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Abstract

Feature selection remains a highly relevant and actively researched topic across signal
processing, statistics, and machine learning. It has gained new relevance recently, especially
because of renewed interest in the so-called Shapley values. However, beyond the Shapley
values, many possibilities exist to measure (explicitly or implicitly) the importance of a
variable for a specific task. Given a measure of importance, we can obtain a ranking of
the input features (involved, e.g., in a regression or classification problem), as provided
by an algorithm and/or expert system. Consequently, it is also necessary to evaluate the
obtained rankings, for instance to identify the most effective ranking method or to aggregate
all results into an average ranking, akin to an ensemble average of expert opinions. In this
work, we provide an exhaustive review of several scoring functions and techniques designed
for evaluating the ranking methods with or without an available ground-truth. Moreover, the
work contains some novel elements such as the use of other famous indices, for instance, the
Gini coefficient and effective sampling size (ESS) measures. It is important to remark that
the paper incorporates insights from a variety of sources across diverse scientific disciplines,
including computational statistics, quantitative economics, and machine learning. Finally,
we test the described schemes in a controlled experiment on feature selection, in order to
compare different ranking methods and to assess their performance and robustness.
Keywords. Ranking methods, Shapley values, feature selection, stochastic multicriteria
acceptability analysis, Gini coefficient, ensemble of experts.

1 Introduction

Variable selection, also known as feature selection [1–3],1 is one of the most relevant topics in
signal processing, statistics, and machine learning. This topic has received renewed interest in the
last few years. More specifically, the way of defining a feature importance measure has become a
hot research topic nowadays [4–7]. The renewed interest in the so-called Shapley values is a clear

1In this work, we use the terms “variable” and “feature” as synonymous.
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example [8].
Feature importance can be defined in multiple ways across both regression and classification
problems [1, 9]. Given an importance measure, we can build a ranking of the involved variables
(e.g., from the most important to the least important) by applying an algorithm and/or using the
output of an expert system. This selection problem consists of two main theoretical parts: first,
ranking the variables; and second, determining the effective number of variables to finally use in a
parsimonious model (see, e.g., [7, 10, 11] for the second part). Clearly, by changing the definition
or the computation of the feature importance measure we can obtain a different ranking. From
a research point of view, it is essential to find the optimal ranking method (RM) for at least a
specific task and/or data type. Moreover, it is often desirable to compute an ‘averaged rank’
that accounts for all available information in a comprehensive manner. For this goal, we need
the ability to compare RMs where a ground-truth is available (i.e., in experiments with simulated
data for instance), or to be able to properly combine the RM results when no ground-truth is
available.
This work presents a comprehensive survey aimed at describing and analyzing a variety of
scoring functions designed to evaluate the performance of different ranking methods, in both
scenarios, with and without the presence of ground-truth. Specifically, the primary objective can
be summarized as the task of ‘ranking the ranking methods’ obtained from an ensemble of expert
systems. Furthermore, we investigate methods for combining multiple rankings to generate an
averaged rank, along with the associated uncertainty measures.
We start with the simplest scoring functions and gradually increase the complexity step by
step [12–14]. We also discuss the benefits and drawbacks of the scoring functions, along with their
relationships and differences. Each score is described in detail, guiding practitioners to apply
them effectively in future work. We introduce also normalized versions of the scores to allow
the comparison among different scoring functions. We highlight the possible use of other famous
indices in the literature to be applied as a scoring function: an example is the Gini coefficient [15]
and the effective sample size formulas [16–18]. A simple running example is used to facilitate
the understanding of the engaged readers. It is important to remark that this work incorporates
insights from a variety of sources across diverse scientific literature, from computational statistics,
quantitative economics, and machine learning. All these diverse methodologies are presented in
a joint-unique framework and are described with the same notation within the feature selection
context.
Finally, we test all the described scoring schemes in a synthetic regression experiment, considering
several alternative ranking methods within a variable selection context [1]. The compared RMs
belong all to the family of the so-called wrapper methods [19–21]. The primary goal of the
experiment is to evaluate the performance of the described scoring functions, both with and
without ground-truth. A secondary outcome of the experiment, due to the provided analysis, is
that it offers insights into the compared ranking methodologies, indicating which ones perform
better or worse in terms of feature selection.
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2 Problem statement and main notation of the work

In this work, we describe several scoring functions that allow us to measure the performance of an
RM when ground-truth is available and also when is not available. In the first part, i.e., Section
3, we assume the knowledge of a ground-truth ranking. In section 4, we consider strategies when
the ground-truth is not available. Next, we describe the main notation used in this work.
Suppose that we have a set of R variables x = [x1, ..., xR]> (input vector) that describes the
behavior of a related variable y (output). We assume that we have a dataset of N data pairs,
{xn, yn}Nn=1, and we can define a ground-truth ranking of the input features (i.e., the components
of x) in decreasing order of importance,

Ground-truth: G = {g1, g2, ..., gR}, (1)

where gj ∈ {1, ..., R} with gi 6= gj for i 6= j, is the sub-index associated to the variable xgj and j
is the correct position in the ranking of the variable xgj . As an example with R = 10, if g1 = 5
and g10 = 2, it means that x5 is the most important variable, whereas x2 is the worst variable in
terms of importance. We recall that the scenario when the ground-truth is not available is also
addressed in Section 4.

