Some Formulas and an Equivalence Between Two Sets of Axioms in Axiomatic Propositional Logic

Harry Willow

Abstract. We derive some formulas in axiomatic propositional logic and we show that two sets of different axioms are equivalent. The outputs were manually derived through logical deductions and subsequently typeset in LaTeX, without the use of automated computational tools.

Construct a new propositional calculus formal system P' from P. Axiom (A3) is changed to:

(A4)
$$(\neg \alpha \rightarrow \neg \beta) \rightarrow ((\neg \alpha \rightarrow \beta) \rightarrow \alpha)$$
.

Prove that the set of internal theorems of P' and P are identical. Axioms of P are:

(A1) $\alpha \rightarrow (\beta \rightarrow \alpha)$.

(A2) $(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)).$

(A3) $(\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$.

There is only one rule of deduction, namely *modus ponens* (abbreviated as MP). It says: from α and $\alpha \to \beta$, β is a direct consequence.

Lemma 1: $(\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$

To prove that $\alpha \to \beta, \beta \to \gamma \vdash \alpha \to \gamma$.

(1)
$$\alpha \rightarrow \beta$$
 hypothesis

(2)
$$\beta \rightarrow \gamma$$
 hypothesis

(3)
$$(\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))$$
 axiom (A1)

$$(4) \alpha \to (\beta \to \gamma) \tag{2),(3) MP}$$

(5)
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
 axiom (A2)

(6)
$$(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)$$
 (4),(5) MP

(7)
$$\alpha \rightarrow \gamma$$
 (1),(6) MP

Thus, by (1)-(7), $\alpha \to \beta$, $\beta \to \gamma \vdash \alpha \to \gamma$. Therefore, by the Deduction Theorem, $\alpha \to \beta \vdash (\beta \to \gamma) \to (\alpha \to \gamma)$, and, again by the Deduction Theorem, $\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$.

Lemma 2: $\alpha \rightarrow \alpha$

(1)
$$(\alpha \to ((\alpha \to \alpha) \to \alpha))$$
 axiom (A1)

(2)
$$(\alpha \to ((\alpha \to \alpha) \to \alpha)) \to ((\alpha \to (\alpha \to \alpha)) \to (\alpha \to \alpha))$$
 axiom (A2)

(3)
$$\alpha \rightarrow (\alpha \rightarrow \alpha)$$
 axiom (A1)

$$(4) (\alpha \to (\alpha \to \alpha)) \to (\alpha \to \alpha)$$
 (1),(2) MP

(5)
$$\alpha \rightarrow \alpha$$
 (3),(4) MP

Lemma 3: $\neg \alpha \rightarrow (\alpha \rightarrow \beta)$

(1)
$$\neg \alpha$$
 hypothesis

(2)
$$\neg \alpha \rightarrow (\neg \beta \rightarrow \neg \alpha)$$
 axiom (A1)

(3)
$$(\neg \beta \rightarrow \neg \alpha)$$
 (1),(2) MP

(4)
$$(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$$
 axiom (A3)

(5)
$$\alpha \rightarrow \beta$$
 (3),(4) MP

Thus, by (1)-(5), $\neg \alpha \vdash \alpha \rightarrow \beta$. Therefore, by the Deduction Theorem, $\vdash \neg \alpha \rightarrow (\alpha \rightarrow \beta)$.

Lemma 4: $\neg \neg \alpha \rightarrow \alpha$

(1)
$$\neg \neg \alpha$$
 hypothesis

(2)
$$\neg\neg\alpha \rightarrow (\neg\alpha \rightarrow \neg\neg\neg\alpha)$$
 Lemma 3

$$(3) \neg \alpha \rightarrow \neg \neg \neg \alpha \tag{1),(2) MP}$$

(4)
$$(\neg \alpha \rightarrow \neg \neg \neg \alpha) \rightarrow (\neg \neg \alpha \rightarrow \alpha)$$
 axiom (A3)

(5)
$$\neg \neg \alpha \rightarrow \alpha$$
 (3),(4) MP

(6)
$$\alpha$$
 (1),(5) MP

Thus, by (1)-(6), $\neg\neg\alpha \vdash \alpha$. Therefore, by the Deduction Theorem, $\vdash \neg\neg\alpha \rightarrow \alpha$.

