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1. Introduction

The study of prime numbers has been a recurring theme throughout the history of mathe-
matics, due not only to their theoretical importance but also to their practical applications
in fields such as cryptography, information theory, and computing. One of the oldest and
best-known methods for generating prime numbers is the Sieve of Eratosthenes, which
systematically eliminates multiples of known primes to identify the remaining primes within
a given range.

Despite its effectiveness, this method presents limitations when the goal is to analyze
the internal structure of prime numbers or to identify predictive patterns within their
distribution. In this context, we present an alternative model, developed from empirical
observations, which makes it possible to determine whether a number is prime without
prior knowledge of other primes or the need for explicit factorization.

This approach is based on the fact that all prime numbers greater than 3 belong to the
arithmetic sequence defined by the terms 6n+1 and 6n−1. From this property, a model is
constructed that generates cyclic frequencies associated with each number in that sequence,
and a mechanism of collision-based cancellation is applied, including an inverse formulation
that enables direct evaluation of individual numbers without constructing full sequences.

The method is characterized by:

� Relying solely on basic arithmetic operations.

� Using deterministic functions to generate frequencies from an index called the “consec-
utive.”

� Defining a safe analysis range, based on internal properties of the number being
tested.

� Offering a theoretical formulation that enables prediction of cancellations without ex-
haustively traversing all sequences.

This document aims to formally present the mathematical structure of the model, pre-
cisely defining the functions used, their relationship to the 6n± 1 sequence, and the criteria
for determining whether a given number is prime.

1.1. Sequence of Prime Candidates

All prime numbers greater than 3 belong to the sequence defined by:

ac =

{
6n− 1, if c is even

6n+ 1, if c is odd

where n ∈ N and c is the index or “consecutive” within the sequence.
Alternatively, this sequence can be generated directly, without explicit reference to n,

using the recursive formula:

a0 = 5, ac+1 = ac +

{
2, if c is even

4, if c is odd
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The terms generated in this way are:

5, 7, 11, 13, 17, 19, 23, 25, 29, 31, . . .

1.2. Consecutive Index c

The number c ∈ N represents the position index within the alternating sequence 6n ± 1.
From each value of c, three fundamental functions of the model are derived: the frequencies
f1(c), f2(c), and the mean value f3(c), which will be described in the next section.

2. Generation of Frequencies

To each value of the consecutive index c ∈ N, two frequencies f1 and f2 are associated, as
well as a mean value f3, all defined deterministically by the following expressions:

2.1. Generation Formulas

f2(c) = 2c+ 3

f1(c) = 2 · f2(c) + (−1)c = 4c+ 6 + (−1)c

f3(c) =
f1(c) + f2(c)

2
These formulas generate the values that will participate in the cancellation process. It is

observed that all generated values are positive integers.

2.2. Interpretation of f1, f2, and f3

� f2(c): The smaller frequency of the pair, always odd. It defines one of the alternating
steps.

� f1(c): The larger frequency, which complements f2 to form an alternating sequence.

� f3(c): The arithmetic mean of both frequencies. It coincides with the value ac of the
sequence 6n± 1 defined previously. That is,

f3(c) = ac for all c ∈ N

2.3. Example

For c = 3:

f2(3) = 2 · 3 + 3 = 9

f1(3) = 2 · 9 + (−1)3 = 18− 1 = 17

f3(3) =
17 + 9

2
= 13

And indeed, a3 = 13, which is a number of the form 6n+1, located at the fourth position
of the sequence 6n± 1.
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3. Mechanism of Cancellation by Frequencies

Each pair of frequencies (f1(c), f2(c)) defines an alternating sequence constructed by inter-
leaved summation of these frequencies, starting from the initial consecutive index c. This
sequence generates what we call a cancellation row.

3.1. Definition of the Cancellation Row

Let c ∈ N be a given consecutive index. The alternating sequence rn associated with the pair
(f1(c), f2(c)) is defined as:

r0 = c, rn+1 =

{
rn + f1(c), if n is even

rn + f2(c), if n is odd

The resulting sequence r0, r1, r2, . . . contains the consecutive indices that will be canceled
by the frequencies generated from c.

3.2. Cancellation Criterion

Given a number X to be tested, its target consecutive cX is first determined as the index
such that f3(cX) = X, that is, the value of c for which ac = X.

