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Abstract

The Norton Dome is a beautiful  problem in theoretical physics that is  supposed to
challenge at  the same time the principles  of  causality,  inertia  and determinism in
Newtonian mechanics.  A static  undeformable ball  at  the top of  a dome of  a given
shape seems to move spontaneously at a random moment, without the help of any
external net force. We try to show here that the perfect rotational symmetry of the
problem has not been taken into account as it should be in its solving. In this approach,
we distinguish between trajectory study plan and real trajectory plan: the section of
the dome in which the object will evolve or not isn't the result of a free choice or a
probability but the pure consequence of physics. The differential equations of motion
integrated over the entire dome precisely tell us that, if it moves, the ball should take
all directions, which brings us back to a basic contradiction, not with determinism or
completeness  of  Newtonian  theory,  but  between  the  indeterministic solutions
themselves: then, under penalty of ubiquity of the ball, its permanent immobility at the
dome’s  summit remains,  in  accordance  with  the  principle  of  inertia,  the  unique
physical solution to the Norton’s paradox. That will be confirmed by the analysis of six
historical cases, followed by a version of Cauchy-Lipschitz's uniqueness theorem for
non-Lipschizian  systems.  Finally,  the  inertia  principle  of  Newtonian  physics  will
become a mathematical theorem. 
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[Note to reader:] 

This  is  the  3rd version  of  the  original  article.  The  original  text  has  been  globally
preserved. The main additions are:

1. A new Section 4 for extended study: "Historical Cases Revisited" analyzing classical
examples (Poisson, Duhamel, Boussinesq, Bertrand) through the lens of the method
proposed in this work;

2. A mathematical interlude on the Cauchy-Lipschitz/Picard–Lindelöf's theorem.

3. The  mathematical  formulation  of  an  equivalent  of  the  latter  theorem  for  non-
Lipschitzian equations in Section 5;

4. An updated bibliography.

Plan 

1. Introduction to the Norton's Paradox.

2. Taking into account the rotational symmetry.

3. Physical solution of motion.

4. Historical cases revisited.

5. The principle of inertia as a mathematical theorem.

Conclusions.
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1. Introduction to the Norton's Paradox.

 As  early  as  the  19th  century,  scientists  discussed  the  validity  of  Newtonian
determinism,  which  had  been  elevated  to  sacred  dogma  a  century  earlier  by
Laplacianism (van  Strian,  2014). They  revealed  multiple  solutions  to  certain
differential equations arising from the fundamental principle of dynamics, whereas
determinism dictated one and only one behavior of a moving body in a force field
based  on  given  initial  conditions.  In  the  midst  of  the  rise  of  spiritualism,
mathematical  objects  in  turn  began  to  levitate  or  slide  on  their  own,  free  wills
awoke in  matter,  and  'phantom actions'  were  reported at  the  very  heart  of  the
austere  rationalism of  classical  physics.  Even the traditional  distinction between
cause and effect was no longer a given.

However, the fires and blows struck against the cathedral of determinism by these
few poltergeists of science were considered anecdotal. "Abnormal" solutions only
appeared  in  situations  that  are  themselves  "exotic",  imaginary  forces  or  infinite
systems of masses pushed to the extreme...until an article by John Norton (2003)
where  he  presents  the  entirely  credible  case  of  indeterminism  of  a  ball  in
equilibrium  placed  at  the  top  of  a  dome  of  well-defined  shape  in  a  most  banal
gravity field:

In the following, we will say indistinctly particle, mass, ball, object…to speak about
the unit mass point. First, J. Norton classifies the notion of causality into what he
calls "folk science". He supports his thesis with this dome (Norton, 2003): 
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It turns out that the dome problem does not satisfy at its summit the conditions of
the famous theorem of Cauchy-Lipschitz of 1868 (also named the Picard-Lindelöf
theorem:  we  will  use  both  appellations  interchangeably)  on  the  uniqueness  of
solutions to differential equations of the type: r̈= f (r (t )) with initial conditions

r (0)=r0 and ṙ (0)=v0 .

Mathematical Interlude: The Picard–Lindelöf Theorem

a) Picard–Lindelöf Theorem (Cauchy–Lipschitz) Statement (first-order 
ODE)

Let us consider the differential equation:

dy
dt

= f (t , y)

with the initial condition  y(t₀) = y₀, where  f is defined on a domain D⊆ℝ×ℝ n and
takes values in ℝ n .

Assumptions:

There exists a neighborhood of (t₀, y₀) such that:

1. f(t, y) is continuous;

2. f(t, y) is Lipschitz continuous with respect to y, that is:

  ‖ f (t , y₁ )− f (t , y₂ )‖≤ L · ‖ y₁ − y₂ ‖ ,

  for all y₁, y₂ in a neighborhood of y₀, and for some constant L > 0.
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Conclusion:

Then there exists a time interval I = [t₀ − ε, t₀ + ε], with ε > 0, and a unique solution y(t) 
defined on I, of class C¹, such that:

  
dy
dt

= f (t , y (t )) , with y(t₀) = y₀.

b) Extension to Second-Order ODEs

Consider the second-order equation:

d²y
dt²

= f (t , y , dy
dt

)

Let us define a new variable v(t) = dy/dt. Then we rewrite the system as:

  
dy
dt

=v

  
dv
dt

= f (t , y ,v )

This is a first-order system in two variables:

  
dY
dt

=F (t ,Y ) , where Y=( y , v)

Assumptions:

If f (t , y , v ) is continuous and Lipschitz continuous in (y, v), then the system has a 
unique solution near the initial condition.

c) Special case: autonomous second-order ODE

Suppose the equation is autonomous, i.e time-independent:

d²y
dt²

= f ( y )

Then define v= dy
dt

. The system becomes:

  
dy
dt

=v , dv
dt

= f ( y)

If f ( y ) is  Lipschitz  near  the  initial  condition  y₀,  then  the  system  has  a  unique
solution.

On Norton’s dome, the governing equation is:
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d 2 r

dt2
=√ r

Given that the net force on the right-hand side of the dynamics differential equation is the
square root of the curvilinear abscissa r, therefore not differentiable at zero with respect
to r, the Lipschitz condition is not satisfied. 

In other words, f (r )=√ r is not Lipschitzian in r = 0 since:

  lim r →0

(√ r )
r

=∞

⇒ the theorem does not apply. 

 Multiple  solutions  of  the  movement  are  then  to  be  expected.  And  this  is  what
happens…Norton deduces an infinity of possible solutions: the mass seems capable
of moving without cause in any direction and at an arbitrary instant. More precisely,
a unitary point mass, initially at perfect rest, will slide without friction, delivered to
the sole force of its tangential weight, along the wall of a dome of equation :

 In the polar coordinate system attached to the point, the weight vector  P has the
following components:

 where  θ is the angle between the tangent to the dome at a given point and the
horizontal x. We then obtain the following relations:
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from  which  we  deduce  the  dynamic  equation  of  the  point  identified  by  its
curvilinear coordinate r:

 The reaction R of the support, directed along the normal to the tangent vector, in
turn verifies the equation and the inequality :

The 2nd condition allows the mass to remain in contact with its support. It is clear
that r is positive and must remain less than g², but the mass takes off as soon as its
speed exceeds a certain critical value depending on r :

 We then obtain two types of  solutions to  our  differential  equations.  One is  the
classical solution of rest for all t of the mass at the top :

 The other new family of solutions that Norton derives is the following :
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In other words, at any instant T, the ball at rest, in perfect equilibrium between its
weight  and  the  reaction  of  the  support  (therefore  a  zero  net  force),  leaves  its
summit and begins to slide without any added physical intervention. There is an
apparent violation of causality (no reason for the movement) and of the principle of
inertia according to which any mass at  rest or in uniform rectilinear translation
perseveres in its state as long as no external net force acts on it.