Lemma 5: $\alpha \rightarrow \neg \neg \alpha$

(1)
$$\neg\neg\neg\alpha \to \neg\alpha$$
 Lemma 4

(2)
$$(\neg \neg \neg \alpha \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \neg \neg \alpha)$$
 axiom (A3)

(3)
$$\alpha \rightarrow \neg \neg \alpha$$
 (1),(2) MP

Lemma 6: $(\alpha \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha)$

(1)
$$\alpha \rightarrow \beta$$
 hypothesis

(2)
$$\neg \neg \alpha \rightarrow \alpha$$
 Lemma 4

(3)
$$(\neg \neg \alpha \rightarrow \alpha) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\neg \neg \alpha \rightarrow \beta))$$
 Lemma 1

$$(4) (\alpha \to \beta) \to (\neg \neg \alpha \to \beta) \tag{2),(3) MP}$$

$$(5) \neg \neg \alpha \rightarrow \beta$$
 (1),(4) MP

(6)
$$\beta \rightarrow \neg \neg \beta$$
 Lemma 5

$$(7) \ (\neg\neg\alpha\to\beta)\to ((\beta\to\neg\neg\beta)\to (\neg\neg\alpha\to\neg\neg\beta))$$
 Lemma 1

$$(8) (\beta \rightarrow \neg\neg\beta) \rightarrow (\neg\neg\alpha \rightarrow \neg\neg\beta)$$
 (5),(7) MP

$$(9) \neg \neg \alpha \rightarrow \neg \neg \beta \tag{6}, (8) MP$$

(10)
$$(\neg\neg\alpha \to \neg\neg\beta) \to (\neg\beta \to \neg\alpha)$$
 axiom (A3)

$$(11) \neg \beta \rightarrow \neg \alpha \tag{9}, (10) MP$$

Thus, by (1)-(11), $\alpha \to \beta \vdash \neg \beta \to \neg \alpha$. Therefore, by the Deduction Theorem, $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$.

Lemma 7: $\neg \beta \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \alpha)$

(1)
$$\neg \beta$$
 hypothesis

(2)
$$\neg \beta \rightarrow \alpha$$
 hypothesis

(3)
$$\alpha$$
 (1),(2) MP

Thus, by (1)-(3), $\neg \beta$, $\neg \beta \rightarrow \alpha \vdash \alpha$. Therefore, by the Deduction Theorem, $\neg \beta \vdash (\neg \beta \rightarrow \alpha) \rightarrow \alpha$, and, again by the Deduction Theorem, $\vdash \neg \beta \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \alpha)$.

Lemma 8: $\neg \beta \rightarrow (\neg \alpha \rightarrow \neg (\neg \beta \rightarrow \alpha))$

(1)
$$\neg \beta$$
 hypothesis

(2)
$$\neg \beta \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \alpha)$$
 Lemma 7

(3)
$$(\neg \beta \rightarrow \alpha) \rightarrow \alpha$$
 (1),(2) MP

(4)
$$((\neg \beta \to \alpha) \to \alpha) \to (\neg \alpha \to \neg(\neg \beta \to \alpha))$$
 Lemma 6
(5) $\neg \alpha \to \neg(\neg \beta \to \alpha)$ (3),(4) MP

Thus, by (1)-(5), $\neg \beta \vdash \neg \alpha \rightarrow \neg (\neg \beta \rightarrow \alpha)$. Therefore, by the Deduction Theorem, $\vdash \neg \beta \rightarrow (\neg \alpha \rightarrow \neg (\neg \beta \rightarrow \alpha))$.

Lemma 9: $(\beta \to \alpha) \to (\neg \alpha \to \neg (\neg \beta \to \alpha))$

(1)
$$\beta \rightarrow \alpha$$
 hypothesis

(2)
$$\neg \alpha$$
 hypothesis

(3)
$$(\beta \to \alpha) \to (\neg \alpha \to \neg \beta)$$
 Lemma 6

$$(4) \neg \alpha \rightarrow \neg \beta \tag{1),(3) MP}$$

$$(5) \neg \beta \qquad (2),(4) \text{ MP}$$

$$(6) \neg \beta \rightarrow (\neg \alpha \rightarrow \neg (\neg \beta \rightarrow \alpha))$$
 Lemma 8