Generally, we can obtain different rankings for feature selection, each one based (explicitly or
implicitly) on different feature importance measures. We desire to score these rankings according
to the ground-truth (when it is available as in Section 3) or without ground-truth (as in Section 4).
Namely, the goal is to rank the ranking methods or combine them, e.g., discovering the best and
the worst RMs, or finding an averaged ranking summarizing all the information. More specifically,
a ranking technique yields a ranking of the features in decreasing order of importance that we
denote as

Ranking: R = {k1, k2, . . . , kR}, (2)

where ki ∈ {1, . . . , R} ( ki 6= kj for i 6= j), indicates the sub-index associated to the variable xki
and i is the position of xki in the resulting ranking. For instance, k1 = 6 would mean that the
variable x6 is in the first place of the ranking (i.e., it is the most important), k4 = 1 would mean
that the variable x1 is in the fourth position of the ranking. We desire to “score” this ranking
according to the ground-truth.

Functions returning the position. In the rest of the work, we use two functions rR and
rG which return the position of a feature/variable in a given ranking (where R and G denote the
set of the feature sub-indices of the ground-truth and ranking, respectively),

rR(feature sub-index) = position in R, and rG(feature sub-index) = position in G. (3)

Clearly, by definition, the position of the feature ki in the ranking set R is rR(ki) = i, but rG(ki)
is not generally determined, and depends on the specific scenario. Similarly, the position of the
feature gi, in the ground-truth G, is rG(gi) = i (by definition), but rR(gi) depends on the specific
ranking that we are analyzing.
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Running example. Before starting with the description of the possible scoring functions, we
introduce an example that we will use throughout the rest of the work, to help the understanding
of the interested reader. Considering R = 5 features, and a ranking with sub-indices:

Example – Ground-truth: GE = {3, 1, 2, 5, 4}. (4)

Namely, the variable x3 is the most important whereas x4 is the least important (for some specific
analyzed task). Moreover, in this running example, we assume that a ranking method provides as
a result the following ranking,

Example – Ranking: RE = {3, 1, 5, 4, 2}. (5)

We can observe that the first two variables are correctly ranked according the ground-truth GE,
whereas the last three variables have been not well-ranked. The most significant error involves
variable x2, which is misplaced by two positions from its correct ranking. Whereas, the other two
variables, x4 and x5, are only one position away from their correct location.

3 Scoring functions when the ground-truth is available

In this section, we present different possible scoring functions starting with the simplest ones in
terms of complexity. Clearly, all the scores described below can be converted trivially in partial
scores focusing only on the first positions of the ranking (i.e., analyzing a subset of the ranking),
if required. The progression of ideas behind the scores in this section is the following:

(a) just counting the errors with equal importance;

(b) then the idea is to take into account the distance between the true position and the wrong
position;

(c) and finally also try to take into account that errors in the first positions are more critical
than errors in the last positions.

3.1 Baseline and distance scores

Match counting. Perhaps the simplest idea is simply to count the number of correct elements
in the ranking. Let us define a binary variable

Ij =

{
1 if kj = gj,

0 if kj 6= gj.
(6)

Then, the final score is defined as

S =
R∑
j=1

Ij. (7)
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In the case of GE and RE, we have S = 2. We can normalize this score by dividing by R,
i.e., 0 ≤ S

R
≤ 1. We define the normalized score as S̄ = S

R
. In the running example, we have

S̄ = 2
5

= 0.4.

Permutation distance. This scoring function is defined as the (minimum) number of
permutations one should realize starting from R until obtaining G. Let P be the number of
permutations required. Then, the score is defined as

S = (R− 1)− P. (8)

This measure goes from R − 1 (perfect matching, i.e., P = 0) to the worst-case scenario which
corresponds to 0 (i.e., P = R − 1). The normalized score is, S̄ = 1 − S

R−1
. In the case of the

example, RE and GE, we have: S = 2 and S̄ = 0.5, with P = 2.

Distance summing. The previous scores do not take into account the distance between the
right and wrong positions, and any errors are penalized by 1. The idea is to perform the following
steps:
- For j = 1, ..., R :

1. Given j, find in R the position i∗ such that ki∗ = gj.

2. Compute the distance dj = |i∗ − j|.

3. Finally compute the average D = 1
R

∑R
j=1 dj.

Since we desire a score such that the higher its value, then the better the RM is, we have to
compute a Dmax. We can achieve this by computing

S = Dmax −D, (9)

where

Dmax =
1

R

R∑
j=1

d
(max)
j =

1

R

R∑
j=1

|R− 2j + 1|, (10)

=
1

R

bR/2c∑
j=1

2(R− 2j + 1) =

{
R
2

R even
1
R
R2−1

2
R odd,

where we have used d
(max)
j = |R− 2j + 1|. Note that Dmax corresponds to the worst-case scenario

when the model features are ordered the other way around in comparison to the ground-truth.
Finally, the normalized score is defined as

S̄ =
S

Dmax

= 1− D

Dmax

. (11)

In the case of the example with GE and RE we have: S = 1.6 and S̄ = 1− 4
12

= 2/3.
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Generalized weighted distance. The previous score does not consider the importance of each
feature, and we could also change the type of distance. A generalized distance is considered, and
to penalize more the errors in first positions, we may assign some weights, ϕ̄1, . . . , ϕ̄R, such that∑
ϕ̄i = 1. The resulting score is then

S =

(
R∑
j=1

ϕ̄j

(
d

(max)
j

)α)1/α

−

(
R∑
j=1

ϕ̄jd
α
j

)1/α

, (12)

where α > 0. The normalized score is defined in the same way as Eq. (11). To penalize more the
errors in the first positions of the ranking, we can assign weights satisfying ϕ̄1 > ϕ̄2 > . . . > ϕ̄R.
However, a clear drawback of this approach is that the choice of these weights is subjective.