Then, the number X is considered composite if its target consecutive appears in the
cancellation row of at least one previous value c, such that:

f3(c) ≤
√
X

This condition restricts the evaluation to a finite set of frequencies, similar in logic to
the Sieve of Eratosthenes, where only multiples of primes less than or equal to

√
X are

eliminated.

3.3. Interpretation

The model assumes that if a frequency originating from some value c reaches (through al-
ternating summation) the target consecutive cX , then the corresponding number cannot be
prime, as it has been canceled by an internal regularity of the system. If no frequency reaches
it, then the number is considered prime.

4. Full Example: Evaluation of Number 13

Below is a detailed example of the primality evaluation process using the frequency cancel-
lation model.
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4.1. Step 1: Determine the Consecutive Associated with the Num-
ber

The number X = 13 belongs to the sequence 6n± 1. To find the corresponding consecutive
cX such that f3(cX) = 13, we evaluate successive values of f3(c) until a match is found:

f2(0) = 3, f1(0) = 7, f3(0) =
3 + 7

2
= 5

f2(1) = 5, f1(1) = 11, f3(1) =
5 + 11

2
= 8

f2(2) = 7, f1(2) = 15, f3(2) =
7 + 15

2
= 11

f2(3) = 9, f1(3) = 17, f3(3) =
9 + 17

2
= 13

Therefore, the associated consecutive is cX = 3.

4.2. Step 2: Evaluate Previous Frequencies

We must consider all values of c such that f3(c) ≤
√
X ≈ 3.605. Evaluate:

� f3(0) = 5 � already exceeds
√
13

There is no value of c < 3 for which f3(c) ≤
√
13. Therefore, there are no earlier

frequencies that could have generated a cancellation row reaching the target consecutive
cX = 3.

4.3. Step 3: Conclusion

Since no earlier row reaches the target consecutive cX , the number 13 is considered prime
according to the model.

This example illustrates how the model enables primality testing without factorizations or
divisions, relying solely on arithmetic functions and position comparison within the generated
sequence.

5. General Evaluation Criterion

Given a number X > 3, the model establishes that it will be considered composite if there
exists a value c ∈ N such that:

� f3(c) ≤
√
X

� The index cX , associated with the number X, appears in the alternating sequence of
indices generated by the frequencies f1(c) and f2(c), starting from c
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Note: This sequence is constructed in the domain of the consecutive indices c, not in that
of the values ac. That is, the frequencies cancel positions within the 6n± 1 sequence, not the
numerical values themselves.

Otherwise, if no value of c satisfies both conditions simultaneously, the number X is
considered prime.

5.1. Justification of the Bound f3(c) ≤
√
X

This bound ensures that only frequencies generated from consecutive indices whose mean
value f3(c) is less than or equal to the square root of the number under evaluation are
considered. This is justified by analogy with the Sieve of Eratosthenes, where only multiples
of primes less than or equal to

√
X are removed.

In this model, f3(c) plays a similar role: it represents the numeric value from which
the propagation of frequencies that could collide with X begins. Once f3(c) >

√
X, any

cancellation row generated from that value will only reach consecutive values greater than
cX , and its inclusion in the analysis becomes unnecessary.

5.2. Procedure Summary

To evaluate a number X, the following steps are followed:

1. Compute cX , the consecutive such that f3(cX) = X

2. Compute
√
X

3. Evaluate all values c ∈ N such that f3(c) ≤
√
X

4. For each c, generate the alternating sequence starting from c using increments f1(c)
and f2(c)

5. If cX appears in any of them, then X is composite

6. If it does not appear in any, then X is prime

6. Inverse Formulas for Collision Detection

Given a consecutive index c ∈ N, the cancellation row is defined as the alternating sequence
generated from c using the frequencies f1(c) and f2(c). Instead of traversing this sequence
step by step, it is possible to determine whether a target index cX (associated with the
number X) appears in it by means of inverse formulas.

6.1. Collision Model

The alternating sequence of indices generated from c can be expressed as:

r0 = c, r1 = c+ f1(c), r2 = r1 + f2(c), r3 = r2 + f1(c), . . .
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That is, a sequence defined by alternating sums of the two frequencies.
We wish to determine whether there exists some n ∈ N such that rn = cX .