$$(7) \neg \alpha \rightarrow \neg (\neg \beta \rightarrow \alpha) \tag{5),(6) MP}$$

$$(8) \neg (\neg \beta \rightarrow \alpha) \tag{2),(7) MP}$$

Thus, by (1)-(8), $\beta \to \alpha$, $\neg \alpha \vdash \neg (\neg \beta \to \alpha)$. Therefore, by the Deduction Theorem, $\beta \to \alpha \vdash \neg \alpha \to \neg (\neg \beta \to \alpha)$, and, again by the Deduction Theorem, $\vdash (\beta \to \alpha) \to (\neg \alpha \to \neg (\neg \beta \to \alpha))$.

Lemma 10: $(\beta \rightarrow \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \alpha)$

(1)
$$\beta \rightarrow \alpha$$
 hypothesis

(2)
$$(\beta \to \alpha) \to (\neg \alpha \to \neg (\neg \beta \to \alpha))$$
 Lemma 9

$$(3) \neg \alpha \rightarrow \neg (\neg \beta \rightarrow \alpha) \tag{1),(2) MP}$$

$$(4) (\neg \alpha \to \neg (\neg \beta \to \alpha)) \to ((\neg \beta \to \alpha) \to \alpha)$$
 axiom (A3)

(5)
$$(\neg \beta \rightarrow \alpha) \rightarrow \alpha$$
 (3),(4) MP

Thus, by (1)-(5), $\beta \to \alpha \vdash (\neg \beta \to \alpha) \to \alpha$. Therefore, by the Deduction Theorem, $\vdash (\beta \to \alpha) \to ((\neg \beta \to \alpha) \to \alpha)$.

To derive (A4) from (A1), (A2) and (A3).

$$\begin{array}{llll} (1) & \neg \alpha \rightarrow \neg \beta & & \text{hypothesis} \\ (2) & \neg \alpha \rightarrow \beta & & \text{hypothesis} \\ (3) & (\neg \alpha \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg \neg \alpha) & & \text{Lemma 6} \\ (4) & \neg \beta \rightarrow \neg \neg \alpha & & & (2),(3) \text{ MP} \\ (5) & \neg \neg \alpha \rightarrow \alpha & & \text{Lemma 4} \\ (6) & (\neg \beta \rightarrow \neg \neg \alpha) \rightarrow ((\neg \neg \alpha \rightarrow \alpha) \rightarrow (\neg \beta \rightarrow \alpha)) & & \text{Lemma 1} \\ (7) & (\neg \neg \alpha \rightarrow \alpha) \rightarrow (\neg \beta \rightarrow \alpha) & & (4),(6) \text{ MP} \\ (8) & \neg \beta \rightarrow \alpha & & (5),(7) \text{ MP} \\ (9) & (\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha) & & \text{axiom (A3)} \\ (10) & \beta \rightarrow \alpha & & (1),(9) \text{ MP} \\ (11) & (\beta \rightarrow \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \alpha) & & \text{Lemma 10} \\ (12) & (\neg \beta \rightarrow \alpha) \rightarrow \alpha & & (10),(11) \text{ MP} \\ (13) & \alpha & & (8),(12) \text{ MP} \\ \end{array}$$

Thus, by (1)-(13), $\neg \alpha \to \neg \beta$, $\neg \alpha \to \beta \vdash \alpha$. Therefore, by the Deduction Theorem, $\neg \alpha \to \neg \beta \vdash (\neg \alpha \to \beta) \to \alpha$, and, again by the Deduction Theorem, $\vdash (\neg \alpha \to \neg \beta) \to ((\neg \alpha \to \beta) \to \alpha)$.

To derive (A3) from (A1), (A2) and (A4).

$$\begin{array}{lll} (1) \ \neg \alpha \to \neg \beta & \text{hypothesis} \\ (2) \ \beta & \text{hypothesis} \\ (3) \ (\neg \alpha \to \neg \beta) \to ((\neg \alpha \to \beta) \to \alpha) & \text{axiom (A4)} \\ (4) \ \beta \to (\neg \alpha \to \beta) & \text{axiom (A1)} \\ (5) \ \neg \alpha \to \beta & \text{(2),(4) MP} \\ (6) \ (\neg \alpha \to \beta) \to \alpha & \text{(1),(3) MP} \\ (7) \ \alpha & \text{(5),(6) MP} \end{array}$$

Thus, by (1)-(7), $\neg \alpha \to \neg \beta, \beta \vdash \alpha$. Therefore, by the Deduction Theorem, $\neg \alpha \to \neg \beta \vdash \beta \to \alpha$, and, again by the Deduction Theorem, $\vdash (\neg \alpha \to \neg \beta) \to (\beta \to \alpha)$.