Another issue is how such a breaking of symmetry (a random trajectory starting
from  the  top)  can  occur  in  such  a  perfectly  symmetrical  problem ?  Newtonian
mechanics should respect the famous principle of symmetry…In reality, as we will
see,  the  latter  also  applies  to  problems  with  multiple  solutions  when  these  are
superimposed. This is the case for Norton's possible dynamical solutions around the
axis. 

But the fact that  T is arbitrary also implies a contradiction with determinism: the
same initial state seems to lead to an infinity of possible trajectories. According to
Norton, indeterminism is declared but the principle of inertia would be safe because
no force is exerted on the ball at the « excitation time » t=T and outside there is no
first instant where the movement would not be accompanied by a force.

This idea would be questionable in itself if we consider that the force (collinear to
acceleration)  "precedes"  the  velocity  and  position  of  the  movement.  Indeed,  by
deriving the position r(t) repeatedly with respect to time, a constant appears at the
4th derivative:

While everything else is at rest, something seems to be brewing at the level of the
"acceleration" of the net force at t=T (called the jounce), which will "then" impact (in
the reverse order of successive integrations) the force itself,  then the speed and
finally the position from the following instant T+ = T + dT. 

We find ourselves in a weird situation where the principle of inertia would be never
violated "punctually" (at any instant t) but always "globally" (between two instants
T and T+ > T), since no external net force, apart from the two forces in equilibrium
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at the initial time, acts on the system at rest, nor later when it starts. It is not certain
that this last formulation is not in real contradiction with the definition of the inertia
principle or one of its consequences.

In fact, the principle of inertia considers in a sense as « internal » the forces exerted
on  the  initial  system  in  equilibrium  (rest  or  pseudo-equilibrium),  to  be
distinguished from the « external » forces of which it speaks that would disturb this
system at a later time. 

In the case of the dome, knowing that no force other than the actions of the weight
and the support  on the object  intervenes at  any moment of  the experiment,  the
movement is only a result of the « internal » forces of the initial moment, without
any external disturbance, hence its spontaneous nature by definition.

In this sense, there is indeed a contradiction between the spontaneous solutions of
the Norton dome and the principle  of  inertia  -  whose corresponding solution is
r(t)=0 for  all  t.  But  knowing  that  both  come  from the  resolution  of  Newtonian
equations,  it  then  becomes  difficult  to  say  which  one  should  be  dismissed  as
unphysical, or at least contrary to the physical formalism used.

One would need here a sort of impartial arbiter, outside of strict Newtonian physics,
to  decide between them – a  referee who will  be  sought  further  in  some logical
consistency of  physical  movement.  In  our  view,  the  Norton’s  dome is  definetely
more  remarkable  for  its  spectacular  and  rather  unprecedented  violation  of  the
inertia principle than for its indeterminism (the latter not being rare in problems
like those of the three-body type).

Besides,  Norton's  approach  has  also  be  criticized  for  forcibly  ‘agglutinating’
heterogeneous solutions with different initial conditions (the lasting rest of the ball
where all the quantities are zero up to time T, and its movement from a pseudo-rest
at  T where the acceleration of the force would be equal to  1/6), which would be
contrary to good practice in physics (G. Davies, 2017). 

However, this counter-argument does not quite hold up if we limit ourselves to the
case T=0, with then only one type of solutions and only one set of initial conditions,
although the paradox persists.  Furthermore,  laws of  motion have been perfectly
applied on the half-profile: nothing indicated the subsequent emergence of these
position derivatives of order higher than two in the initial state.

Then, we will see that the truth may lie elsewhere...
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2. Taking into account the rotational symmetry.

The  crucial  moment  when  geometry  is  mentioned  in  Norton's  article  is  in  the
following passage:

 

We  will  discuss  this  postulate  according  to  which  the  physical  direction  of  the
mobile’s trajectory could be modeled by a uniform probability law of the type dP =
d /360°φ , with φ the angle of rotation around the vertical axis h. 

Of course, nothing prevents choosing a study section in the sense of a work plan (e.g.
a profile view of the dome) to apply the laws of physics and predict the direction
that the ball will follow at the top, hence the real section of its evolution. But these
two types of direction, one (free) for the study of the problem, the other (imposed)
that the laws of motion dictate to us, must not be confused: it is unjustified here to
freely assign a direction (certain or probable) to the mobile since it is up to physics
to  say  so.  The  latter  is  full  of  examples  (electromagnetism,  inertial  forces  in  an
accelerated frame, Coriolis forces, etc.) where the direction followed by the object
does not belong to the work plan.  

Yet  we  find  this  confusion  between  physical  direction  and  study  direction
recurrently in the literature related to the dome by reading that the mass at rest
begins to slide spontaneously from the summit in an "any direction". In the problem
that concerns us, Norton himself obtained two types of possible physical solutions
for each study section/plan/direction:

1. Constant rest for all t,
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2. Rest until t < T, then “acausal” movement (at time T) in the same
direction.

      It is to this "binary" rule of the game that we will have to limit ourselves. For each of
the directions around the vertical  axis,  nothing in  the  Newtonian physics  of  the
dome indicates the possibility for the object to behave differently, let alone follow
the direction of our wishes.  For the physical analysis, intuition guides us to a section
of the dome. 

      On the chosen half-profile of study, all the forces in play – including the zero initial
conditions – are coplanar: the fundamental principle of dynamics then implies that
any possible  movement  of  the  mass  will  take place  exclusively  on this  common
plane, that of the study. The same reasoning being valid for any section around the
axis  of  rotation  of  the  dome,  physics  leads  to  a  single  possible  conclusion:  the
ubiquity of the mobile particle on the dome.

Now,  if  we  crudely  count  all  the  study  directions  to  reconstruct  the  dome  by
revolution around the  h axis, what do we obtain in terms of the kinematics of the
mobile? An infinity of  trajectories covering more or less the dome, some always
remaining at the top, others starting at distinct or non-distinct times T (an infinite
"excitation time"  T being equivalent to the resting state of the particle). From the
point  of  view  of  the  cylindrical  or  rotational  geometry  of  the  dome,  all  these
trajectories or states of rest are carried out simultaneously by the mass.