3.2 Correlation-based scores

A measure of association between ordinal datasets is to study the correlation between their
positions. In our problem, this means studying the association between the positions of each
feature in the ground-truth set and in the ranking set. Observe that, in this way, we cover the
points (a) and (b) described at the beginning of this section.
We recall the two defined functions rR and rG, which return the position of a feature/variable in
a given ranking (R or G). Clearly, by definition, the position of the feature ki, in the ranking set
R, is rR(ki) = i. However, rG(ki) is not generally determined and depends on the position of ki
in the ground-truth. For simplicity, Table 1 shows the positions of the features in the running
example.

Table 1: Position of each feature in the running example.

Feature Ground-truth position Method - position
rG(ki) rR(ki) = i

k1 = 3 1 1
k2 = 1 2 2
k3 = 5 4 3
k4 = 4 5 4
k5 = 2 3 5

Given the positions of the features, we can use some correlation measures proposed in the literature
for ordinal variables [12,13]. In the following, we describe the Spearman and Kendall correlations.

Spearman’s correlation it is the classical Pearson correlation coefficient applied to the positions.
Consider the points (rR(ki), rG(ki)), i = 1, ..., R (recall that rR(ki) = i by definition). Then, the
Spearman’s correlation is the Pearson correlation coefficient over these positions, i.e.,

S =
cov[rR, rG]

σrRσrG
, (13)
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where cov[·, ·] denotes the covariance, in this case of the data rR, rG, and σrR , σrG represent their
respective standard deviations. Note that −1 ≤ S ≤ 1. In the running examples, a clear positive
association between the positions, (rR(ki), rG(ki)), i = 1, ..., R, can be observed, achieving S = 0.7.
Generally, a value of 1 means a totally correct model, a value of −1 is an incorrect model with
variables positioned the other way around, and a value of 0 means a nominal random association.
To have a score always normalized between 0 and 1, we can set

S̄ =
1

2
(S + 1), (14)

so that S̄ = 1 when S = 1, and S̄ = 0 when S = −1. Thus, for the running example, we have
S̄ = 0.85.
Kendall’s τ correlation. This method computes the so-called Kendall correlation, which
measures the correlation by computing the number of concordant pairs [12]. Two pairs of
observations (rR(ki), rR(kj)) and (rG(ki), rG(kj)) are concordant if either rR(ki) > rG(ki) and
rR(kj) > rG(kj) both holds simultaneously, or rR(ki) < rG(ki) and rR(kj) < rG(kj) holds jointly.
Specifically, this correlation computes the difference between the number of concordant pairs and
the ones that are not, normalized by the number of total pairs

(
R
2

)
:

S =
nº concordant pairs - nº discordant pairs(

R
2

) , and S̄ =
1

2
(S + 1). (15)

In Table 2, we show the calculation of the Kendall correlation for the running example, yielding a
result of S = 0.6, and hence S̄ = 0.8. Since the maximum number of concordant pairs is

(
R
2

)
and

the same holds for the number of discordant pairs, the Kendall correlation is also bounded in the
interval [−1, 1]. For this reason, we again define S̄ = 1

2
(S + 1).

Table 2: Computation of Kendall correlation for the running example.
Index Pairs (rR(ki), rR(kj)); (rG(ki), rG(kj)) Concordant

1 (1, 2), (1, 2) Yes
2 (1, 3), (1, 4) Yes
3 (1, 4), (1, 5) Yes
4 (1, 5), (1, 3) Yes
5 (2, 3), (2, 4) Yes
6 (2, 4), (2, 5) Yes
7 (2, 5), (2, 3) Yes
8 (3, 4), (4, 5) Yes
9 (3, 5), (4, 3) No
10 (4, 5), (5, 3) No

S (8−2)
10

0.6
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3.3 Partial scores

A way to take into account the importance of the first positions in the rankings without defining
arbitrary weights is to define partial scores. For the sake of simplicity, we describe the underlying
idea only for the match counting score, but it can be extended to the other scoring functions.
Then, recalling the simply count the number of correct elements in the ranking,

Ij =

{
1 if kj = gj,

0 if kj 6= gj,

and the partial score at step r is

Sr =
r∑
j=1

Ij. (16)

We can normalize the partial score by dividing by R, i.e., S̄r = Sr

R
. It is interesting to plot S̄r

versus r and compare the ranking for each r. See Figure 1(a) for an example.

3.4 Scores based on cumulative functions

The cumulative idea given in the previous section, for the partial scores, can be generalized as
follows. We define a cumulative function C such that C(j) counts how many features in the set
R1:j = {k1, . . . , kj} are contained in the first j features of the ground-truth G1:j = {g1, . . . , gj}.
Mathematically, consider the indicator function

G(i|j) =

{
1 if ki ∈ {g1, . . . , gj}, and i ≤ j,

0 in any other case,
(17)

for j = 1, ..., R. It is important to note that G(i|j) can be one even if the variable ki is not
perfectly located (i.e., even if there is not a “perfect match”). This is a very interesting property:
for instance, if the first j = 3 variables (among 20 possible variables) in a ground-truth are
{g1 = 20, g2 = 3, g3 = 5} and the obtained ranking is {k1 = 5, k2 = 20, k3 = 16}, this means
that G(i = 1|j = 3) = 1, and G(i = 2|j = 3) = 1. This interesting property is related to the
consideration (b) at the beginning of Section 3.

