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Abstract 

In quantum mechanics, particles have a new type of probabilistic property, which is 

quantum wave probability. The quantum wave probability corresponds to the quantum wave 

entropy. The action in classical mechanics corresponds to the quantum wave entropy. The 

least action principle corresponds to the stationary quantum wave entropy principle. 

Quantum wave entropy creates a bridge between dynamics and thermodynamics. Combining 

the Hamiltonian-Jacobian equation of classical mechanics and quantum wave entropy, we 

can derive the relationship between temperature and time. There is an inverse relationship 

between temperature and time. The phase of the wave function in quantum mechanics 

corresponds to the imaginary action. Combining the imaginary action and quantum wave 

entropy, we can derive the Wick rotation between temperature and imaginary time in 

quantum mechanics, thus explaining the physical meaning of the Wick rotation. Wick rotation 

is only applicable to the stationary state, not universally true. Imaginary time is only a 

mathematical representation and has no real physical significance. 

Keywords 

quantum wave probability, quantum wave entropy, action, least action principle, stationary 

quantum wave entropy principle, Hamiltonian-Jacobian equation, imaginary action, 

temperature, time, imaginary temperature, imaginary time, Wick rotation. 

1. Introduction 

In quantum mechanics, if we compare the time evolution operator with the partition 

function in thermodynamics, we can see that there is a mathematical correspondence 

between temperature and time. This is the mysterious relationship between temperature and 

imaginary time. This transition relationship is known as the Wick rotation. With the use of 

Wick rotation, we can convert the wave function representation of quantum mechanics into 

a thermodynamic representation [1]. 
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However, what is the physical significance of Wick rotation, is Wick rotation universally valid, 

what are the limitations on the use of Wick rotation, and is quantum mechanics really 

equivalent to thermodynamics, these questions have not been answered. 

In the previous paper [2], the authors proposed a new concept of entropy, quantum wave 

entropy. The authors found that using the concept of quantum wave entropy, the Wick 



rotation can be derived. It is found that behind this Wick rotation formula, it actually 

represents the existence of quantum wave entropy. Quantum wave entropy is actually the 

physical property behind Wick rotation. This question can be explained by a reasonable 

reason. The author will explain this answer in detail. 

2. Quantum wave entropy and action 

In the previous paper [2], the authors proposed a new concept of entropy, quantum wave 

entropy. In quantum mechanics, particles have a new probabilistic property. This new 

probabilistic property is inversely proportional to the wavelength of the particle wave. The 

shorter the wavelength of the particle, the greater the probability. Conversely, the longer the 

wavelength, the smaller the probability. For the new probability, there is a following 

relationship between wavelength and probability. 

𝑑𝑝 = 𝛼
𝑑𝑟

𝜆
                                    (1.1) 

The 𝛼  is a proportionality constant. The 𝜆  is the wavelength of the particle. The 𝑑𝑝 

actually represents the probability density within the length of dr. 

In quantum mechanics, a particle has intrinsic properties, such as the spin of a particle. For 

example, the spin of a particle has two possibilities, +1/2 and -1/2, that is, it has two degrees 

of freedom. Particles have this new probabilistic property, so particles have a new type of 

entropy property. The authors call this new type of entropy by quantum wave entropy. The 

density of quantum wave entropy is expressed as follow formula. 

𝑑𝑆 = 𝐷𝜅𝐵𝑑𝑝 = 𝐷𝜅𝐵𝛼
𝑑𝑟

𝜆
                        (1.2) 

The constant D is intrinsic degrees of freedom of the particle. 

Define a new constant 𝜅𝑝 . 

𝜅𝑝 = 𝐷𝛼𝜅𝐵                                  (1.3) 

The formula for quantum wave entropy is (1.4). 

𝑑𝑆 = 𝜅𝑝
𝑑𝑟

𝜆
                                   (1.4) 

Because quantum fluctuation entropy depends on the intrinsic degrees of freedom of the 

particle. Only particles in quantum mechanics have intrinsic degrees of freedom. Particles in 

classical mechanics do not have intrinsic degrees of freedom, so particles in classical 

mechanics do not have the property of quantum wave entropy. Only particles in quantum 

mechanics have the property of quantum wave entropy. 

