent with the classical Bel in DSET.

Definition 62 (Quantum interference plausibility function in QET).

Let QM be a QBPA function with proposition |ψj⟩ ⊆ |Φ⟩. A quantum

interference plausibility function QIPl in QET, mapping from 2|Φ⟩ to [0, 1],

is defined by:

QIPl(|ψj⟩) = max
|ψp⟩

∣∣∣∣ ∑
|ψp⟩∩|ψj⟩̸=∅

QM(|ψp⟩)
∣∣∣∣2, |ψj⟩ ⊆ |Φ⟩. (92)

According to Eq. (92), for |ψj⟩ ⊆ |Φ⟩, we have:

|ΛB⟩ = argmax
|ψp⟩

∣∣∣∣ ∑
|ψp⟩∩|ψj⟩̸=∅

QM(|ψp⟩)
∣∣∣∣2, (93)

35



where |ΛB⟩ includes essential subsets to achieve the maximal modulus squared

of Eq. (92).

Consider |ψu⟩, |ψv⟩ ⊆ |ΛB⟩ = {|ψp⟩ ∩ |ψj⟩ ̸= ∅}, and |ψu⟩ ̸= |ψv⟩. Accord-

ing to Feynman’s rule, and |QM|2 = φ2 = M, QIPl(ψj⟩) is given by:

QIPl(|ψj⟩) =
∑

|ψu⟩⊆|ΛB⟩

|QM(|ψu⟩)|2 + 2
∑

|ψu⟩⊆|ΛB⟩

∑
|ψv⟩⊆|ΛB⟩
|ψu⟩̸=|ψv⟩

|QM(|ψu⟩)||QM(|ψv⟩)| cos(θu − θv)

=
∑

|ψu⟩⊆|ΛB⟩

M(|ψu⟩) + 2
∑

|ψu⟩⊆|ΛB⟩

∑
|ψv⟩⊆|ΛB⟩
|ψu⟩̸=|ψt⟩

√
M(|ψu⟩)

√
M(|ψv⟩) cos(θu − θv),

(94)

where −1 ≤ cos(θu − θv) ≤ 1.

Definition 63 (Interference effect in QIPl function within QET). Let

QM be a QBPA function with proposition |ψj⟩ ⊆ |Φ⟩. Let |ΛB⟩ = {|ψp⟩ ⊆

|ψj⟩ | |ψj⟩ ⊆ |Φ⟩} denote essential subsets to achieve the maximal modulus

squared of QIPl, and |ψu⟩, |ψv⟩ ⊆ |ΛB⟩ with |ψu⟩ ̸= |ψv⟩. The interference

effect in the QIPl function is defined by:

IntQIPl(|ψj⟩) = 2
∑

|ψu⟩⊆|ΛB⟩

∑
|ψv⟩⊆|ΛB⟩
|ψu⟩̸=|ψv⟩

|QM(|ψu⟩)||QM(|ψv⟩)| cos(θu − θv)

= 2
∑

|ψu⟩⊆|ΛB⟩

∑
|ψv⟩⊆|ΛB⟩
|ψu⟩̸=|ψv⟩

√
M(|ψu⟩)

√
M(|ψv⟩) cos(θu − θv), (95)

where −1 ≤ cos(θu − θv) ≤ 1.

When IntQIPl = 0, Eq. (94) becomes:

QIPl(|ψj⟩) =
∑

|ψu⟩⊆|ΛB⟩

|QM(|ψu⟩)|2 =
∑

|ψu⟩⊆|ΛB⟩

M(|ψu⟩). (96)
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Therefore, when IntQIPl = 0 and M = m, Eq. (96) becomes:

QIPl(|ψj⟩) =
∑

|ψp⟩∩|ψj⟩̸=∅

m(|ψp⟩), |ψj⟩ ⊆ |Φ⟩, (97)

which is consistent with the classical Pl in DSET.

The functions of QIBel and QIPl in QET have the following properties:

• Similar to those in DSET, QIBel(|ψj⟩) and QIPl(|ψj⟩) in QET are the

lower and upper probabilities for |ψj⟩, respectively.