After computing all the G(i|j) values, we compute the cumulative function as C(j) =
∑j

i=1G(i|j),
that satisfies the following properties:

(a) C(j) ≤ j,

(b) C(j) ≤ C(j + 1),

(c) C(R) = R.
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Hence, C is a monotonically non-decreasing function that satisfies C(R) = R, for any possible
ranking R. In a perfect case scenario, i.e., a perfect match with the ground-truth, we would have
C(1) = 1, C(2) = 2, . . . , C(R) = R. Namely, the perfect match case (ideal scenario) is given by

Cideal(j) = j, for all j = 1, ..., R. (18)

To measure the discrepancy from this ideal scenario, as in the previous section, i.e.,

DC =

(
R∑
j=1

ϕ̄j(j − C(j))α

)1/α

, (19)

and the final score is

S = D
(max)
C −DC , (20)

where D
(max)
C is the DC measure evaluated in the worst case scenario (i.e., considering the opposite

ranking with respect to the ground-truth). The normalized score is then defined as:

S̄ = 1− DC

D
(max)
C

, (21)

Other discrepancy measures from the uniform distribution. The cumulative sum can be
easily converted into a cumulative function by the normalization C̃(j) = 1

R
C(j) for all j = 1, ..., R

and add also C̃(0) = 0. The ideal case corresponds to the cumulative function of a uniform
probability mass function (pmf). Clearly, any index that measures the distance between a

cumulative discrete function C̃ and the ideal cumulative function of a uniform pmf, C̃ideal (that is
a straight line from 0 to R) can be employed. Some relevant examples of indices in the literature
that measure the discrepancy between cumulative functions are given below:

• Gini Index (GI). GI has been introduced as a way to measure the income inequality in a
population [15]. There are several formulations of the Gini coefficient [22] (for related indices
see also [23]). Generally, the GI takes a value between 0 and 1. A convenient formulation
for this work is the following:

GI = 1− 2

R

(
1

2
+

R−1∑
j=1

C̃(j)

)
= 1− ENV

R
. (22)

where ENV is the index of “effective number of variables” proposed in other contexts [23].
A normalized score for the ranking R is then defined as

S̄ = 1−GI =
ENV

R
. (23)

• Kolmogorov-Smirnov (KS) statistic. One can use Kolmogorov-Smirnov statistic (KS)
that measures the maximum difference between the two cumulative functions,

DKS = sup
∣∣∣C̃(j)− j

∣∣∣ , j = 1, ..., R. (24)
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The KS statistic also ranges between 0 and 1. Hence, the final score is

S̄ = 1−DKS. (25)

• Based on effective sample size (ESS). Let us define the corresponding probability mass
function (pmf) as

ρ̄j = C̃(j)− C̃(j − 1), j = 1, ..., R, and (26)

C̃(0) = 0. (27)

There are several effective sample size (ESS) expressions that actually are discrepancy
measures between the pmf defined by ρ̄j and a discrete uniform distribution [16–18]. We
show two famous examples,

ESS =
1∑R
j=1 ρ̄

2
j

, and/or ESS =
1

max ρ̄j
. (28)

These two formulas, as other possible examples, have been widely applied in ecology,
economics, and social science (see [18]). Note that both 1 ≤ ESS ≤ R. Thus, the score
will be

S̄ =
1

R− 1
(ESS− 1) , (29)

so that 0 ≤ S̄ ≤ 1.

Any other distance or divergence between probability distributions can be employed (e.g., the KL
divergence [24]).

3.5 Handling possible ties

Ground-truth may present ties among variables. That is, there exists at least one subset of features
where any arrangement of them within a set of specific positions is valid/correct. As an example,
we may have five features where the third and fourth elements are of equal importance. For
instance, we could have as a ground-truth {g1 = 5, g2 = 4, g3:4 = [1, 2], g5 = 3}. In this example,
we can interpret that we have two possible sequences of ground-truth: {g1 = 5, g2 = 4, g3 = 1, g4 =
2, g5 = 3} or {g1 = 5, g2 = 4, g3 = 2, g4 = 1, g5 = 3}. Hence, one possible way to address this
situation, while still being able to apply the scoring methods described in the previous sections, is
to rearrange the ground-truth (accounting for the possible ties) so that it is as close as possible to
the ranking that must be evaluated. Namely, we permute within the position of the ties to find the
ground-truth sequence that is the closest to the ranking that we need to evaluate. After finding
the closest ground-truth sequence, all the scoring functions can be directly applied, as described
previously.
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4 Scoring without ground-truth

4.1 Compare and combine in the absence of ground-truth

If a ground-truth is not available, the evaluation of several ranking methods becomes more
complex, especially if we desire to avoid arbitrary decisions that can adulterate the final
considerations. To analyze and/ aggregate (i.e., combine) different rankings when a ground-truth
is not available, the main strategy is the so-called stochastic multicriteria acceptability analysis
(SMAA) [25, 26]. SMAA is a decision-making scheme used when we need to evaluate different
options (or alternatives) and there is a lack of precise information about preferences. It has
been applied in different contexts: finance and investment, medical decision-making, and other
industrial applications (such as product design and project evaluation, where expert opinions
vary), to name a few.
The underlying idea is to combine the results of the different rankings without fixing or choosing
any arbitrary element that can affect the final analysis (such as weights, scores/rewards, etc.).
The SMAA procedure is very simple and powerful at the same time: it is a powerful analytical
tool that enables a comprehensive analysis. For instance, the method allows us to calculate an
averaged ranking (by employing possibly different aggregation functions), along with an associated
measure of uncertainty. The resulting analysis also enables checking the robustness of the ranking
positions of each variable. All the technical details are given below.