Based on the concept of quantum wave entropy, we can get the equation (1.5) [2]. 

𝑇 =
ℎ

𝜅𝑝𝑉
𝑎                                   (1.5) 

The T is the temperature of the particle in the case of quantum wave entropy, V is the 

velocity of the particle, a is the acceleration of the particle, and h is Planck constant. When 

the velocity is equal to the speed of light, the formula (1.6) is obtained, which is the Unruh 

formula [3]. 

𝑇 =
ℎ

𝜅𝑝𝐶
𝑎                                   (1.6) 

We can also derive the equation (1.7) [2]. 



𝑑𝑆

𝑑𝑟
= 𝜅𝑝

𝑚𝑉

ℎ
                                  (1.7) 

When the velocity is equal to the speed of light, the formula (1.8) is obtained, which is the 

Verlinde entropy gravitational formula [4]. 

𝑑𝑆

𝑑𝑟
=

𝜅𝑝𝑚𝐶

ℎ
                                 (1.8) 

We can also derive the black hole entropy formula (1.9) [5] [6] [2]. 

𝑆 =
𝜅𝑝𝑅2

𝐿𝑝
2                                   (1.9) 

The R is radius of black hole, 𝐿𝑝 is Planck length. 

For the momentum of a particle, there is the de Broglie formula. 

𝜆 =
ℎ

𝑃
                                    (1.10) 

Take it into the definition formula of quantum wave entropy (1.4), we can obtain the formula 

for the relationship between particle momentum and quantum wave entropy (1.11). 

𝑃 =
ℎ

𝜅𝑝

𝑑𝑆

𝑑𝑟
                                 (1.11) 

We can deduce the following equation (1.12) for the relationship between the action in 

classical mechanics and the quantum wave entropy [2]. 

𝐼 = ∫ 𝐿𝑑𝑡 = ∫(𝑇 − 𝜙)𝑑𝑡 =
ℎ

𝜅𝑝
∫ 𝑑𝑆 =

ℎ

𝜅𝑝
𝑆      (1.12) 

In order to distinguish between action and quantum wave entropy, the symbol I is used to 

identify the action, and the symbol S is used to identify quantum wave entropy. Readers need 

to pay attention to the distinction. 

Therefore, we find that the action corresponds to the quantum wave entropy. Therefore, 

the least action principle (1.13) corresponds to the stationary quantum wave entropy principle 

(1.14). 

𝛿𝐼 = 0                                  (1.13) 

ℎ

𝜅𝑝
𝛿𝑆 = 0                                (1.14) 

In classical mechanics, the least action principle exists as a fundamental assumption. The 

existence of the least action principle seems very mysterious. We don't know why this principle 

works, and we can't find the physical meaning behind this principle. Now, starting from the 

concept of quantum wave entropy, we can find that the action actually corresponds to a kind 

of entropy. Entropy corresponds to probability. Therefore, we can conclude that the least 

action principle is actually the stationary entropy principle, which is the result of probability 

maximization. The evolutionary path represented by the least action principle is actually the 

path with the maximum probability. If the entropy increases, it is the fastest path to increase 

the probability. If the entropy decreases, it is the fastest path to a decrease in probability. This 

is the physical essence of the least action principle. Now, the least action principle is no longer 

mysterious, but is the result of a natural probabilistic evolution. 

3. relationship between temperature and time 

In classical mechanics, the following formulas exist for the action. 



𝐻 = 𝑇 + 𝜙 = −
𝜕𝐼

𝜕𝑡
                         (2.1) 

𝐿 = 𝑇 − 𝜙 =
𝑑𝐼

𝑑𝑡
                          (2.2) 

𝑃 =
𝜕𝐼

𝜕𝑟
                                 (2.3) 

Equation (2.1) is the Hamiltonian-Jacobian equation. For quantum wave entropy and action, 

there is a relational formula (1.12), so we can use quantum wave entropy to express these 

formulas. 