This panorama offers us a space of extremely heterogeneous kinematic possibilities,
unless we accept the principle of  symmetry,  known as Neumann-Curie's (1894):
“lorsque  certaines  causes  produisent  certains  effets,  les  éléments  de  symétrie  des
causes doivent se retrouver dans les effets produits. Lorsque certains effets révèlent
une certaine dissymétrie, cette dissymétrie doit se retrouver dans les causes qui leur
ont donné naissance”, in other words: when certain causes produce certain effects, the
effects have at least the symmetry of the causes.  In the case of multiple solutions to
the  problem,  the  « effects »  are  to  be  taken in  the  sense  of  superposition  of  all
possible solutions.

Here – which avoids entering into the debate on the relevance of the concept of
causality – the causes are to be understood simply as a combination of the geometry
of the problem and forces in play at the initial moment (in this case, a dome, gravity
and  the  reaction  of  the  support),  and  the  effects  as  the  future  evolution  of  the
system.  Their  perfect  symmetry of  rotation implies  the  perfect  symmetry of  the
trajectories of the mobile around h. 

11



At this point, there are only two main solutions on the whole dome: either the mass
at  the  top remains at  rest  indefinitely,  or  it  takes  all  directions at  once to  slide
spontaneously along the wall at the same time T following the same law of motion
according to a perfect choreography (the centers of gravity G forming a uniform ring
descending the dome at the same speed) :

Yet,  on the one hand, Norton's set of possible solutions around the rotation axis
(whose  juxtaposition  covers  exactly  the  entire  dome)  respect  the  principle  of
symmetry  as  much  as  the  set  of  contradictory  solutions  –  this  is  an  accepted
extension  of  the  Curie's  principle.  On  the  other  hand,  invoking  the  principle  of
symmetry is not necessary to reveal the whole contradiction above of the evolutions
of a mass supposed to move without cause.

To  summarize  all  the  cases,  the  particle  does  not  suffer  from  manifest
indeterminism  in  time  but  from  hidden  ubiquity  in  space:  if  it  does  not  go
"nowhere", then it goes "everywhere" - and vice versa.  We have every good reason
to eliminate the last solution, at least out of respect for the classical principle of non-
contradiction,  valid even in quantum mechanics,  which prohibits  the same point
from following several  simultaneous trajectories  (there is  also a  violation of  the
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principle of conservation of total energy which becomes infinite with an infinity of
masses in motion, etc. but we will not discuss it). 

No conflict with Newtonian formalism, the principle of inertia, or that of sufficient
reason, no incompleteness of physics, are necessary here: the particle must remain
at rest,  unless we endow it  with a mystical  or  paranormal property of  ubiquity,
where its localizations contradict each other.

Let’s  test  mathematically  this  view  on  a  particular  section,  namely  a  complete
profile of the dome. In order not to impose the movement of the particle on the left
or right side, we’ll  let the curvilinear coordinate take negative values, calling it  s
(zero-valued variable at the top). A polar coordinate system (ur, uΘ) adapted to this
relative coordinate s is chosen. The dome’s curve will have equation:

We can then easily  verify  –  considering  each half-profile  –  the  new equation of
motion on this complete dome profile:

which amounts of finding a C² positive function of time. The following solutions are
derived from Norton's:

Now this different approach involves the absolute value of s. This is convenient so as
not  to prejudge the physical  direction that  the mobile  will  take.  The parametric
representation in time of these solutions clearly shows us the displacement of mass
on both sides of the dome at once: 
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Over this entire dome study section, it is confirmed that Newtonian physics obeys
the principle of symmetry in the strong sense of a ubiquity of the particle and not of
the multiplicity of solutions. Norton’s solution for s ≥ 0 is only a window that hides
the global view of the entire solution s and its contradictions over the dome profile.
In the current solutions for |s|, there is no probability or arbitrary choice between
the two directions: it is merely a contradiction. 

Furthermore, this contradiction is repeated all around the axis making all Norton
solutions contradictory: we see that clearly by posing our curvilinear abscissa as a
function of both time and rotation angle φ, i.e. s = s(t, )  φ – solving the differential
equation above gives identical results.  

At no time is it a question of the particle moving towards a section other than the
study section, no transverse force appears in the dynamic balance: the differential
equations do not describe a possible trajectory of the ball on the study plane but its
only possible trajectory on the dome. However, all study planes say paradoxically
the same thing. 
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Besides,  by deriving the double-direction solutions  |s|,  we find all  the quantities
zero at t=T, except both (now the « dissociative » nature of the ball appears from its
very initial state):

d4 s/dt4 = 1/6

 d4 s/dt4 = -1/6

Finally, the icing on the cake: the above demonstration itself can be transposed to
any other non-zero mathematical solutions of motion  r*(t)  defined on the positive
half-profile of the dome – other than the Norton solutions – and some interval I of
time to show that these solutions are physically impossible. It suffices to solve the
fundamental  equation  of  dynamics  with  |s| =  r* on  a  complete  profile,  hence
respectively s(t) = r*(t) and s(t) = - r*(t) for all t in I, on each side of the profile. It
even works for a sign-changing trajectory of  r* by isolating the purely positive or
negative parts.

Similarly for a half-profile, we will find the same paradox between rest on one side
and motion r*(t) of the mass on the other. We can conclude that the continuous rest
solution is the only well-defined and physically valid mathematical solution to the
dome problem. Such a result will be generalized in Section 5.

3. Physical solution of motion. 

 Can we remedy this inconsistency of the motion solutions to the dome problem?
Yes, provided at least that we destroy the initial symmetry of the problem, since this
rotating geometry (the shape of the dome and the state of rest of the mass) itself
creates the paradox.

By applying symmetrical forces of the same intensity all around the particle, except
in the desired direction of motion, all the forces cancel each other out in pairs except
for one:  the particle is  allowed to move physically in a precise direction and no
longer  spontaneously,  but  with  the  help  of  an  initial  net  force.  All  other
contradictory trajectories should thus be eliminated:
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One  could  also  wonder  if  it  would  not  be  enough  to  cut  the  dome  like  a  cherry  cake,
replacing the additional forces with "vacuum" to stop the particle... Except that then nothing
would  prevent  Norton-type  acausal  solutions  (with  non-zero  initial  "reactivity"  but
undetectable in acceleration, speed and position) from "making the latter move by itself" in
other directions to regain its magical ubiquity.

Here, we should perhaps clarify a little more the case of a simple half-profile: one
can always see it as a complete asymmetrical profile, with a half-profile on the right
(the dome) and a half-profile on the left, for example the ball at rest at  t=0 (x0=0,
h0=0) on a platform overlooking a vertical precipice in a  gravity field – which is
tangentially zero therefore Lipschitzian. We then solve the fundamental principle of
dynamics on each side,  wondering what global physical movement the ball would
follow on this half-plane of study.

On the right, solutions would be the ball starting to spontaneously descend the wall
of the dome at any time (Norton’s solutions), or the ball staying continuously at rest.
On the left, even assuming that there is no acausal motion towards the precipice, the
fundamental principle gives:

 On the x axis : d2x(t)/dt2 = 0, then after integration : x(t) = 0

 On the h axis : d2h(t)/dt2 = g, then after integration : h(t) = gt2/2

It appears that on the right side the only solution compatible with our initial rest
conditions would be : x(t) = 0 and h(t) = 0 for all t (standing rest at the apex because
the mass cannot fall into the precipice).
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Now, by bringing together these two behaviors on both sides for the same ball, the
paradox still arises that the object would start towards the right but would remain
at rest at the same time. Thus it seems that even by eliminating the possibility of a
solution  of  acausal  motion  to  the  left,  even  without  any  mention  of  the  Curie
symmetric principle, the fact of successively considering the half profile seen from
the right, then seen from the left would still give rise to contradictory displacement
solutions.