• When the QBPD M of QET is in accordance with the BPAm of DSET,

and there are no interferences involving in the functions of QIBel and

QIPl, QIBel and QIPl in QET degrade into the classical Bel and Pl in

DSET, respectively.

Comparison of QIBel and QIPl functions in QET with GQIBel and GQIPl

functions in GQET, the following properties can be obtained:

• It is unnecessary for GQIBel(|∅⟩) = 0 and GQIPl(|∅⟩) = 0 in GQET,

such that GQIBel(|∅⟩) ≥ 0 and GQIPl(|∅⟩) ≥ 0, while QIBel(|∅⟩) and

QIPl(|∅⟩) must be equal to 0 in QET.

• When |QM(|∅⟩)| = 0, GQIBel and GQIPl in GQET degrade into the

QIBel and QIPl in QET, respectively.

In addition, considering the application scenarios in the absence of inter-

ference, the alternative quantum belief and plausibility functions in QET are

defined as follows.
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Definition 64 (Quantum belief function in QET). Let QM be a QBPA

function with proposition |ψj⟩ ⊆ |Φ⟩. A quantum belief function QBel in

QET, mapping from 2|Φ⟩ to [0, 1], is defined by:

QBel(|ψj⟩) =
∑

|ψp⟩⊆|ψj⟩

∣∣∣∣QM(|ψp⟩)∣∣∣∣2, |ψj⟩ ⊆ |Φ⟩. (98)

According to Eq. (31), Eq. (98) can also be represented as:

QBel(|ψj⟩) =
∑

|ψp⟩⊆|ψj⟩

M(|ψp⟩), |ψj⟩ ⊆ |Φ⟩, (99)

which is consistent with the QIBel in Eq. (91) in the case without interference.

Therefore, when M = m, Eq. (99) becomes:

QBel(|ψj⟩) =
∑

|ψp⟩⊆|ψj⟩

m(|ψp⟩), |ψj⟩ ⊆ |Φ⟩. (100)

which is consistent with the classical Bel in DSET.

Definition 65 (Quantum plausibility function in QET). Let QM be a

QBPA function with proposition |ψj⟩ ⊆ |Φ⟩. A generalized quantum plausi-

bility function QPl in QET, mapping from 2|Φ⟩ to [0, 1], is defined by:

QPl(|ψj⟩) =
∑

|ψp⟩∩|ψj⟩̸=∅

∣∣∣∣QM(|ψp⟩)∣∣∣∣2, |ψj⟩ ⊆ |Φ⟩. (101)

According to Eq. (31), Eq. (101) can also be represented as:

QPl(|ψj⟩) =
∑

|ψp⟩∩|ψj⟩̸=∅

M(|ψp⟩), |ψj⟩ ⊆ |Φ⟩, (102)

which is consistent with the QIPl in Eq. (96) in the case without interference.

Therefore, when M = m, Eq. (102) becomes:

QPl(|ψj⟩) =
∑

|ψp⟩∩|ψj⟩̸=∅

m(|ψp⟩), |ψj⟩ ⊆ |Φ⟩. (103)
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which is consistent with the classical Pl in DSET.

The functions of QBel and QPl in QET have the following properties:

• When considering scenarios in the absence of interference, QBel(|ψj⟩)

and QPl(|ψj⟩) in QET are the lower and upper probabilities for |ψj⟩,

respectively.

• In QET, when ther are no interferences involving in the function of

QIBel and QIPl, QIBel and QIPl degrade into the QBel and QPl, re-

spectively.

• When the QBPD M of QET is in accordance with the BPAm of DSET,

QBel and QPl in QET degrade into the classical Bel and Pl in DSET,

respectively.

Comparison of QIBel and QIPl functions in QET with GQIBel and GQIPl

functions in GQET, the following properties can be obtained:

• It is unnecessary for GQBel(|∅⟩) = 0 and GQPl(|∅⟩) = 0 in GQET,

such that GQBel(|∅⟩) ≥ 0 and GQPl(|∅⟩) ≥ 0, while QBel(|∅⟩) and

QPl(|∅⟩) must be equal to 0 in QET.