𝐻 = 𝑇 + 𝜙 = −
ℎ

𝜅𝑝

𝜕𝑆

𝜕𝑡
                     (2.4) 

𝐿 = 𝑇 − 𝜙 =
ℎ

𝜅𝑝

𝑑𝑆

𝑑𝑡
                       (2.5) 

𝑃 =
ℎ

𝜅𝑝

𝜕𝑆

𝜕𝑟
                              (2.6) 

In classical mechanics, H is the total energy E of the particle, and there is equation (2.7). 

𝐸 = −
𝜕𝐼

𝜕𝑡
                              (2.7) 

Combining equations (2.4) and (2.7), we get equations (2.8). 

𝐸 = −
ℎ

𝜅𝑝

𝜕𝑆

𝜕𝑡
                            (2.8) 

In the case that E is a constant value, we can get (2.9). 

𝐸𝑡 = −
ℎ

𝜅𝑝
𝑆                           (2.9) 

And because in thermodynamics, there is the following equation (2.10) between 

temperature T, energy E, and entropy. 

𝐸 = 𝑇𝑆                              (2.10) 

 Combining equations (2.9) and (2.10), so we get formula (2.11). 

𝑇 = −
ℎ

𝜅𝑝𝑡
                            (2.11)  

So, we find that in quantum wave entropy, temperature is inversely proportional to time. If 

you want to get equation (2.11), you must satisfy both equations (2.9) and (2.10). Equation 

(2.9) is a property of dynamics, and Equation (2.10) is a property of thermodynamics. So 

equation (2.11) is a result of the combination of dynamics and thermodynamics. The key to 

the combination of the two lies in quantum wave entropy. Quantum wave entropy creates a 

bridge between dynamics and thermodynamics, combining the two so that the particle 

satisfies both equations (2.9) and (2.10), so that equation (2.11) can be derived. Without 

quantum wave entropy, we can't get the equation (2.11). 

A prerequisite for the existence of equation (2.9) is that the total particle energy E must be 

a constant value. If E remains constant, then entropy S increases linearly over time. The 

negative sign is because the energy is negative and has no real physical significance. 

Therefore, equation (2.9) actually represents the result of an increase in entropy. Because in 

thermodynamics there is another equation (2.10), the entropy is increasing, and the energy E 

must remain constant, so the temperature can only decrease accordingly. So we get the 



equation (2.11). So, we found that temperature is inversely proportional to time, which is 

actually the result of an increase in entropy. Therefore, this formula for the relationship 

between temperature and time does not actually have a mysterious physical meaning. The 

real physical meaning is actually entropy increase. 

In quantum mechanics, the wave function of a free particle is 

𝜓 = 𝑒𝑖(𝑘𝑟−𝜔𝑡)                            (2.13) 

𝑖(𝑘𝑟 − 𝜔𝑡) indicates the phase of the particle wave. Using the de Broglie formula for 

particle waves, we can get. 
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𝐼

ℏ
     (2.14) 

𝑖(𝑘𝑟 − 𝜔𝑡) =
𝑖𝐼

ℏ
                          (2.15) 

𝜓 = 𝑒
𝑖𝐼

ℏ                                  (2.16) 

So, we can see that the phase of the wave function actually corresponds to the action. But 

the action in the phase is an imaginary number, so it is actually an imaginary action. There is 

a correlation between the action and the quantum wave entropy in formula (1.12). Therefore, 

there is actually a correlation between the phase of the wave function and the quantum wave 

entropy. Quantum wave entropy is defined by formula (1.2). Quantum wave entropy itself is 

related to the wavelength of particle waves. Therefore, the correlation between the phase of 

the wave function and the quantum wave entropy is not an unexpected result. 

We take formula (1.12) into formula (2.16) and we get the following formula. 

𝜓 = 𝑒
𝑖2𝜋𝑆

𝜅𝑝   

There is an unknown correlation between the quantum wave entropy and the phase of the 

wave function. The entropy in the phase can actually be seen as imaginary entropy. This is a 

topic that deserves in-depth study. 