Moreover  this  approach  doesn't  just  suppose  the  validity  of  the  principle  of
symmetry for the dome but it demonstrates it as a consequence of the Newtonian
formalism (see section 2). Taking into account the symmetry of the dome teaches us
that for a particle in acausal motion everything can change according to the space to
be studied. 

Considering only a half-profile of the dome would not allow those contradictions
inherent  in  spontaneous  physical  behavior  to  disappear.  The  possibility  of  a
precipice on the other side of the half-dome must be eliminated and replaced by a
directed force to prevent the ball from remaining at rest or falling into the void.

 On a half-profile of the dome (which is the pattern to rotate to restore the complete
dome), we get for T=0:
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This initial force F(t=0) could be for example the reaction of a wall against which 
the mass would be placed. It acts as a non-zero jerk force. This time, the symmetry is
broken, the ball will have only one direction to follow.

Let’s mention that Norton proposes another way to obtain his "acausal solutions":
he asks to consider a mobile starting from the bottom of the dome to which we
would impart an energy or initial speed sufficiently calibrated to hoist it exactly to
the top. If we reverse the movement we would find, by the well-known principle of
time  invariance  of  Newtonian  differential  equations,  the  spontaneous  sliding
movement of the mass in question (Norton, 2003):

However, as we saw above, this would be forgetting that the solution obtained by
time inversion is not the only trajectory starting from static conditions but, after
analysis  of  the  rotational  symmetry  of  the  problem,  one  among  an  infinity  of
simultaneous trajectories covering the surface of the dome. 

Certainly, only one trajectory starting from the top will arrive at the bottom with the
velocity  vector  in  the  exact  opposite  direction  to  that  of  the  initial  projection
experiment but, without this arbitrary "final condition", nothing will forces the static
particle  at  the top to take this  one direction rather  than another (an infinity  of
others...).

Finally, we would be curious to have an idea of the physical solution with non-zero
initial force  F0 in a certain direction. Here we set  T=0. A rich study of the Norton
dome problem (D. Malament, 2007) shows that if the mass is not at zero speed at
the top for t=0, it will detach from the wall at the slightest movement.

Then applying  F0,  what  will  happen at  time  t1= t  Δ close  to  t=0?  To ensure  the
adhesion of the mass, the following inequality must be verified (see section 1):

Limited developments in the neighborhood of zero give us:
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Hence :

 For T1 = t Δ sufficiently small, we then observe that (dr/dt)²/√r is indeed bounded above 
by g² – r, which verifies the sliding condition at least up to t1 > 0.

4. Historical Cases Revisited.

We are going to analyse in depth those six cases (extracted in particular from the
work of M. van Strien, 2014) through the prisme of the ubiquitous method proposed
in this work.

CASE 1 - Poisson (1806) — Force F (r )=c.ra with 0< a< 1

Poisson seems to be historically  the first  scholar to study multiples solutions of
newtonian differential  equations,  leaving open the possibility  that  they could be
encountered in the physical  world.  He studied non-Lipschitzian forces before its
time (the Cauchy-Lipschitz theorem would only begin to emerge decades later...).
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Starting  from  the  differential  equation  of  a  classical  unit  mass  particle  in  a
rectilinear motion subject to an accelerating force F (r )=c.r a , with r the distance
from the origin, a and c constants, 0< a< 1, he gets: 

d²r /dt²=c.ra

at zero initial conditions for position and velocity: r (0)=0,r ′ (0)=0.

This equation admits both the trivial static solution : 

r (t )=0 , ∀t

and a family of spontaneous motion solutions for arbitrary time T: 

r (t )=A(t−T )2 /(1 – a) for t ≥ T , with A constant. 

First, one could consider a circular symmetry, as for the Norton's dome, or just a
mirror symmetry to complete the real axis for the coordinate r in one dimension.

Then, by extending to a signed coordinate s,  the equation becomes:

• For s⩾ 0 : 

d 2 s (t)
dt 2 =c⋅sa(t )

• For s⩽ 0 :

d 2 s (t)
dt 2 =−c⋅(−s(t ))a

thus, after symmetrization using s→ | s |  :

¨| s |(t )=c⋅| s (t ) |a

from which we obtain both solutions s(t ) and −s(t ) as valid, leading to spatial
ubiquity, i.e. simultaneous departures in opposite directions.

But, even without symmetrization, we show a half-profile contradiction: applying
Newton’s laws on a left domain with purely vertical force (no tangential field  ⇒
Lipschitzian force with respect to the variable s⩽ 0 ) yields persistence at rest as
the unique solution at left side – which is nothing other than the inertia principle:

d²s /dt²=0   ⇒ s(t )=0

while  the  right-side  solution  permits  spontaneous  departure.  This  contradiction
cannot be resolved without imposing a directional force.
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A single rigid object governed by Newtonian laws cannot behave differently across
adjacent  domains:  the  model  is  thus  physically  inconsistent,  but  the  hidden
contradiction only appears by geometrically extending the space of the system.

CASE 2 : Poisson (1806) : friction-like Force F (u)=−d √ u

A unit-mass particle is subject to a non-conservative force that depends here on 
speed u, not position: 

  F (u)=−d √ u ,
with u≥ 0, d a constant

which leads to the differential equation of movement: 

r̈ (t )=−d √ ṙ (t)

r (0)=0, ṙ (0)=0.

Depending on the sign of  d, this applied force is oriented along the velocity vector
(driving force) or opposite (braking force).

Again, a static solution:

  r (t )=0, ∀t.

By posing: 

u(t )=ṙ (t )

This equation becomes:

  u̇(t )=−d √ u(t )

If d ⩽ 0 and t ⩾ T :  

  ∫ du

√ u
=−d∫ dt

⇒ 2 √ u=−d (t – T )

⇒ u(t )= d 2

4
(t−T )2

We get non-trivial solutions for t ≥ T , with arbitrary time departure T:

  ṙ (t )= d 2

4
(T −t )2

  r (t )= d 2

12
(T−t)3
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Velocity is increasing from u(T )=0 to u(t )> 0.

But  for d ⩾ 0, we  get  a  field  of  frictional  (decelerating)  forces.  If

u(T )=K> 0, t⩾ T  and t ⩽ T+ 2 √ K
d

:

∫ du

√ u
=−d∫ dt

⟹ 2 √ u – 2√ K=−d (t – T )

⟹ u(t )=( √ K− d
2
(t−T ))

2

Non-trivial  solutions  are  then  decelerating  movements  from r (T )=R to

r=R+ 2
3d

√ K :

ṙ (t )=[ √ K – d
2

(t−T )]
2

⟹ r (t )=R+ 2
3d

K √ K – 2
3d [ √ K – d

2
(t – T )]

3

 

By modifying d, one obtains trajectories with spontaneous motions, braking, stops
or restartings. 