• When |QM(|∅⟩)| = 0, GQBel and GQPl in GQET degrade into the

QBel and QPl in QET, respectively.

4.1.4. Quantum evidential combination rules

Definition 66 (Quantum evidential combination rule). Let {QM1 , . . . ,

QMh
, . . . , QMk

} be a set of independent QBPAs with proposition |ψj⟩ in
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QFOD |Φ⟩. The quantum evidential combination rule (QECR), denoted as

QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

, is defined as:

QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|ψj⟩) =

∣∣∣∣ ∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

QMh
(|ψp⟩)

∣∣∣∣2
∑

|ψv⟩⊆|Φ⟩

∣∣∣∣ ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

QMh
(|ψp⟩)

∣∣∣∣2 ,
(104)

QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|∅⟩) = 0. (105)

Using Feynman’s rule, due to |QMh
|2 = φ2

h = Mh, Eq. (104) can be

rewritten as:

QM1⊕· · ·⊕QMh
⊕· · ·⊕QMk

(|ψj⟩) =

∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

Mh(|ψp⟩) + IntQECR

∑
|ψv⟩⊆|Φ⟩

( ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

Mh(|ψp⟩) + IntQECR

) ,
(106)

where the interference term IntQECR is given by:

IntQECR = 2
∑

∩|ψp⟩=|ψj⟩

∑
∩|ψq⟩=|ψj⟩
|ψp⟩̸=|ψq⟩

∏
1≤h≤k

√
Mh(|ψp⟩)

∏
1≤h≤k

√
Mh(|ψq⟩) cos(θp−θq),

(107)

with −1 ≤ cos(θp − θq) ≤ 1.

Definition 67 (Interference effect in QECR function). Let {QM1 , . . . ,

QMh
, . . . , QMk

} be a set of independent QBPAs with propositions |ψp⟩ and

|ψq⟩ (|ψp⟩ ̸= |ψq⟩) in QFOD |Φ⟩. The interference effect in QECR function
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is defined as:

IntQECR = 2
∑

∩|ψp⟩=|ψj⟩

∑
∩|ψq⟩=|ψj⟩
|ψp⟩̸=|ψq⟩

∏
1≤h≤k

|QMh
(|ψp⟩)|

∏
1≤h≤k

|QMh
(|ψq⟩)| cos(θp − θq)

= 2
∑

∩|ψp⟩=|ψj⟩

∑
∩|ψq⟩=|ψj⟩
|ψp⟩̸=|ψq⟩

∏
1≤h≤k

√
Mh(|ψp⟩)

∏
1≤h≤k

√
Mh(|ψq⟩) cos(θp − θq),

(108)

where −1 ≤ cos(θp − θq) ≤ 1.

When IntQECR = 0 and Mh = mh, Eq. (106) becomes:

QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|ψj⟩) =

∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

mh(|ψp⟩)

∑
|ψv⟩⊆|Φ⟩

{ ∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

mh(|ψp⟩)
}

=

∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

mh(|ψp⟩)

1−KG

, (109)

in which

KG =
∑

∩|ψp=∅

∏
1≤h≤k

mh(|ψp⟩). (110)

From Eqs. (109) and (110), it is learned that in the case of Mh = mh and

IntQECR = 0, QECR degrades into DRC of DSET.