This inspired us to get a result. The imaginary action 𝑖𝐼 in quantum mechanics corresponds 

to the action 𝐼 in classical mechanics 

So, the above formula (2.7) needs to be turned into formula (2.17) in quantum mechanics. 

𝐸 = −
𝑖𝜕𝐼

𝜕𝑡
                               (2.17) 

Repeat the derivation process in formula (2.11) above. When E is a constant value, so 

𝐸𝑡 = −𝑖𝐼  

𝐸𝑡 = −
𝑖ℎ𝑆

𝜅𝑝
  

𝐸 = 𝑇𝑆  

So we get formula (2.18). 

𝑇 = −
𝑖ℎ

𝜅𝑝𝑡
                              (2.18) 



Formula (2.18) is the result in quantum mechanics. Because in the wave function formula 

(2.16) of quantum mechanics, the action is an imaginary number, which is the imaginary action. 

Formula (2.18) is actually an imaginary number expression, not a real physical expression. The 

real physical expression is actually the formula (2.11). Formula (2.18) is only a mathematical 

representation, not a real physical relationship. In real physical processes, the physical 

relationship between temperature and time is formula (2.11). There is no such thing as 

imaginary time. Imaginary time is only a mathematical concept, and there is no imaginary 

time in real physical processes. Because the temperature in (2.18) is derived from the 

imaginary entropy, this temperature can be regarded as the imaginary temperature. Actually, 

time is not imaginary, but temperature is imaginary. 

Formula (2.18) is the hypothetical Wick rotation in quantum mechanics. The Wick rotation 

was introduced as a hypothetical condition. But the physical meaning it represents has not 

been known. Now we find out that the physical meaning behind this assumption is actually 

quantum wave entropy. The establishment of formula (2.18) actually contains three theories. 

First, the theory of action in classical mechanics. Second, the relationship between the action 

and the quantum wave entropy. Thirdly, phase in quantum mechanics is an imaginary action. 

Formula (2.18) can only be true if these three properties are satisfied. 

We also find that in quantum mechanics, in the formula (2.18) for the relationship between 

temperature and imaginary time, it is not the Boltzmann constant 𝜅𝐵 . It's actually a new 

constant 𝜅𝑝 . The relationship between the two constants is formula (2.19). 

𝜅𝑝 = 𝐷𝛼𝜅𝐵                              (2.19) 

The new constant  𝜅𝑝 represents the property of quantum wave entropy. The constant D 

represents the intrinsic degrees of freedom of the particle. For example, spin is one of the 

intrinsic degrees of freedom. Different types of particles may have different intrinsic degrees 

of freedom. The constant 𝛼 is a probability constant. So, different particles have different 𝜅𝑝 

values. But for particles of the same type, the value of 𝜅𝑝 is always the same and is a constant. 

We can see that the temperature included in formula (2.18) is not the classical 

thermodynamic temperature. Although this temperature is defined by formula (2.10), it is the 

same as the temperature definition formula in classical thermodynamics. But the entropy S in 

formula (2.10) is not the entropy in classical thermodynamics, but a new type of entropy, 

which is the quantum wave entropy. The quantum wave entropy is defined by formula (1.2). 

The probability distribution in formula (1.2) is different from the Boltzmann probability 

distribution in classical thermodynamics. The probability distribution in formula (1.2) is not a 

Boltzmann distribution. Readers need to be aware of the difference between the two 

probability distributions. 

The probability distribution in formula (1.2) is a special property of particle waves. Only 

particles in quantum mechanics have this special property. Therefore, quantum wave entropy 

is a type of entropy unique to quantum mechanics and does not exist in classical 

thermodynamics. 

The temperature in formula (2.18) can be referred to as the quantum wave temperature. 

Although quantum wave temperature is different from classical thermodynamic temperature, 

both have the same thermodynamic properties, both of which are defined by formula (2.1). 

Both of these different types of temperatures are in accordance with the theory of 

thermodynamics. Therefore, we can find that the theory of thermodynamics has a very wide 



applicability. The probability in thermodynamic theory is not only the Boltzmann distribution, 

but also other different probability distributions. Different probability distributions can bring 

about different thermodynamic properties. 