4.2 SMAA procedure

Let us consider having obtained M different rankings of features,

Rm = {k(m)
1 , ..., k

(m)
R }, m = 1, ...,M, (30)

from different statistical or machine learning algorithms. Recall that:

• we assume that we have R features, x1, ..., xR, so that k
(m)
i ∈ {1, ..., R};

• by definition, the position of the feature ki in the ranking set Rm is rR(k
(m)
i ) = i, and

k
(m)
i 6= k

(m)
k for i 6= k.

For each one of the R variables, we can build vectors containing the positions of the variable in
each of the M rankings, i.e.,

p1 = [p1,1, p1,2, ..., p1,M ]>,

p2 = [p2,1, p2,2, ..., p2,M ]>,

...

pj = [pj,1, pj,2, ..., pj,M ]>, (31)

...

pR = [pR,1, pR,2, ..., pR,M ]>,
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where pj,m denotes the position of the j-th variable, i.e., xj, in the m-th ranking. The vector pj
contains all the positions of the k-th variable, i.e., xj, in the different rankings. Then, the standard
SMAA procedure is given below:

• For n = 1, ..., N :

– Draw a 1 ×M vector w̄(n) = [w̄
(n)
1 , ..., w̄

(n)
M ] uniformly from the simplex of dimension

M , i.e., where
∑M

m=1 w̄
(n)
m = 1, i.e., they are normalized. It can be done as described

in [27, Chapter 6].

– For j = 1, ..., R :

∗ Compute one of the two types of the so-called “aggregations” for the k-th variable:

weighted mean: a
(n)
j = w̄(n)pj =

M∑
m=1

w̄(n)
m pj,m, (32)

or weighted median: a
(n)
j = median

(
{pj,m, w̄(n)

m }
)
. (33)

– The aggregated position values a
(n)
j are sorted in increasing order, i.e.,

a
(n)
i1
≤ a

(n)
i2
... ≤ a

(n)
iR
, (34)

where each ir ∈ {1, ..., R}, and we define the n-th mean position of the j-th variable as

p̄
(n)
j = {the value of r such that ir = j}, j = 1, ..., R. (35)

Thus, for each feature, we can study the empirical probability mass function defined by the sample
positions p̄

(n)
j , with n = 1, ..., N . Hence, we can compute the empirical probabilities

bj(i) =
#{p̄(n)

j = i}
N

, i, j ∈ {1, ..., R}. (36)

that are called “rank acceptability indices” in the literature. The range of bj(i) is clearly [0, 1],
meaning that the greater its value, the greater is the probability that the j-th feature achieves
the position i. For instance, a value bi(2) = 0.64 means that the variable xi achieves the second
position 64% of the time. Table 6 in the numerical experiment shows examples of bj(i) by using
the mean aggregation function given above.

4.3 Average rank positions, uncertainty information and scores

As suggested in [28], these empirical probabilities bj(i) can be used to assign expected positions
to each variable xj as follows

E(j) =
m∑
i=1

i bj(i). (37)



5 NUMERICAL EXPERIMENTS 13

The values above are expected positions. To compute a unique average ranking, we rank the
variables xi according to their expected positions E(xi), using them as scores. Table (8) shows
the two average rankings obtained by using the weighted average and the weighted median
aggregations. Measures of uncertainty, such as the variance, can also be computed as

var(j) =
m∑
i=1

(
i− E(j)

)2
bj(i). (38)

Moreover, the median or other quantiles can be obtained based on the empirical probabilities bj(i).
Confidence intervals on E(j) can be computed by bootstrap, as well.
Scoring the RMs without groundtruth. Finally, note that if we treat the average ranking
as a ground-truth, we can apply all the scoring functions described in the previous sections to
evaluate the different ranking methods.

5 Numerical Experiments

To evaluate the different score methods described previously, we utilize the RMs based on wrapper
methods [1,8,19]. We first consider the use of a ground-truth in Section 5.1, and then we assume
that the ground-truth is not available in Section 5.2.

5.1 Numerical experiment with ground-truth

5.1.1 Data generation

We create a synthetic dataset to rank variables under controlled conditions, using the RMs
described in Section 5. The RMs are then assessed, knowing the ground-truth, using the different
scores. The dataset is structured according to a linear model, with variables selectively included
and excluded based on specific criteria. It contains N = 5000 observations and R = 20 variables,
represented as x = [x1, . . . , x20]. The details of these variables are provided in Table 3.
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Table 3: Feature generation: sampling from a distribution
Variables Generation / Distribution

x1, x2, x5 x7, N (0, 1)
x15, x16, x18, x19

x3, x4, x8 x9, U
([
−
√

12
2
,
√

12
2

])
x10, x13, x20

x6 x2
2

x11
z = 0.5x8 + ε, ε ∼ N (0, 1),

z-mean(z)
std(z)

x12
z = 0.5x10 + ε, ε ∼ N (0, 1),

z-mean(z)
std(z)

x14
z = x5 + ε, ε ∼ N (0, 1),

z-mean(z)
std(z)

x17
z = 0.2x2 + u, u ∼ U([0, 1]),

z-mean(z)
std(z)

All input variables are normalized with zero mean and unit variance, ensuring consistent signal
power.