Definition 68 (Quantum evidential conflict coefficient). The quan-

tum evidential conflict coefficient (QECC) among QBPAs {QM1 , · · · ,QMh
,

· · · ,QMk
}, denoted as KQ, is defined by:

KQ =

∣∣∣∣∣∣
∑

∩|ψp⟩=∅

∏
1≤h≤k

QMh
(|ψp⟩)

∣∣∣∣∣∣
2

. (111)
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According to Feynman’s rule, since |QMh
|2 = φ2

h = Mh, Eq. (111) can

also be expressed as:

KQ =
∑

∩|ψp⟩=∅

∏
1≤h≤k

|QMh
(|ψp⟩)|2

+ 2
∑

∩|ψp⟩=∅

∑
∩|ψq⟩=∅

∏
1≤h≤k

|QMh
(|ψp⟩)|

∏
1≤h≤k

|QMh
(|ψq⟩)| cos(θp − θq)

=
∑

∩|ψp⟩=∅

∏
1≤h≤k

Mh(|ψp⟩)

+ 2
∑

∩|ψp⟩=∅

∑
∩|ψq⟩=∅

∏
1≤h≤k

√
Mh(|ψp⟩)

∏
1≤h≤k

√
Mh(|ψq⟩) cos(θp − θq),

(112)

in which −1 ≤ cos(θp − θq) ≤ 1.

Definition 69 (Interference effect in QECC function). The interfer-

ence effect involved in QECC function among QBPAs {QM1 , · · · ,QMh
, · · · ,QMk

},

denoted as IntKQ , is defined by:

IntKQ = 2
∑

∩|ψp⟩=∅

∑
∩|ψq⟩=∅

∏
1≤h≤k

|QMh
(|ψp⟩)|

∏
1≤h≤k

|QMh
(|ψq⟩)| cos(θp − θq)

= 2
∑

∩|ψp⟩=∅

∑
∩|ψq⟩=∅

∏
1≤h≤k

√
Mh(|ψp⟩)

∏
1≤h≤k

√
Mh(|ψq⟩) cos(θp − θq),

(113)

in which −1 ≤ cos(θp − θq) ≤ 1.

When IntKQ = 0 and Mh = mh, Eq. (111) becomes:

KQ =
∑

∩|ψp⟩=∅

∏
1≤h≤k

mh(|ψp⟩),

which is consistent with the conflict coefficient K in DSET.

QECR has the following characteristics:
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• When QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|∅⟩) = 0, GQECR reduces to the

QECR.

• When QM1 ⊕ · · · ⊕ QMh
⊕ · · · ⊕ QMk

(|∅⟩) = 0, GQECC KQ in GQET

reduces to QECC in QET.

• Since |QM(|∅⟩)| = 0 indicating a closed world and |QM(|∅⟩)|> 0 indicat-

ing an open world, the GQECR can merge arbitrary multiple GQBPAs

to facilitate uncertainty reasoning in an open world, while QECR can

merge arbitrary multiple QBPAs to facilitate uncertainty reasoning in

a closed world.

• When the QBPDs of QET are in accordance with the BPAs of DSET,

and there are no interferences involving in QECR, QECR reduces to

the DRC in DSET.

• When the QBPDs of QET are in accordance with the BPAs of DSET,

and there are no interferences involving in QECR, QECC KQ reduces

to the conflict coefficient K in DSET.

To support a wide range of applications, an alternative progressive quan-

tum evidential combination rule is proposed to enable the continuous, pro-

gressive, and incremental fusion of QBPAs.

Definition 70 (Progressive quantum evidential combination rule).

Let {QM1 , . . . , QMh
, . . . , QMk

} be a set of independent QBPAs with propo-

sition |ψj⟩ in QFOD |Φ⟩. The progressive quantum evidential combination
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rule (PQECR), denoted as QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

, is defined as:

QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|ψj⟩) =

∑
∩|ψp⟩=|ψj⟩

∏
1≤h≤k

QMh
(|ψp⟩)∑

|ψv⟩⊆|Φ⟩

∑
∩|ψp⟩=|ψv⟩

∏
1≤h≤k

QMh
(|ψp⟩)

,

(114)

QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|∅⟩) = 0, (115)

Definition 71 (Progressive quantum evidential conflict coefficient).

The progressive quantum evidential conflict coefficient (PQECC) among QB-

PAs {QM1 , · · · ,QMh
, · · · ,QMk

}, denoted as KQ, is defined by:

KQ =
∑

∩|ψp⟩=∅

∏
1≤h≤k

QMh
(|ψp⟩). (116)

PQECR has the following characteristics:

• When QM1 ⊕· · ·⊕QMh
⊕· · ·⊕QMk

(|∅⟩) = 0, GPQECR reduces to the

PQECR.