For each eigenstate of the particle, the energy E is a real number, no longer an imaginary 

number, and remains constant, so it satisfies formula (2.11). 

Throughout the above derivation, we found that quantum wave entropy plays a key 

bridging role. Quantum wave entropy creates a bridge between dynamics and 

thermodynamics. With this bridge, dynamics and thermodynamics are no longer independent 

of each other, but can be related to each other. When the two are connected, they can answer 

a lot of questions and bring a lot of new perspectives. 

The use of formula (2.10) may be questioned. Why use the formula E=TS instead of the 

formula dE=TdS? If the formula dE=TdS is used, the above derivation process cannot be 

established. There are two reasons for this. First, the precondition for energy E to satisfy 

formula (2.9) is that the E must remain constant. Second, in quantum mechanics, the 

correspondence between temperature and imaginary time is obtained by analogy with the 

time evolution operator 𝑒−
𝑖𝐸𝑡

ℏ  and the partition function  𝑒
−

𝐸

𝜅𝐵𝑇 . It must be a stationary 

state in order to get the time evolution operator of the form 𝑒−
𝑖𝐸𝑡

ℏ  . So, for a stationary state, 

E is a constant value, dE=0. So, obviously, when we discuss this issue, we can't use the formula 

dE=TdS, we can only use the formula E=TS. Therefore, formula (2.18) only applies to 

stationary states. 

Note that in the derivation of formula (2.18) above, the energy E satisfies formula (2.9). So, 

here the energy E of the particle contains potential energy, not pure kinetic energy. 

As discussed above, in quantum wave entropy, there is a radiant temperature for particles 

moving at an accelerated pace. The radiation temperature is formula (1.5). In the case of 

uniformly accelerated particles, there is also an inverse temperature-time relationship. 

𝑇 =
ℎ

𝜅𝑝𝑉
𝑎 =

ℎ𝑎

𝜅𝑝𝑎𝑡
=

ℎ

𝜅𝑝𝑡
                   (2.20) 

In the derivation of this formula, the energy E is taken as a positive value. If we take the 

energy E as a negative value, we get a negative sign, which is the same as formula (2.11). 

Although the derivation of formula (2.20) uses the uniform acceleration condition of V=at. 

However, it can be seen that the final result in formula (2.20) does not include acceleration a, 

and is not related to acceleration a. Therefore, formula (2.20) can actually be applied to all 

cases of accelerated motion. Note that in the derivation of formula (2.20), neither the energy 

E nor the entropy S of the particle contain a potential energy component. Readers need to 

be aware of the differences in different situations. 

Formula (2.20) can also be used for experimental testing of quantum wave entropy. In 

contrast to the experimental instruments that are moving at an accelerated pace, all other 

particles are moving at an accelerated pace and have a radiation temperature. Therefore, the 

accelerated motion of the experimental instrument will detect a background radiation 

temperature that satisfies the formula (2.20). 

So, we can find that there is an inverse relationship between quantum wave temperature 

and time, and this seems to be a universal property. This is a topic that deserves further in-



depth study. 

4. Conclusion 

As can be seen from the above derivation process, using the concept of quantum wave 

entropy, we can simply deduce the Wick rotation in quantum mechanics. The existence of 

Wick rotation represents the existence of quantum wave entropy. Quantum wave entropy 

creates a bridge between dynamics and thermodynamics, thus correlating temperature and 

time, resulting in the Wick rotation. This reveals the physical meaning behind Wick rotation. 

Imaginary time is only a mathematical representation, and there is no real imaginary time. In 

real physical processes, the relationship between temperature and time is formula (2.11). It is 

also found that there are also valid prerequisites for Wick rotation, which can only be applied 

to the stationary state. Wick rotation is not an unlimited way to use it everywhere. 

In the process of derivation, we found a correlation between the phase of the wave function 

and the quantum wave entropy, and what is the physical meaning behind this correlation, 

which is worth further studying. The inverse relationship between quantum wave temperature 

and time seems to be a universal property. The new concept of quantum wave entropy can 

bring answers to many questions and bring a lot of new thinking, which needs to be further 

studied. 
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