Lemma 11: $\neg(\alpha \rightarrow \beta) \rightarrow \alpha$

$$\begin{array}{lll} (1) \ \neg(\alpha \rightarrow \beta) & \text{hypothesis} \\ (2) \ \neg\alpha \rightarrow (\alpha \rightarrow \beta) & \text{Lemma 3} \\ (3) \ (\neg\alpha \rightarrow (\alpha \rightarrow \beta)) \rightarrow (\neg(\alpha \rightarrow \beta) \rightarrow \neg\neg\alpha) & \text{Lemma 6} \\ (4) \ \neg(\alpha \rightarrow \beta) \rightarrow \neg\neg\alpha & (2),(3) \ \text{MP} \\ (5) \ \neg\neg\alpha & (1),(4) \ \text{MP} \\ (6) \ \neg\neg\alpha \rightarrow \alpha & \text{Lemma 4} \\ (7) \ \alpha & (5),(6) \ \text{MP} \end{array}$$

Thus, by (1)-(7), $\neg(\alpha \to \beta) \vdash \alpha$. Therefore, by the Deduction Theorem, $\vdash \neg(\alpha \to \beta) \to \alpha$.

Lemma 12: $\neg(\alpha \rightarrow \neg\beta) \rightarrow \beta$

(1)
$$\neg(\alpha \rightarrow \neg\beta)$$
 hypothesis

$$(2) \neg \beta \rightarrow (\alpha \rightarrow \neg \beta)$$
 Axiom (A1)

(3)
$$(\neg \beta \rightarrow (\alpha \rightarrow \neg \beta)) \rightarrow (\neg (\alpha \rightarrow \neg \beta) \rightarrow \neg \neg \beta)$$
 Lemma 6

$$(4) \neg (\alpha \rightarrow \neg \beta) \rightarrow \neg \neg \beta \tag{2),(3) MP}$$

$$(5) \neg \neg \beta \tag{1),(4) MP}$$

(6)
$$\neg \neg \beta \rightarrow \beta$$
 Lemma 4

(7)
$$\beta$$
 (5),(6) MP

Thus, by (1)-(7), $\neg(\alpha \to \neg\beta) \vdash \beta$. Therefore, by the Deduction Theorem, $\vdash \neg(\alpha \to \neg\beta) \to \beta$.

Theorem 1: $\neg((\alpha \rightarrow \beta) \rightarrow \neg(\beta \rightarrow \gamma)) \rightarrow (\alpha \rightarrow \gamma)$

$$(1) \neg ((\alpha \rightarrow \beta) \rightarrow \neg (\beta \rightarrow \gamma))$$
 hypothesis

(2)
$$\neg((\alpha \to \beta) \to \neg(\beta \to \gamma)) \to (\beta \to \gamma)$$
 Lemma 12

(3)
$$\beta \rightarrow \gamma$$
 (1),(2) MP

$$(4) \neg ((\alpha \rightarrow \beta) \rightarrow \neg (\beta \rightarrow \gamma)) \rightarrow (\alpha \rightarrow \beta)$$
 Lemma 11

(5)
$$\alpha \rightarrow \beta$$
 (1),(4) MP

(6)
$$(\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))$$
 Axiom (A1)

$$(7) \alpha \to (\beta \to \gamma) \tag{3),(6) MP}$$

(8)
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
 Axiom (A2)

$$(9) (\alpha \to \beta) \to (\alpha \to \gamma) \tag{7}, (8) MP$$

(10)
$$\alpha \rightarrow \gamma$$
 (5),(9) MP

Thus, by (1)-(10), $\neg((\alpha \to \beta) \to \neg(\beta \to \gamma)) \vdash \alpha \to \gamma$. So, by the Deduction Theorem, $\vdash \neg((\alpha \to \beta) \to \neg(\beta \to \gamma)) \to \neg(\beta \to \gamma)$ $(\alpha \rightarrow \gamma)$.