As force  is  only studied by Poisson for u(t )=ṙ (t ) ≥ 0, one can extend it  to  the
whole  real  axis  of  speeds  by considering  (with variable v the  signed version of
velocity u):

•  v ⩾ 0 (the particle moves towards the s> 0 ) :

v̈ (t )=−d⋅√ v (t )

• v  0 ⩽ (the particle moves towards the s< 0 ) :

v̈ (t )=+ d⋅√ −v (t )

Then, joining both cases:
¨|v |(t )=−d⋅√ | v (t) |

If d  0 ⩽ for example (driving force), solutions become: 

v+ (t )=+ d 2

4
(T−t )2

v− (t )=− d 2

4
(T−t)2

Trajectories are then:
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  s+ (t)=+ d 2

12
(T – t )3

 

    s−(t)=− d 2

12
(T−t )3

Here  appears  the  same  contradictions  as  above:  the  system  allows  arbitrary
redirections  in  velocity  space,  then  in  positions,  creating  inconsistency  if
symmetrized.

Same thing  on  a  half-profile:  right-side  motion coexists  with  inert  left-side  rest,
violating object uniqueness. Again, ubiquity of motion appears, in contradiction with
Newtonian realism.

Poisson didn't push his analysis to a larger physical space, however he discusses at
length the relevance of singular solutions. For him, as for Duhamel later (see below),
it is clear that if one has to choose, then one must eliminate the solutions that do not
respect  the  principle  of  inertia.  Poisson  seems  to  interpret  the  latter  as  the
attribution of causality to the notion of force. 

Yet,  as  we  will  see  with  Duhamel,  nothing  in  the  “indeterministic”  dynamical
equations  in  themselves  allows  us  to  decide  between the  constant  rest  and  the
regular  “acausal”  solutions.  The  preference  given  to  the  solution  of  rest  by  the
principle  of  inertia  looks  more  like  a  metaphysical  than  a  mathematical  choice,
strictly speaking... 

CASE 3 : Duhamel (1845) — Philosophical objection to non-uniqueness

This case is more modest in its mathematical scope, but interesting from a doctrinal
point of view, showing how some physicists recognized the existence of multiple
solutions,  while  explicitly  choosing  to  reject  them  on  the  basis  of  physical,
metaphysical or moral reasoning.

Duhamel revisits the examples studied by Poisson, notably those where the force is:

F (v )=−c⋅va ,0< a< 1

He  does  not  present  a  new  system,  but  generalizes  those  of  Poisson  (where
a=1/2 ). Considering the equation of motion:

r̈ (t )=−c⋅ṙa(t)
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Duhamel mathematically admits that there are an infinite number of solutions, as
seen previously, but he maintains on physical grounds that only the rest solution is
acceptable:

r (t )=0, ∀t

Although he does not formalize this idea, Duhamel seems to invoke the principles of
inertia  and  causality  to  reject  indeterminism  and  disqualify  uncaused  solutions.
However, as already seen earlier with the Norton's dome and Poisson, the principle
of inertia is not independent from the dynamics equation: in non-Lipschitzian cases,
rest and delayed starts are both exact mathematical solutions of the equation of
motion. Inertia is just a particular one, unable per se to discriminate among others
or declare any non-static solution unphysical.

Since there is no internal criterion in the three classical laws of motion to choose
between indeterministic solutions, we extended the differential equation in r to:

¨| s |(t )=c⋅| s (t ) |a

This equation again allows for dynamical ubiquity which:

✔ Violates the physical identity of the particle,

✔ And logically invalidates solutions other than rest. 

Then,  our  method  provides  a  logical  formalization  of  what  Duhamel  intuitively
asserts: multiple solutions lead to a global spatial contradiction. We preserve the
entire Newtonian framework: no additive principle, but a global logical test: if the
set  of  solutions  creates  a  spatial  contradiction  (ubiquity),  then  they  must  be
eliminated.  This  principle  is  not  dynamic,  but  logico-geometric.  It  allows  us  to
decide between solutions without betraying the initial equations or importing an
external axiom (such as a minimization or stability principle).

Finally, to answer to Duhamel, inertia in itself cannot rule out others solutions by
fiat. Perhaps this is why, aware of its weaknesses, scientists like Newton elevated it
to  the  rank  of  principle.  Instead,  ubiquity  of  undeformable  objects  can  more
rigorously justify the rejection of spontaneous solutions without overdetermining
classical physics. It makes uniqueness not arbitrary, but necessary for the coherence
of the physical world: one object equals one position at each instant.

In the final section, we will propose abandoning inertia as a simple principle, subject
to the arbitrariness of physical systems, and making it a theorem. Let's move on to
the next historical  cases that  will  only confirm this  need to evolve the scientific
paradigms.
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CASE 4 : Boussinesq (1879) — Generalized dome.

Boussinesq  discusses  the  same  kind  of  bifurcation  in  mechanical  systems  and
introduces  the  idea  of  spontaneous  rupture beyond deterministic  prediction.  He
writes that:

“Lorsque les équations de la mécanique ne suffisent plus à déterminer le mouvement, il
faut invoquer une cause étrangère, que je nomme agent directeur.”

Boussinesq  builds  a  mechanical  system  specifically  intended  to  highlight  non-
unique  solutions,  linked  to  the  failure  of  the  Lipschitz  condition.  He  designs  a
surface of revolution (dome) on which a particle of unit mass is deposited, subject
only to gravity.

This dome is defined by a half-profile on the plane, with the height as a function of
the path r from the apex. Boussinesq generalizes the classical form by proposing:

h(r )= K 2

2g
( log (a / r ))2k

r 2m

One recovers the Norton's Dome by setting a=e.r (where e is the Euler constant),

m=¾, K 2=1 /m. A particle slides on the surface described by this height function
which becomes non-Lipschitz at r=0  for ½< m< 1.

The movement is governed by the law:

r̈ (t )=g dh
dr

dh
dr

= K 2

g
[ m ( log (a / r ))2k−k ( log (a / r ))2k−1] r 2m−1

Both solutions of continuous rest and departure are mathematically permitted:

r (t )=0, ∀t

and an infinity of solutions of type:

r (t )= f (t – T ) , ∀t ⩾ T

with arbitrary T and:  f (0)= f ’ (0)=0

Boussinesq deduces that, without external cause, the system is unable to choose “by
itself”  one  direction  of  movement,  which  he  philosophically  interprets  as  the
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introduction of a non-material guiding principle. Applied to biology, he identifies this
hidden variable with free will.