True model: The corresponding observations were generated as follows

yn =0.6x2 + 0.6x3 − 0.2x4 + 0.1x5 − 0.3x7 + 0.1x8

+ 0.8x9 − 0.3x11 + 0.3x12 + 0.3x14 + 0.5x15 + 0.9x16

+ 0.2x17 − 0.3x18 − 0.5x19 + 0.6x20. (39)

Note that in this experiment, we have not added noise in the generation of y. It is important to
remark that the model in Eq. (39) excludes explicitly the following features: x1, x6, x10, and x13.
However, x6 is included as a transformation of x2, i.e., x6 = x2

2. Moreover, some variables present
linear correlation: x8 and x11, x10 and x12, x5 and x14, x2 and x17. Indeed, x11, x12, x14, and
x17 are obtained with a linear transformation of another variable plus noise as shown in Table
3. Some variables, like x2 and x3, as well as x7 and x11, share identical coefficients but follow
different distributions. This design introduces collinearity and redundant information, creating a
robust dataset for evaluating model performance.

5.1.2 Ground-truth

In this work, we define the importance of feature as the module of the coefficient in the true linear
model in Eq. (39). Hence, following this definition, the variables (showing only their sub-indices)
are ranked in a decreasing order of importance (i.e., obtained by sorting in decreasing order the
absolute values of the coefficients in the true model), i.e.,
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Ground-truth

Pos 1th 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

16 9 (2, 3, 20) (15, 19) (7, 11, 12, 14, 18)

Pos 13th 14th 15th 16th 17th 18th 19th 20th

(4, 17) (5, 8) (1, 6, 10, 13)

where indices within the parentheses (·, · · · , ·) indicate ties in the ranking, meaning the variables
inside the parentheses have the same importance in the model. Any permutation of these variables
will be considered a correct ranking.

5.1.3 Application of the ranking methods (RMs)

We apply the RMs based on wrapper methods [1, 8, 19]. Specifically, we use the following
RMs: 1) leave-one-covariate-out, called LOCO in the literature (RM0) [8], 2) forward selection
adding variables “forward” minimizing an external cost (RM1), 3) backward elimination removing
variables “backward” minimizing an external cost (RM2), 4) backward elimination removing the
best variable “backward” maximizing an external cost (RM3), and 5) forward selection adding the
worst variable, maximizing an external cost (RM4). A more detailed description of these ranking
methods is given in [1, Sec. III A].
Each RM applied in this work uses an internal model. We define the same parametric model that
is used to generate the data as the internal model, to assess the different RMs for the dataset
described in Section 5.1.1. The relationship between inputs and outputs is studied using the linear
parametric model,

y = Xβ. (40)

We apply a regularized least squares (LS) estimator β̂ =
(
X>X + λI

)−1
X>y, where λ = 0.5 and

I is a diagonal unit matrix (λ 6= 0 only to avoid numerical issues). Hence, the predicted output

according to the model is ŷ = Xβ̂. To evaluate the model’s performance, we use the Euclidean-
norm to compute the error. Note that the internal model is linear, as is the true model. Thus,
we remove the issue of model mismatch, and we can focus on the comparison of the RMs. The
obtained rankings are shown in Table 4.

Table 4: Rankings of the variables/features. We show the indices of the corresponding variable in
a decreasing order of importance. For instance, x16 is the most relevant for all the RMs. Colored
cells show the correctly detected positions (taking into account ties).

RMs Ranking

Pos 1th 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

RM0 16 9 2 20 3 15 7 17 12 11 14 4 8 5 10 1 6 13 18 19
RM1 16 9 2 3 20 15 18 14 12 7 17 11 4 8 5 10 1 6 13 19
RM2 16 9 2 3 20 15 19 14 12 7 17 11 4 8 5 10 1 6 13 18
RM3 16 9 2 20 3 15 17 12 7 14 5 11 4 10 8 6 13 1 18 19
RM4 16 9 2 20 3 15 19 18 14 5 17 12 7 11 4 10 8 6 13 1
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5.1.4 Scores for each ranking method using the ground-truth

This section shows the score obtained by using the scoring functions in Section 3, allowing the
comparison of the different RMs. With this aim, we first define the ground-truth of our true model
in Eq. (39). We focus on normalized scores to allow the comparison among RMs and also among
scoring functions. The following scoring functions are applied:

- S1: Match counting,

- S2: Permutation distance,

- S3: Distance summing,

- S4: Generalized weighted distance, with α = 2 and rational decay weights (defined as

ϕ̄1 = R
b
, ϕ̄2 = R−1

b
, . . . , ϕ̄R = 1

b
, where b = R(R+1)

2
),

- S5: Spearman Correlation,

- S6: Kendall Correlation,

- S7: Cumulative measure, with α = 1, and uniform weights,

- S8: Gini-based score in Eq. (23),

- S9: based on KS statistic in Eq. (25).

- S10: based on Eq. (29) and using ESS = 1∑R
j=1 ρ̄

2
j

.