6.2. Collision Formulas

Collision verification can be carried out by solving the following expressions:

r1 =
cX − f1(c)− c

f1(c) + f2(c)

r2 =
cX − f1(c)− f2(c)− c

f1(c) + f2(c)

Where:
- r1: index (integer) indicating whether cX matches a even-positioned term in the

sequence (after applying f1, then alternating), - r2: index (integer) indicating whether it
matches an odd-positioned term (after applying both increments before alternating).

6.3. Cancellation Condition

If either of the expressions evaluates to an integer, then the target consecutive cX belongs
to the alternating sequence generated from c, and therefore the number X is considered
composite.

Otherwise, X has not been canceled by that frequency.

6.4. Illustrative Example

Let X = 25. We know that f3(7) = 25, so cX = 7. We want to check whether this value is
canceled by the frequency generated from c = 2.

We calculate:

f1(2) = 15, f2(2) = 7

r1 =
7− 15− 2

15 + 7
=

−10

22
/∈ Z, r2 =

7− 15− 7− 2

15 + 7
=

−17

22
/∈ Z

Neither value is an integer; therefore, the consecutive c = 2 does not cancel cX = 7, and
the frequency generated from it does not affect the number 25.

6.5. Derivation of the Inverse Formulas

To derive the previous expressions, we begin with the alternating sequence generated from a
value c ∈ N, using increments f1(c) and f2(c). The sequence is constructed as follows:
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r0 = c

r1 = c+ f1(c)

r2 = c+ f1(c) + f2(c)

r3 = c+ f1(c) + f2(c) + f1(c)

= c+ f1(c) + f2(c) + f1(c)

= c+ f1(c) + f2(c) + f1(c) + f2(c) + · · ·

Generalizing, for k ∈ N, the elements of the sequence alternate between:

reven = c+ f1(c) + k · (f1(c) + f2(c))

rodd = c+ f1(c) + f2(c) + k · (f1(c) + f2(c))

To check whether a given target consecutive cX appears in this sequence, we set up the
equations:

cX = c+ f1(c) + k · (f1(c) + f2(c)) (even position)

cX = c+ f1(c) + f2(c) + k · (f1(c) + f2(c)) (odd position)

Solving for k, we obtain:

k =
cX − f1(c)− c

f1(c) + f2(c)
(even position)

k =
cX − f1(c)− f2(c)− c

f1(c) + f2(c)
(odd position)

These are the exact formulas that allow us to verify whether a frequency hits the target
consecutive cX , without building the entire sequence.

7. Optimization of the Analysis Range

One of the main benefits of this model is that it does not require evaluating all possible
frequencies, but only those whose mean value f3(c) is less than or equal to a threshold
defined by the target number X.

7.1. Growth of the Functions f1, f2, f3

Given that:
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f2(c) = 2c+ 3

f1(c) = 4c+ 6 + (−1)c

f3(c) =
f1(c) + f2(c)

2

then the function f3(c) grows linearly with respect to c, with small oscillations due to the
term (−1)c in f1(c). Specifically:

f3(c) =
(4c+ 6 + (−1)c) + (2c+ 3)

2
= 3c+

9 + (−1)c

2

This expression allows the value of f3(c) to be estimated directly for any c, and conse-
quently, it determines whether that consecutive index should be included in the analysis for
a given number X.

7.2. Cutoff Condition

The model establishes that only those values of c satisfying:

f3(c) ≤
√
X

should be considered, since any frequency generated from a consecutive c with f3(c) >
√
X

will never reach cX , due to the linear growth of the alternating sequences, which prevents
them from going backward.

7.3. Practical Application

This condition significantly reduces the set of frequencies to be evaluated for a given number.
Instead of performing a full search, it is sufficient to determine the maximum value of c such
that f3(c) ≤

√
X, and to evaluate only those consecutive indices within that range.

In computational terms, this enables an efficient implementation of the model, with much
lower cost than classical methods of factorization or trial division.

8. Predictive Model for Individual Evaluation

8.1. Direct use of the inverse formula

The inverse formula for collision detection, derived in the previous section, allows the evalua-
tion of a number X through its associated index cX , without the need to generate or traverse
any alternating sequence. This makes it suitable as a predictive model on its own, especially
when analyzing isolated values.