Now, let's extend symmetrically this half-profile around the dome axis by mean of
the  signed  coordinate  s.  Like  in  Norton's  dome,  the  Boussinesq  profile  and  its
associated differential equation become: 

H (s )=h(| s |)= K 2

2g ( log( a
| s | ))

2k

| s |2m

• For s ⩾ 0: s̈(t )=g⋅ d
ds

H (s)=g⋅ d
ds

h(s)  

• For s  0⩽ : s̈(t )=g⋅ d
ds

H (s)=g⋅ d
ds

h(−s)=−g⋅ d
d (−s)

h(−s)

Then, for all s:

¨| s |(t )=g⋅ d h( | s |)
d | s |

which releases the new simultaneous solutions for t  T⩾ :

| s(t ) |= f (t – T )

then:

s+ (t)= f (t – T )

 s−(t)=− f (t – T )

Extension  to  s   ∈ ℝ and  transformation  to | s | allows  incompatible  mirrored
solutions. At any time T, the object can go both in one direction and in the opposite
(geometrical ubiquity). Only the standing rest state solution respects principles of
material identity, inertia and spatial coherence.

Again, half-profile physical contradiction arises from: 

1. Left side: vertical forces only (if no tangential force fields) → rest enforced on
this side by lack of tangential field.

2. Right side: motion predicted → contradiction unless a directional trigger is
introduced to break symmetry.
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CASE  5  :  Boussinesq  (1879)  —  Two  particles  with  indeterministic
interaction (Boscovich atomic model)

Here, Boussinesq describes a two-body system (sometimes called "atoms") subject
to a non-Newtonian central force.

• One  of  the  examples  considered  seems  to  be  inspired  by  the  Boscovich
atomistic theory of matter (1758, in  Theoria philosophiae naturalis), where
atoms are not considered as extended indivisible bodies but as points and
centers  of  force,  spinning around each other:  Boscovich believed that  the
force  between  atoms  was  repulsive  at  very  short  distances,  attractive  at
macroscopic distances - in accordance with the law of universal gravitation -
and changed sign (alternately attractive and repulsive) in the intermediate
zone. 

• The  interaction  potential  is  not  regular  in  R,  but  remains  finite  and
continuous.

• An  unstable  circular  orbit  is  possible,  where  the  particles  rotate  at  zero
speed.

Indeed, by moving from its attractive nature to its opposite, this interaction should
pass through a state of zero force. Boussinesq expects the singular orbits at such
points. In this configuration, the two particles can remain in relative equilibrium at
distance R in a circular orbit, without moving, or begin to move at an indeterminate
time T, “without cause”.

The fundamental equation of dynamics for the distance r between the two particles
is:

m r̈=F (r)

Boussinesq uses the following potential and derives its corresponding force:

V (r )=C⋅|r−R |1+ a , 0< a< 1

⟹ F (r )=−C (1+ a)⋅sgn(r−R)⋅|r−R |a

So (defining constant k=C (1+ a) ):

r̈=−k⋅sgn(r−R)⋅|r−R |a

N.b. let's point out that this formulation of atomic interaction respects the Boscovich
conditions ( F (r )> 0 if r< R and F (r )< 0 if r> R ).

Thus, he finds:
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• Trivial solution:

r (t )=R , ∀t

• Non-trivial solutions:

r (t )=R± A(t – T )
2

1−a , for t≥T

The two particles could either stay at rest, or spontaneously move closer, further
apart, or even oscillate. These solutions appear for the same initial conditions and
Boussinesq treats them as alternative and mutually exclusive solutions while in fact
they are simultaneous and contradictory. It will be more obvious by introducing the
signed variable s=r – R which is equivalent at first to what Boussinesq did, but we
will pay more attention in interpreting his solutions.

The equation becomes:

¨| s |(t )=−k⋅| s(t ) |a

Then: 

| s(t ) |=A(t – T )
2

1−a , for t≥T

• It admits both:

➔ Inward solutions: s−(t)=−A(t – T )
2

1−a , for t≥T

➔ And outward solutions: s+ (t)=+ A(t – T )
2

1−a , for t≥T

System allows motion in opposing directions from identical initial conditions. Unless
a symmetry-breaking directional force is used, this modelling of Boscovich atomic
theory is then contradictory. As previously, it can be shown that the only consistent
solution is perpetual rest of the two particles at distance R.

CASE 6 : Bertrand (1878-79) — Rejection of Boussinesq's framework and
Philosophical Critique of Mechanical Indeterminism

Joseph Bertrand rejects  any physical  allowance of  non-uniqueness,  demanding a
'true' hidden law. He reacted to Boussinesq’s proposals, particularly the idea that
certain mechanical equations might not unequivocally determine the evolution of a
system.

He directly criticized:
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✗ The idea of a “guiding principle” (in Boussinesq’s sense), that is some effect
of the mind on the matter without any helping force.

✗ The very physical existence of systems with multiple spontaneous solutions.

His central postulate may be stated as: if an equation admits multiple solutions from
the same initial  conditions,  it  does not  correctly reflect  the real  physical  nature.
Bertrand  suspected  discontinuous  or  hidden  laws  may  underlie  the  apparent
indeterminism. He then suggested that the true law of nature was different:

 Perhaps more disjoint,

 Perhaps non-continuous,

 Perhaps involving jumps in behavior. He therefore refuses to accept the idea
that nature itself would allow multiple trajectories compatible with the same
initial state.

For him, the plurality of solutions is not a real paradox, but rather evidence of an
error  in  the  modeling.  Anyway,  Bertrand's  point  of  view  can  now  be  formally
assessed. By requiring a classical directed force to break ubiquity, without needing
to invent an extra-physical guiding principle,  our approach allows for a rigorous
justification of Bertrand's rejection of indeterminism in the name of an “invisible”
(but unspecified) principle of determination. 

Yet, non-Lipschitz equations are not necessarily “wrong” or “incomplete”: they are
contradictory, because they lead to physically incompatible predictions. The very
structure of the trajectories is enough to decide. Multiple solutions lead to geometric
contradiction without recourse to hidden variables, bad modeling or unknown laws.

5. The principle of inertia as a mathematical theorem.

The  Picard-Lindelöf  (or  Cauchy-Lipschitz)  theorem,  a  generalization  of  which
applies to second-order differential equations, is underlying our whole approach. It
predicted  the  possibility  of  multiple  solutions  in  the  case  of  the  Norton's  dome
(Lipschitz condition not verified at the vertex, infinite curvature, etc.).

We precisely studied them: the analysis revealed that those “possible” trajectories
were “and-like” but not “or-like”, superposed but not mutually exclusive. Only the
solution of the mass being at endless rest at the vertex is physically acceptable and
not  self-contradictory.  Any  other  non-deterministic  solutions  are  eliminable  by
basic physics and common sense.
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Besides,  it  should  be  emphasized  that  the  Picard-Lindelöf  theorem  provides  a
sufficient  but  not  necessary  condition  for  the  uniqueness  of  the  solutions  to
differential  equation  –  which therefore  does  not  make it  a  perfect  synonym for
determinism. In  itself,  it  says  nothing  explicitly  about  physics.  His  Lipschitz
condition is no more fulfilled in the Norton dome than it is for an infinite number of
other systems considered to be truly physical or falling within Newtonian physics.

Indeed, a ball can without unrealism descend a slope as steep as a staircase, or any
slope which isn’t even first-order differentiable unlike the dome of Norton – as this
very one has noticed. Most criticisms that judge the dome itself as an unphysical or
"non-Newtonian" system could then be dismissed - especially if it can be shown to
admit an unique and quite physical solution like the constant rest.