Results. It is worth noting that all ranking methods failed to correctly place the features x10 and
x17. This may be because x17 is correlated with x2, which is one of the relevant features. Moreover,
x10 is correlated with x12. RM0, RM1, and RM3 struggle with x19, placing it erroneously among
the lowest ranks. Whereas, RM2 and RM4 accurately identify the appropriate position of x19.
The feature x18 is well-ranked only by RM4. Note that x18 and x19 have associated both a negative
coefficient in the model.
The resulting normalized scores are presented in Table 5. Moreover, Figure 1(a) depicts the partial
scores of each RM using the match counting score, S̄r = 1

R

∑r
j=1 Ij. Analyzing Figure 1(a), we can

observe that up to the 6-th position, all the RMs perform equally well. Until the 9-th position,
RM2 and RM4 obtain the maximum possible score. However, from 9-th to 17-th positions, RM4
has just one “match” and the rest are errors. Finally, RM4 is able to detect correctly the positions
of the last 3 variables. Figure 1(a) also shows the increase of uncertainty in the last positions of
the rankings. The final scores S̄R with r = R = 20 in Figure 1(a) correspond to the normalized
scores of S1.
More generally, we observe that RM1, RM2, and RM4 consistently demonstrate the best
performance, most often ranking first or second across the majority of scoring functions. While
RM4 tends to make more errors in the middle and lower ranks positions that are typically less
relevant, its overall performance remains strong. Notably, the scoring function S10 ranks RM4 the
lowest, contrary to the trend observed with the other scoring functions. RM3 and RM0 exhibit
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the worst performance. Note that the score functions S5 and S6, based on correlations, and
S7, based on a cumulative measure and uniform weights, coincide in their classifications for the
RMs. Similarly, S1, S2, which both focus solely on identifying correct versus incorrect features,
yield almost identical classifications. The slight difference is because S2 produces ties in its scores,
whereas S1 does not, though ties are theoretically possible in both. Additionally, there are features
(such as x19) with a negative coefficient but a quite large module. In this case, the RMs often
struggle to provide a good rank. Indeed, e.g., regarding x19, all RMs except RM2 and RM4 rank
this feature incorrectly, while RM2 and RM4 correctly identify its importance and the relative
correct position. Surprisingly, RM0 (jointly with RM3) which is related to the Shapley values,
seems to be the worst RM [8].
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Figure 1: (a) Partial scores of each RM using the match counting score, S̄r = 1
R

∑r
j=1 Ij. Until

the 6-th position, all the RMs perform equally well. Until the 9-th position, RM2 and RM4 obtain
the maximum possible score. However, from 9-th to 17-th, RM4 has just one “match” and the rest
are errors. Finally, RM4 can correctly detect the positions of the last 3 variables. (b) Empirical
probabilities bj(i) of SMAA for xj, given in Table 6, obtained with weighted mean as aggregation
function. Darker colored squares represent probabilities close to 1, whereas lighter colored squares
represent probabilities close to 0.

5.2 Numerical experiment without ground-truth

In this section, we consider that the ground-truth is not available and apply SMAA to assess
the different RMs. First of all, we compute the empirical probabilities bj(i) that represent the
probability that the j-th feature achieves the position i. Table 6 and Figure 1(b) provide the
values of bj(i). In Figure 1(b), darker colored squares represent probabilities close to 1, whereas
lighter colored squares represent probabilities close to 0. We can easily observe that:
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Table 5: Normalized scores S̄ for each RM. The highlighted cells show the highest scores.

Exact Based on Based on Based on
match Distances Corr. Cumulative funct.

RMs S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

RM0 0.55 0.63 0.80 0.66 0.89 0.84 0.80 0.90 0.90 0.82
RM1 0.75 0.79 0.87 0.69 0.92 0.88 0.87 0.94 0.95 0.90
RM2 0.80 0.84 0.91 0.82 0.96 0.92 0.91 0.95 0.95 0.90
RM3 0.70 0.79 0.79 0.64 0.87 0.81 0.79 0.89 0.90 0.82
RM4 0.65 0.79 0.92 0.88 0.98 0.94 0.92 0.96 0.90 0.76

• The features x16, x9, x2, x15 obtain the ranking positions 1st, 2nd, 3rd, 6th respectively, with an
empirical probability of 1;

• the rest variables present a greater dispersion, specially x13, x18 and x19.

Figure 2 also depicts the histograms corresponding to the empirical probabilities bj(i) for
j ∈ {7, 12, 13, 19}, i.e., for the features x7, x12, x13 and x19. Note the dispersion in x13 and
x19. Recall that x13 is not contained in the model, whereas x19 should be located in 6-th or 7-th
positions. RM2 and RM4 accurately identify the appropriate position of x19, in contrast to RM0,
RM1, and RM3, which erroneously place it among the lowest ranks. Consequently, the SMAA
evaluation of x19 reflects the bias introduced by these inaccurate rankings.
We can obtain expected positions and corresponding variances for each variable xj [28], using the
empirical probabilities bj(i), as illustrated below:

E(j) =
m∑
i=1

i bj(i), var(j) =
m∑
i=1

(
i− E(j)

)2
bj(i).