• When QM1 ⊕ · · · ⊕QMh
⊕ · · · ⊕QMk

(|∅⟩) = 0, GPQECC KQ in GQET

reduces to PQECC in QET.

• Since |QM(|∅⟩)| = 0 indicating a closed world and |QM(|∅⟩)| > 0 in-

dicating an open world, the GPQECR can merge arbitrary multiple

GQBPAs to facilitate uncertainty reasoning in an open world, while

PQECR can merge arbitrary multiple QBPAs to facilitate uncertainty

reasoning in a closed world.

• When the QBPDs of QET are in accordance with the BPAs of DSET,

PQECR reduces to the DRC in DSET.
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• When the QBPDs of QET are in accordance with the BPAs of DSET,

PQECC KQ reduces to the conflict coefficient K in DSET.

4.1.5. Quantum Pignistic transformations

When considering the interference during the process of decision-making,

a quantum interference Pignistic transformation is defined to transform a

QBPA function into a quantum interference Pignistic probability function.

Definition 72 (Quantum interference Pignistic transformation). Let

QM be a QBPA function on QFOD |Φ⟩ and |ψj⟩ be a quantum proposition

with |ψj⟩ ⊆ |Φ⟩. Its quantum interference Pignistic probability function,

denoted as BetQIP, is defined as:

BetQIP(|ψj⟩) =

∣∣∣∣∣∣
∑

|ψp⟩⊆|Φ⟩

QM(|ψp⟩) ·
||ψp⟩ ∩ |ψj⟩||

||ψp⟩||

∣∣∣∣∣∣
2

, (117)

where ||ψ⟩| represents the cardinality of |ψ⟩. The transformation between

QM and BetQIP is called a quantum interference Pignistic transformation.

∀|ϕg⟩ ∈ |Φ⟩, Eq. (117) can be expressed as:

BetQIP(|ϕg⟩) =

∣∣∣∣∣∣
∑

|ϕp⟩⊆|Φ⟩

QM(|ψp⟩) ·
||ψp⟩ ∩ |ϕg⟩||

||ψp⟩||

∣∣∣∣∣∣
2

. (118)

When considering scenarios in the absence of interference, a quantum

Pignistic transformation is defined to transform a QBPA function into a

quantum Pignistic probability function.

Definition 73 (Quantum Pignistic transformation). LetQM be a QBPA

function on QFOD |Φ⟩ and |ψj⟩ be a quantum proposition with |ψj⟩ ⊆ |Φ⟩.
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Its quantum Pignistic probability function, denoted as BetQP, is defined as:

BetQP(|ψj⟩) =
∑

|ψp⟩⊆|Φ⟩

|QM(|ψp⟩)|2 ·
||ψp⟩ ∩ |ψj⟩||

||ψp⟩||
, (119)

where ||ψ⟩| represents the cardinality of |ψ⟩. The transformation between

QM and BetQP is called a quantum Pignistic transformation.

Since |QM|2 = φ2 = M, Eq. (119) can be expressed as:

BetQP(|ψj⟩) =
∑

|ψp⟩⊆|Φ⟩

M(|ψp⟩) ·
||ψp⟩ ∩ |ψj⟩||

||ψp⟩||
. (120)

∀|ϕg⟩ ∈ |Φ⟩, Eq. (119) and Eq. (120) can be expressed as:

BetGQP(|ϕg⟩) =
∑

|ψp⟩⊆|Φ⟩

|QM(|ψp⟩)|2 ·
||ψp⟩ ∩ |ϕg⟩||

||ψp⟩||
, (121)

BetGQP(|ϕg⟩) =
∑

|ψp⟩⊆|Φ⟩

M(|ψp⟩) ·
||ψp⟩ ∩ |ϕg⟩||

||ψp⟩||
. (122)

4.2. A quantum model of QET

4.2.1. Quantum state representation of a QBPA function

Definition 74 (Basis event in QET). Let |Φ⟩ be a QFOD consisting of a

set of mutually exclusive and collectively nonempty events {|ϕ1⟩, ..., |ϕg⟩, ..., |ϕn⟩}.