According to us, the most unphysical aspect of the dome lies in its violation of the
principle  of  inertia  by  Norton’s  indeterministic  solutions:  the  ball  starts
spontaneously, even though at no time is it subject to a net force external to the
forces that ensure its equilibrium at the summit. But since the principle of inertia
like  Norton’s  solutions  are  all  rigorously  deducible  from  the  same  fundamental
equation of dynamics, the real problem was to decide their validity using a third
party. 

For such a role, the third principle of action/reaction was of no use here. We found
this  arbiter  of  physics  elsewhere,  in  a  certain  “axiom  of  non-ubiquity”,  the
equivalent of the logical law of the excluded middle for motion:  a point mass or a
rigid object can take one direction or the other, but not both at the same time.

Yet,  all  this  shows  a  major  flaw  in  the  three  principles  of  Newtonian  physics.
Problems like Norton's dome or our revisited historical cases all converge on the
idea  that  there  is  a  fundamental  indeterminacy  between  the  1st law  (inertia
principle) and the 2nd law (the general equation of dynamics).  We need a strong
argument to resolve these centuries-old conflicts that have pitted them against each
other since at least 1806. Something that would allow us to consider the principle of
inertia  as  the  “winning”  mathematical  solution  against  its  competitors  of
indeterminism.

Then,  what  if  inertia  became...a  mathematical  theorem  rather  than  remaining  a
dogmatic principle? This paradigmatic shift would help us eliminate any undesirable
solutions generated by the second principle through the fundamental differential
equation of  dynamics.  Such a  result  has  been partially  achieved by the study of
ubiquity phenomena. However,  knowing that the principle of inertia is already a
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theorem for Lipschitzian forces, we lack a uniqueness theorem equivalent to Picard-
Lindelöf for non-Lipschitz second-order ODEs.

This theorem must be supported by a strong definition linked to the consistency of
mathematical  solutions  with  its  counterpart  in  the  physical  world.  Indeed,  we
should dismiss as unphysical any motion that appears locally coherent (as in the
half-profile of Norton's dome) but behaves differently in space as soon as we expand
its field of study or change our geographical viewpoint, without affecting anything
else in the dynamics applied to the mobile. This is only a moderate form of local
realism.

Let us try it now. Before, note that if one considers an equation like, for all y  V ∈ ⊂
ℝ  :

   (E)    d²y/dt² = F(y) = 0

with initial conditions: y(0) = 0, dy/dt(0) = v0 ≠ 0, the zero function F is obviously
Lipschizian  on  V,  then:  t  ↦ y(t)  =  v0.t is  the  unique  solution  of  (E),  which
demonstrates the inertia principle for uniform rectilinear motion through a zero
tangential forces field. We will then just focus on the case v0 = 0. 

All the following results may be generalized to any  n > 1 dimensions in  ℝn, given
that if y   ∈ ℝn then problem (E) reduces to n one-dimensional differential equations
of the type studied below.

1) Statement of the Problem
Let (E+) be the second-order autonomous differential equation of a  C² function in
time, y(t), defined on an interval V+   ⊂ ℝ+ containing zero, t ≥ 0:

    (E+)    d²y/dt² = F+(y)

Initial conditions:

y(0) = 0, 

dy/dt(0) = 0

assuming the following:

➢ F+(0) = 0,

➢ F+: V+ → ℝ  is continuous and non-Lipschitzian in 0. 
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Definition:  a well-defined solution t  ↦ y+(t)  of  (E+) on  V+ is said  contradictory or
ubiquitous if: there exists an interval V-  ⊂ ℝ– including zero and an extension F- of F+

on V- such that y+ is incompatible with any solution y- of the new ODE defined on V-:

(E-)    d²y/dt² = F-(y)

Initial conditions:

y(0) = 0, dy/dt(0) = 0,

in the sense that both solutions may take values in different points of V= V-∪  V+ at
the same time t. Otherwise, y+ is said to be consistent or non-ubiquitous.

2) Non-Lipschitzian Theorem of Uniqueness
Under the assumptions above,  the only consistent solution to equation  (E+) with
initial conditions y(0) = 0 and dy/dt(0) = 0 is the trivial solution: for all t, y(t) ≡ 0.

In other words, the global differential equation (E) : d²y/dt² = F(y), with F = F-∪  F+

(same initial conditions), has no well-defined solution in the extended space V = V-

∪  V+ except zero.

3) Proof 
➢ Consider V- the symmetrical interval to V+ on  ℝ –, and one of the two 

independent transformations:

(S) F- is an extension of F+ on V- as an antisymmetric function, i.e. F-(−y) = 
−F+(y) for all y  V∈ +

or:

(A) F- is an extension of F+ on V-as a Lipschitz continuous function.

Analytically, it is always possible to find the transformations S (by antisymmetry of
F+  with respect to zero) and  A (by taking  F- = 0) that immerse  F+  in the complete
space V = V-∪  V+    ⊂ ℝ .

Case 1: Antisymmetric field F (S)

 Suppose y+(t) is a solution of (E+) on V+. By antisymmetry, for all t in the domain of
definition:

    d²y+/dt² = F+(y+)   d²(−y⇒ +)/dt² = −F+(y+) = F-(−y+).
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Thus, −y+(t) also solves the equation (E-) with the same initial conditions (y(0) = 0,
dy/dt(0) = 0).

Therefore, unless y+(t) ≡ 0, there exists at least two simultaneous trajectories on V
with the same initial conditions:

    y (t) = y(t), y (t) = −y(t).₁ ₂

Using another method considering (E) defined on V = V-∪  V+:

(E)    d²y/dt² = F(y)

with F = F-∪  F+ and the same initial conditions as (E+) and (E-). Thus:

• if y ∈  V+: d²y/dt² = F(y)

• if y ∈ V-: d²y/dt² = F(y) = -F(-y)   d²(-y)/dt² = F(-y)⇒

⟶ Then, for all y ∈ V, d²|y|/dt² = F(|y|), 

⟶ which leads to |y| =  y+, for any positive solution y+ of (E) on some interval
I of time, then for all t in I: y(t) = y+(t) and y(t) = - y+(t).

Anyway, those solutions are not compatible unless they coincide, i.e., y(t) ≡ 0.

Case 2: One-Sided Lipschitz Condition (A)

 Assume  F- is Lipschitz on the left side  V⁻.  Let us define  y (t) = y(t)  ⁻ restricted to
values in V⁻. Then the initial problem (E-) on V⁻:

    d²y/dt² = F-(y), with F-(0) = 0,

y(0) = 0, 

dy/dt(0) = 0,

releases the unique solution y(t) ≡ 0 by the classical Cauchy-Lipschitz theorem.

Suppose now that a solution y+(t) of (E+) exists on the right on V+ with y+(t) ≠ 0 near
t  =  0.  Then  y+ crosses  into  the  region  where  no  Lipschitz  condition  holds,  and
uniqueness  cannot  be  recovered.  But  this  non-zero  solution  does  contradict  the
unique solution of (E-), y(t) ≡ 0, found previously, thus again y+(t) ≡ 0 on V+.