The values E(j) and the standard deviations
√

var(j) are given in Table 7. Then, to compute
the average ranking (AvR), we order the variables xi according to their scores E(i). The AvR
is shown Table 8 and, indirectly also in Table 7. More specifically, Table 7 provides the average
position of each feature, whereas Table 8 shows the indices of the variables ordered in decreasing
order of importance. Note that AvR is quite close to the ground-truth (even without using it).
Thus, AvR could be employed as an approximated ground-truth, when it is not available.
Finally, we have computed the Kendall correlations between the average ranking (AvR) and
the RMs are given in Table 9, where we can see a high correlation between AvR and RM4.
Therefore, the SMAA procedure attributes significant importance to RM4 in the construction of
AvR. Observe that RM4 identifies the appropriate positions of x13, x18, and x19, which are the
most difficult variables according to the uncertainty provided by SMAA. This also illustrates the
ability of SMAA to identify variables where the RMs struggle, and/or features that are inherently
challenging due to the structure of the problem.
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Table 6: Empirical probabilities bj(i) in percentages of the variables xj, when we use the weighted
mean as aggregation function. As an example, we can observe that b16(1) = 1 and b5(10) = 0.05.

Probabilities (in percentages) associated to each position
b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8) b(9) b(10) b(11) b(12) b(13) b(14) b(15) b(16) b(17) b(18) b(19) b(20)

x1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 10% 15% 27% 46%
x2 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
x3 0% 0% 0% 36% 64% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
x4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 22% 27% 17% 11% 7% 7% 10% 0% 0%
x5 0% 0% 0% 0% 0% 0% 0% 0% 1% 5% 10% 26% 23% 18% 11% 5% 1% 0% 0% 0%
x6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 6% 15% 52% 23%
x7 0% 0% 0% 0% 0% 0% 20% 13% 50% 7% 6% 1% 3% 0% 0% 0% 0% 0% 0% 0%
x8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 26% 24% 27% 15% 2% 0% 0%
x9 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
x10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 18% 26% 27% 24% 0% 0%
x11 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 54% 21% 14% 4% 8% 0% 0% 0% 0% 0%
x12 0% 0% 0% 0% 0% 0% 23% 60% 10% 4% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%
x13 0% 0% 0% 0% 0% 0% 1% 4% 3% 5% 6% 8% 10% 11% 7% 14% 15% 6% 10% 0%
x14 0% 0% 0% 0% 0% 0% 54% 16% 22% 8% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
x15 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
x16 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
x17 0% 0% 0% 0% 0% 0% 0% 2% 7% 61% 13% 10% 2% 5% 0% 0% 0% 0% 0% 0%
x18 0% 0% 0% 0% 0% 0% 0% 1% 4% 3% 5% 5% 8% 10% 11% 7% 13% 15% 7% 12%
x19 0% 0% 0% 0% 0% 0% 2% 4% 3% 5% 5% 7% 8% 5% 11% 7% 7% 14% 5% 19%
x20 0% 0% 0% 64% 36% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 7: Expected positions and corresponding standard deviations.
Feature (j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E(j) 19.03 3.00 4.64 14.15 12.90 18.81 8.80 15.24 2.00 16.47 11.88 8.02 14.40 7.86 6.00 1.00 10.50 15.59 15.35 4.36
std(j) 1.11 0.00 0.48 1.94 1.56 1.01 1.30 1.21 0.00 1.17 1.23 0.87 3.14 1.06 0.00 0.00 1.21 3.18 3.75 0.48

Av. Pos. 20 3 5 13 12 19 9 15 2 18 11 8 14 7 6 1 10 17 16 4

Table 8: Average ranking of the variables by SMAA.
Position 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

Av. Rank 16 9 2 20 3 15 14 12 7 17 11 5 4 13 8 19 18 10 6 1

Table 9: Kendall correlations between the average ranking (AvR) and the RMs.

RM0 RM1 RM2 RM3 RM4

0.0526 0.2269 0.1319 0.1058 0.4127

6 Conclusions

This work presents a comprehensive survey on methodologies for evaluating, comparing, and
integrating multiple ranking methods (RMs) obtained by distinct expert systems. To this purpose,
we take into account both settings: one in which a ground-truth is available and one in which it
is not.
In our analysis, we have explored a spectrum of methodologies from elementary techniques, such
as match counting, to more refined and complex measures. We test different RMs (all of them
belonging to the family of the wrapper techniques) and the different scoring functions to evaluate
the performance of each RM, as well. Experimental results on synthetic data demonstrate that
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RM2 and RM4 (both sequential backward procedures) and RM1 (a sequential forward procedure)
consistently attain superior performance across various evaluation metrics, highlighting their
robustness. Finally, it is interesting to remark that RM0 (denoted as LOCO in the literature),
which is very related to the Shapley values [8], seems to be one of the worst RMs according to
almost all the score functions.
Regarding the scoring functions, it seems that the score measures based on correlation or
cumulative functions can detect relevant behavior in the RMs without relying on subjective choices
(such as defining some weights). Furthermore, we have also considered the case when the ground-
truth is not available. Specifically, the SMAA procedure allows the computation of averaged
rankings (combining the different RMs) along with corresponding measures of uncertainty. This
analysis further enables the assessment of the robustness of each RM. From the experiments, we
observe that SMAA was able to detect both the strength of RM4 and, for example, the difficulties
all RMs had with the 19-th feature, x19.
Last but not least, it is important to remark that a relevant contribution of this survey is its
synthesis of insights from a wide range of sources across various scientific disciplines, including
computational statistics, quantitative economics, and machine learning, to name a few. These
diverse methodologies have been integrated into a unified framework and have been consistently
described using a common notation within the context of feature selection. This will undoubtedly
pave the way for further research directions and future studies.
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