The process consists of identifying whether cX is part of the cancellation row generated
from a particular value c. If either of the following expressions yields an integer, then the
number is considered composite:
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r1 =
cX − f1(c)− c

f1(c) + f2(c)
, r2 =

cX − f1(c)− f2(c)− c

f1(c) + f2(c)

8.2. Example: Evaluating X = 25

We know that f3(7) = 25, so the associated consecutive is cX = 7. Let us test whether this
value is canceled by the frequencies generated from c = 0:

f2(0) = 3, f1(0) = 7

r1 =
7− 7− 0

7 + 3
=

0

10
= 0 ∈ Z

⇒The value is canceled by c = 0

Therefore, 25 is correctly identified as composite using only the inverse formula, without
building any sequence.

8.3. Interpretation

This mechanism constitutes a single-number predictive version of the model. It is mathe-
matically equivalent to the full sequence-based cancellation but enables direct analysis with
minimal computation. Its structure originates from the same algebraic reasoning that governs
the cancellation rows, now distilled into a direct decision rule.

9. Empirical Validation with Numerical Examples

The following examples illustrate how the model operates in concrete cases, demonstrating
the primality verification process using frequency-based cancellation.

Example 1: Prime Number X = 13

As shown previously, f3(3) = 13 ⇒ cX = 3. No frequency generated from any c such that
f3(c) ≤

√
13 ≈ 3.605 cancels this value.

Result: Prime

Example 2: Composite Number X = 25

We know that f3(7) = 25 ⇒ cX = 7.
We evaluate possible collisions from values of c such that f3(c) ≤

√
25 = 5, i.e., c = 0, 1, 2.

� c = 2: f1 = 15, f2 = 7 Alternating sequence: 2, 17, 24, 39, . . . cX = 7 does not appear.

� c = 1: f1 = 11, f2 = 5 Alternating sequence: 1, 12, 17, 28, 39, 50, . . . cX = 7 does not
appear.
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� c = 0: f1 = 7, f2 = 3 Alternating sequence: 0, 7, 10, 17, 20, 27, . . . cX = 7 appears.

Result: Composite

Example 3: Prime Number X = 17

We know that f3(4) = 17 ⇒ cX = 4.
We test values c = 0, 1, 2, 3. No frequency generates a sequence that includes cX = 4.
Result: Prime

Example 4: Composite Number X = 35

We know that f3(10) = 35 ⇒ cX = 10.
We test several earlier frequencies:

� c = 3: f1 = 17, f2 = 9 Sequence: 3, 20, 29, 46, . . . cX = 10 does not appear.

� c = 5: f1 = 27, f2 = 13 Sequence: 5, 32, 45, 72, . . . cX = 10 does not appear.

� c = 0: f1 = 7, f2 = 3 Sequence: 0, 7, 10, 17, 20, 27, . . . cX = 10 appears.

Result: Composite

10. Conclusions

This document has formalized an alternative model for detecting prime numbers based on
the generation of cyclic frequencies associated with the sequence 6n± 1. From simple arith-
metic functions defined by an index called the consecutive, frequency pairs are built whose
interaction generates alternating cancellation sequences.

The central criterion of the model establishes that a number X is composite if the index
cX associated with it appears in one of these sequences generated from values c such that
f3(c) ≤

√
X. Otherwise, it is considered prime.

Inverse expressions have been derived and formalized into a predictive tool that enables
the analysis of individual numbers without constructing full sequences. This predictive for-
mulation is fully integrated into the model and shares the same structure as the original can-
cellation mechanism, allowing collision detection without constructing full sequences, which
adds both efficiency and structural clarity to the method. These formulas have been alge-
braically justified based on the general form of the progressions involved.

Furthermore, it has been demonstrated that the mean value f3(c) grows linearly with c,
allowing the analysis range to be limited and significantly reducing the computational cost
of the procedure. This property gives the model a predictable and scalable behavior.

Through numerical examples, the correct functioning of the system has been validated,
demonstrating its ability to distinguish between primes and composites by means of a purely
deterministic approach without requiring factorization.

Therefore, the model constitutes a complete and self-consistent proposal, with potential
for future theoretical extensions — including the characterization of its performance over
large numerical ranges or the formalization of more refined exclusion criteria.
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