One can construct a smooth ubiquitous solution in the same way as in case 1 by
noting that equation (E) is rewritable in the following form, valid for all y in V:
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d²y /dt²=δ y ≥ 0 · √ | y |

Here, δ y ≥ 0 is the indicator function:

δ y ≥ 0( y )=1 if y ≥ 0,        δ y ≥ 0( y )=0 if y < 0.

So this defines a piecewise system:

d²y/dt² =      √y    if y ≥ 0

                             0    if y < 0

We  construct  then  a  piecewise  solution.  Let  y (t)₊  be  a  known  non-negative  C²
solution on t ≥ 0 to the equation:

d²y /dt² = √y (t)₊ ₊

with initial conditions:

y (0) = 0₊

dy /dt(0) = 0₊

d²y /dt²(0) = 0₊

We now define on V the global function y(t), for all t ≥ 0, by:

   on V- :          y(t)  =  0                      

on V+ :      y(t) =   y (t)            ₊

Since all derivatives of y₊ vanish at t = 0, t ↦ y(t) is a C² function on  ℝ +.

Verification with the Global ODE:

On V- :

          y(t) = 0     d²y/dt² = 0  ⇒

                        ⇒Matches the ODE since δ y ≥ 0=0

On V+ :

          y(t) = y (t)     d²y/dt² = d²y /dt² = √(y (t)) = √(y(t))₊ ₊ ₊⇒

           ⇒Matches the ODE since δ y ≥ 0=1
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Hence, y(t) satisfies the ODE (E) on all ℝ  and is of class C².

We constructed a smooth, global solution to a second-order non-Lipschitzian ODE
by gluing together a trivial rest solution on the left with a known positive solution
on the right.  The solution is  ubiquitous,  in  that it  remains inert  for  t  < 0,  then
departs spontaneously for t ≥ 0, without violating classical smoothness conditions.

This confirms that smooth ubiquitous solutions are possible even for equations with
minimal regularity.

QED.

4) Physical Interpretation

In either case, the only admissible solution is the constant rest, y(t) ≡ 0. This result
implies that if the global force field F = F-∪  F+  is either antisymmetric (permitting
mirrored trajectories) or Lipschitz on at least one side of zero, the dynamics cannot
produce simultaneous multiple trajectories emanating from the same conditions at
the origin. 

In  mechanical  terms,  spontaneous  departures  from  rest  without  initial  external
input  (F(0)  =  0)  are  ruled  out  under  these  minimal  regularity  or  symmetry
assumptions. Indeed, the given definition of consistency aims to reject any behavior
of  an object likely to be modified,  without adding or removing any force from the
initial subsystem, i.e. by the sole artificial extension of its study space. 

Physically, this assumes that: 

(1) on the one hand, ubiquities and other inconsistent behaviors are not allowed
in classical reality, 

(2) on the other hand, at least one of the two immersions (S) and (A) is always
possible for any half-profile system. 

These two postulates are reasonable in most cases. The first is commonly accepted
for undeformable macroscopic objects like in the Norton's dome. As for the second,
it  is  obvious  that  (S) is  tailor-made for  naturally  symmetrical  or  symmetrizable
systems, while (A) is better suited to irreducibly asymmetrical problems where the
initial state of rest can be extended to the left.

The immersion of non-Lipschizian force fields into larger systems should only be
prevented in event of a physical barrier, that in turn would exert a breaking action
on the initial state of rest, or by cosmological considerations about the nature of
physical space.
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Admitting the assumptions above, the principle of inertia (Newton, 1687):

Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum,
nisi quatenus a viribus impressis cogitur statum illum mutare.

 finally turns into a theorem of inertia:

[In any continuous and locally extendable force field] every consistent body perseveres
in its state of rest, or uniform motion in a right line, unless it is compelled to change

that state by [external net] forces impressed thereon.  

No  need  then  to  artificially  distinguish  between  Newtonian  and  non-Newtonian
systems, Lipschitzian or non-Lipschizian forces, physical or unphysical idealizations,
etc. most distinctions that didn't exist in the original work of the Principia, nor a
priori  in  Nature.  The  inertia  of  bodies  in  Newton  was  intuitive,  experimental,
qualitative. Here it becomes structural, logical, mathematically anchored in the laws
of dynamics. 

The 1st more fundamental principle which could replace the law of inertia would be
the following:

Principle of non-ubiquity (or geometrical consistency) of dynamic trajectories

No behavior of a rigid dynamic system can extend in several incompatible directions

statement  that  is  more  universal  (applicable  even  to  non-Newtonian,  non-
Lipschizian, etc. systems), neutral (formulated without mechanical hypothesis) and
mathematical (concerning the geometric structure of differential solutions).

Conclusions

 In this paper, it has been shown that the perpetual rest of the ball at the top of the
Norton's dome is the unique mathematical solution that respects both the spherical
symmetry of this problem and the principle of inertia,  which thus – narrowly? –
avoids a contradiction between solutions. 

It  is  not a secret indeterminism that one would discover in the holy of holies of
Newtonian  physics,  nor  its  incompleteness,  but  the  existence  of  inconsistent
physical solutions - in the sense of the excluded middle principle applied to physics -
to eliminate from the solving of motion differential equations over the whole dome,
rather than just one particular half-profile. 

One  can  even  consider  the  generalization  of  this  approach  to  other  physical
paradoxes, like those brought to light since the 19th century, where a particle at rest
in a symmetrical environment (rotational, axial, translational, etc. in one or more
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dimensions) starts moving spontaneously. Maybe scientists should care more about
possible  contradictions  than  about  indeterminism  or  incompleteness,  since  the
latter could be less serious than any structural inconsistency in Newtonian theory,
which also endangers all  theories built  on it  (fluid mechanics,  electromagnetism,
special relativity…).

Thousands of years of practice in engineering or construction have proven to man
that  mechanics  was  a  safe  bet,  well  before  the  marvelous  foundation  and
development  of  physics  by  Arab  modern  science,  adopted  then  continued  by
Western  scholars.  The  elevation  of  a  cathedral  like  Notre-Dame  de  Paris  would
probably not have been possible in the Middle Ages if its static elements suddenly
started to move by themselves, without any apparent causality, or if fires broke out
spontaneously.  Its  overall  safety can nonetheless still  be threatened by the most
'benign' actions, as we know it today…

The same is true of the sovereign edifice of Newtonianism, patiently built since the
17th century. Norton's Dome, like a competing and proud vault of indeterminism,
symbolizes the fury and effectiveness of the blows that can be dealt to it. Indeed one
can wonder why classical physics only eliminates this kind of "acausal" solutions
indirectly, namely by considering the dome in its entirety: on a simple asymmetrical
half-profile of the dome one really only sees "fire". 

Then, the successive destructions and re-edifications of the "sacred cathedral" of
Newtonianism do not guarantee the durability of its character: with each repair, its
original charm is lost a little more. Making its first principle a solid mathematical
pillar could give the doctrine a new lease of life. Yet one cannot say for how long this
architecture, constantly renovated, tested, patched up...will resist before a true final
collapse.
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