A set of basis events is defined as:

E = {|ϕ1⟩, . . . , |ϕg⟩, . . . , |ϕn⟩}, (123)

where |ew⟩ ∈ E is called a basis event (1 ≤ w ≤ n).

when w = g (1 ≤ g ≤ n), |eg⟩ denotes an event in QFOD.
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Definition 75 (Vector representation of a basis event in QET). Let

|ew⟩ be a basis event, where |ew⟩ ∈ E = {|ϕ1⟩, . . . , |ϕg⟩, . . . , |ϕn⟩}, 1 ≤ w ≤ n.

A vector representation of a basis event is defined as:

|ejw⟩ = [η1, . . . , ηl, . . . , ηn]
T , ηl =

1, l = w,

0, l ̸= w.

(124)

where any two basis events |ejw⟩ and |ejs⟩ (1 ≤ s, w ≤ n; s ̸= w) are orthonor-

mal, namely, ⟨ejw|ejw⟩ = 1, and ⟨ejw|ejs⟩ = 0.

Definition 76 (Quantum state representation of a quantum propo-

sition in QET). Let |ψj⟩ (|ψj⟩ ⊆ |Φ⟩) be a proposition in QBPA function

QM with orthonormal basis event |ejw⟩ ∈ |ψj⟩ (1 ≤ w ≤ n). A pure quantum

state of the quantum proposition |ψj⟩ is defined as:

|ψj⟩ =
∑
w

λjw|ejw⟩, |ψj⟩ ⊆ |Φ⟩, (125)

where λjw = ajw + bjwi is a complex number satisfying
∑

w |λjw|2 = 1.

In Eq. (125), quantum superposition is considered in the quantum state

representation of a quantum proposition. In this context, a corresponding

density operator of a quantum proposition is represented as follows.

Definition 77 (Density operator of a quantum proposition in GET).

Let |ψj⟩ be a pure quantum state of its quantum proposition on QFOD |Φ⟩

(|ψj⟩ ⊆ |Φ⟩). A density operator of the quantum proposition |ψj⟩ is defined

as:

ρj = |ψj⟩⟨ψj|. (126)

On this basis, a QBPA function is expressed as an ensemble of pure states

as follows.
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Definition 78 (Density operator of a QBPA function). Let QM be a

QBPA function withQM(|ψj⟩) on QFOD |Φ⟩ (|ψj⟩ ⊆ |Φ⟩), and {QM(|ψj⟩), |ψj⟩}

be an ensemble of pure quantum states. The density operator of a QBPA

function is defined as:

ρQM =
∑
j

QM(|ψj⟩)|ψj⟩⟨ψj| =
∑
j

QM(|ψj⟩)ρj, (127)

where a QBPA function QM is expressed as a quantum system of mixed

quantum states.

Definition 79 (Normalized density operator of a QBPA function).

Let ρQM be a density operator of a QBPA function QM with quantum propo-

sition QM(|ψj⟩) on QFOD |Φ⟩ (|ψj⟩ ⊆ |Φ⟩). The normalized density operator

of a QBPA function is defined as:

ρQM =
∑
j

|QM(|ψj⟩)|2ρj =
∑
j

|QM(|ψj⟩)|2|ψj⟩⟨ψj|, (128)

where | · |2 is the modulus squared function.

From Eq. (128), it is obvious that

ρ̂QM > 0,

and

tr(ρ̂QM) =
∑
j

|QM(|ψj⟩)|2 tr(|ψj⟩⟨ψj|) =
∑
j

|QM(|ψj⟩)|2 = 1.

Therefore, ρ̂QM is a positive and normalized density operator.