Theorem 2: $(\alpha \rightarrow \neg \beta) \rightarrow (\neg(\beta \rightarrow \gamma) \rightarrow \neg \alpha)$

(1)
$$\alpha \to \neg \beta$$
 hypothesis

$$(2) \neg (\beta \rightarrow \gamma)$$
 hypothesis

(3)
$$\neg (\beta \rightarrow \gamma) \rightarrow \beta$$
 Lemma 11

(4)
$$\beta$$
 (2),(3) MP

(5)
$$(\alpha \to \neg \beta) \to (\neg \neg \alpha \to (\alpha \to \neg \beta))$$
 Axiom (A1)
(6) $\neg \neg \alpha \to (\alpha \to \neg \beta)$ (1),(5) MP

(6)
$$\neg \neg \alpha \rightarrow (\alpha \rightarrow \neg \beta)$$
 (1),(5) MP

$$(7) (\neg \neg \alpha \to (\alpha \to \neg \beta)) \to ((\neg \neg \alpha \to \alpha) \to (\neg \neg \alpha \to \neg \beta))$$
 Axiom (A2)

(8)
$$\neg \neg \alpha \rightarrow \alpha$$
 Lemma 4

$$(9) (\neg \neg \alpha \to \alpha) \to (\neg \neg \alpha \to \neg \beta)$$
 (6),(7) MP

$$(10) \neg \neg \alpha \rightarrow \neg \beta \tag{8),(9) MP}$$

(11)
$$(\neg \neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \neg \alpha)$$
 Axiom (A3)

$$(12) \beta \rightarrow \neg \alpha \tag{10}, (11) MP$$

(13)
$$\neg \alpha$$
 (4),(12) MP

Thus, by (1)-(13), $\alpha \to \neg \beta$, $\neg (\beta \to \gamma) \vdash \neg \alpha$. So, by the Deduction Theorem, $\alpha \to \neg \beta \vdash \neg (\beta \to \gamma) \to \neg \alpha$ and, again by the Deduction Theorem $\vdash (\alpha \to \neg \beta) \to (\neg(\beta \to \gamma) \to \neg \alpha)$.

Theorem 3: $(\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta)$

$$\begin{array}{lll} (1) \neg \beta \rightarrow \neg \alpha & \text{hypothesis} \\ (2) \neg \beta \rightarrow \alpha & \text{hypothesis} \\ (3) (\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta) & \text{Axiom (A3)} \\ (4) \alpha \rightarrow \beta & (1),(3) \text{ MP} \\ (5) (\neg \beta \rightarrow \alpha) \rightarrow (\neg \alpha \rightarrow \neg \neg \beta) & \text{Lemma 6} \\ (6) \neg \alpha \rightarrow \neg \neg \beta & (2),(5) \text{ MP} \\ (7) (\neg \alpha \rightarrow \neg \neg \beta) \rightarrow (\neg \alpha \rightarrow \beta) & \text{Lemma 13} \\ (8) \neg \alpha \rightarrow \beta & (6),(7) \text{ MP} \\ (9) (\alpha \rightarrow \beta) \rightarrow ((\neg \alpha \rightarrow \beta) \rightarrow \beta) & \text{Lemma 10} \\ (10) (\neg \alpha \rightarrow \beta) \rightarrow \beta & (4),(9) \text{ MP} \\ (11) \beta & (8),(10) \text{ MP} \\ \end{array}$$

Thus, by (1)-(11), $\neg \beta \to \neg \alpha$, $\neg \beta \to \alpha \vdash \beta$. So, by the Deduction Theorem, $\neg \beta \to \neg \alpha \vdash (\neg \beta \to \alpha) \to \beta$ and, again by the Deduction Theorem $\vdash (\neg \beta \to \neg \alpha) \to ((\neg \beta \to \alpha) \to \beta)$.

References

- [1] A. G. Hamilton, Logic for Mathematicians, Cambridge University Press, Cambridge, 1988.
- [2] E. Mendelson, Introduction to Mathematical Logic, Chapman and Hall/CRC, Boca Raton, FL, 2009.
- [3] Y. Nievergelt, Logic, Mathematics, and Computer Science, Springer, New York, 2015.