Let Êν be the eigenvalues of ρ̂QM . It follows that:

Êν ≥ 0,
∑
ν

Êν = 1.
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Since |QM|2 = φ2 = M, a normalized density operator of a QBPA function

can be expressed as:

ρ̂QM =
∑
j

M(|ψj⟩)|ψj⟩⟨ψj| =
∑
j

M(|ψj⟩)ρj. (129)

4.2.2. Measurement operator for basis event in QET

Definition 80 (Measurement operator for basis event in QET). Let

QM be a QBPA function on QFOD |Φ⟩. A measurement operator to measure

the belief value of basis event |ew⟩ ∈ E = {|ϕ1⟩, . . . , |ϕg⟩, . . . , |ϕn⟩} is defined

as:

Mew = |ew⟩⟨ew|, 1 ≤ w ≤ n, (130)

satisfying
n∑

w=1

M†
ewMew = I, (131)

where M†
ew is the Hermitian conjugate or adjoint of the Mew matrix, e.g.,

M†
ew =

(
MT

ew

)∗
; and I denotes the identity matrix.

4.2.3. Basis event measurement function in QET

Definition 81 (Basis event measurement function in QET). Let ρ̂QM

be a normalized density operator of QBPA function QM on QFOD |Φ⟩ with

basis event |ew⟩ ∈ E = {|ϕ1⟩, . . . , |ϕg⟩, . . . , |ϕn⟩}, and
{
Mew = |ew⟩⟨ew|, 1 ≤

w ≤ n
}
be a set of measurement operators. The basis event measurement

function in QET is defined as:

P(QM(|ew⟩)) = Tr
(
M†

ewMew ρ̂QM
)
, 1 ≤ w ≤ n, (132)

where M†
ew is the Hermitian conjugate or adjoint of the Mew matrix, e.g.,

M†
ew =

(
MT

ew

)∗
; and Tr is a function of the trace of a matrix.
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4.2.4. QBP measurement function

Definition 82 (QBP measurement function). Let ρ̂QM be a normalized

density operator of QBPA function QM on QFOD |Φ⟩ with quantum propo-

sition |ψj⟩ ⊆ |Φ⟩, and
{
Mew = |ew⟩⟨ew|, 1 ≤ w ≤ n

}
be a set of measurement

operators. The QBP measurement function is defined as:

M(|ψj⟩) =
∑

|ew⟩∈|ψj⟩

P(QM(|ew⟩)), |ψj⟩ ⊆ |Φ⟩, (133)

satisfying

P(QM(|ew⟩)) = Tr
(
M†

ewMew ρ̂QM
)
,

where M†
ew is the Hermitian conjugate or adjoint of the Mew matrix, e.g.,

M†
ew =

(
MT

ew

)∗
; and Tr is a function of the trace of a matrix.

4.2.5. Belief and plausibility measurement functions in QET

Definition 83 (Belief and plausibility measurement functions in

QET). Let ρ̂QM be a normalized density operator of QBPA function QM on

QFOD |Φ⟩ with quantum proposition |ψj⟩ ⊆ |Φ⟩, and
{
Mew = |ew⟩⟨ew|, 1 ≤

w ≤ n
}

be a set of measurement operators. The belief and plausibility

measurement functions are defined as:
QBel(|ψj⟩) = min

{ ∑
|ew⟩∈|ψj⟩

P(QM(|ew⟩))

}
, |ψj⟩ ⊆ |Φ⟩,

QPl(|ψj⟩) = max

{ ∑
|ew⟩∈|ψj⟩

P(QM(|ew⟩))

}
, |ψj⟩ ⊆ |Φ⟩,

(134)

satisfying

P(QM(|ew⟩)) = Tr
(
M†

ewMew ρ̂QM
)
,

where M†
ew is the Hermitian conjugate or adjoint of the Mew matrix, e.g.,

M†
ew =

(
MT

ew

)∗
; and Tr is a function of the trace of a matrix.
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According to Eqs. (133) and (134), we have:

QBel(|ψj⟩) ≤ M(|ψj⟩) ≤ QPl(|ψj⟩). (135)

The belief and plausibility measurement functions represent the lower and

upper probabilities for |ψj⟩.
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