Investigating prime gaps through zeta behaviour. A reexamination of the Riemann hypothesis

Samuel Bonaya Buya

31/3/2025

Contents

Keywords	2
Logarithmic form of the complex variable and its decom- position to real and complex parts. Reformulation of the Riemann zeta function	2
Analysis of the zeroes of Riemman zeta function Observations of the analysis	3 3
A zeta function for Goldbach partition	4
A further analysis. A Complexity zeta for the Euler prod- uct.	4
Reference	5
Abstract	

In this research prime gaps will be investigated through their zeta behaviour. A formulation will be presented that links prime gaps to singularities in $\zeta(s)$. This is achieved by identifying a zeta function for Goldbach partition and extending it to the Euler product. A zeta function is formulated that encodes information about Goldbach partitions. We begin the paper by examining the logarithmic form of a complex variable and it's decompostion to real and imaginary parts. The applications will be extended to Goldbach partition and the Riemann hypothesis.

Keywords

Zeta function for Goldbach partition; Riemann hypothesis; prime gaps and singularities in $\zeta(s)$

Logarithmic form of the complex variable and its decomposition to real and complex parts. Reformulation of the Riemann zeta function

Consider the logarithmic complex variable $z = \frac{\ln(-x)}{y}$. It can be decomposed into real and imaginary parts at follows: $z = \frac{\ln(-x)}{y} = \frac{\ln(-1)}{y} + \frac{\ln x}{y} = \frac{\ln x}{y} + i\frac{\pi}{y}$. The Riemann hypothesis requires the real part of it's complex variable to be 1/2, in which case $y = \ln^2 x$ and $z = \zeta(s) = \frac{1}{2} + \frac{i\pi}{\ln^2 x}$. By this formulation the relationship between $\ln x$ and $\zeta(s)$ is given by $\ln(x) = \sqrt{\frac{i\pi}{\zeta(s) - \frac{1}{2}}}$.

If $\zeta(s) - \frac{1}{2} = i\gamma$, then $\ln x = \sqrt{\frac{\pi}{\gamma}}$. In the Riemann hypothesis $s = \frac{1}{2} + it$. This means that $t = \frac{\pi}{\ln^2 x}$ or $\ln x = \sqrt{\frac{\pi}{t}}$. It also means that $x = e^{\sqrt{\frac{\pi}{t}}}$.

The number of primes is therefore asymptotically equal to $\frac{te\sqrt{\frac{\pi}{t}}}{\pi}$.

Analysis of the zeroes of Riemman zeta function

- The 10^{th} nontrivial zero is t=49.774 and is equivalent to x=53.017. This means that number of primes is asymptotically equal to $49.774 \times e^{\frac{\pi/49.774}{\pi} \approx 17}$. The actual number of primes is 16.
- The first nontrivial zero is t=14.135 and is equivalent to x=17.653. This means that number of primes is asymptotically equal to $17.653 \times e^{\frac{\pi}{17.653}} \approx 7$. The actual number of primes is 7.
- The second nontrivial zero is t=21.022 and is equivalent to x=24.410. This means that number of primes is asymptotically equal to $21.022 \times e^{\frac{\pi/21.022}{\pi} \approx 8}$. The actual number of primes is 8.
- The third nontrivial zero is t=25.011 and is equivalent to x=28.358. This means that number of primes is asymptotically equal to $25.011 \times e^{\frac{\pi}{25.011}} \approx 9$. The actual number of primes is 9.
- The fourth notrivial zero is t=30.425 and is equivalent to x=33.735 and so on.

This means that number of primes is asymptotically equal to $30.425 \times e^{\frac{\pi/30.425}{\pi} \approx 11}$. The actual number of primes is 11.

These results show that The Riemann hypothesis predicts the number of primes very accurately

Observations of the analysis

- 1. The nontrivial zeros are typically associated with oscillations in the error term of the prime number theorem, and the above formula may provide an alternative heuristic connection.
- 2. The inclusion of an exponential correction factor $e^{\frac{\pi}{t}}$ is intriguing, as it introduces a dependency on in a way that needs further theoretical justification.

3. These results might suggest a deeper structure in how the zeros encode prime distribution beyond standard asymptotics.

A zeta function for Goldbach partition

In the paper reference ^[1] the gap, "g between two primes, p_1 and p_2 is given by $g=2\sqrt{m^2-p_1p_2}$ where m represents the mean of the two primes. A logarithmic zeta function encoding information about gaps between primes would therefore be given by $\zeta(X) = \frac{\ln(-\frac{1}{n}\sqrt{m^2-p_1p_2})}{m+n}$ where $n=-\frac{g}{2}$. The decomposition of the Goldbach partition zeta function therefore is $\zeta(X) = \frac{\ln(-\frac{1}{n}\sqrt{m^2-p_1p_2})}{m+n} = \frac{\ln\frac{1}{n}\sqrt{m^2-p_1p_2}}{m+n} + i\frac{\pi}{m+n}$ and $p_1 \neq p_2$. Where $p_1=p_2$ then $\zeta(X) = \frac{\ln(\sqrt{m^2-p_1p_2+1})}{m}$. Goldbach partition therefore requires solving $\zeta(X)=0$.

A further analysis. A Complexity zeta for the Euler product.

Consider the Euler product $\zeta(s) = \prod \frac{p_i^s}{p^{s-1}}$. The above product generates a zero whenever $s = -\infty$. We will formulate the complex variable s such that it will always generate a zero at some singularity. If

$$\begin{split} \zeta(s) = -\zeta(\frac{1}{X}) = \zeta(-\frac{m+n}{\ln(-1/n\sqrt{m^2-p_1p_2})}) = \zeta(-\frac{m+n}{i\pi+\ln(1/n\sqrt{m^2-p_1p_2})}) = \zeta(-\frac{(m+n)(i\pi-\ln(1/n\sqrt{m^2-p_1p_2}))}{-\pi^2-\ln^2(1/n\sqrt{m^2-p_1p_2})}) = \zeta(-\frac{m+n}{i\pi+\ln(1/n\sqrt{m^2-p_1p_2})}) = \zeta(-\frac{m+n}{i\pi+\ln(1/n\sqrt{m^2-p_1p_2})$$

This formulation links prime gaps to sigularities in $\zeta(s)=0$. Zero are generated when we for any prime gap $n=-\frac{g}{2}$. It is also observed that $m+n=p_1$. For twin prime pairs we use n=-1 and $m=p_1+1$ $|p_2>p_1$. For gap g between consecutive primes use n=-g/2 and $m=p_1+g/2$.

Reference

[1] Samuel Bonaya Buya and John Bezaleel Nchima (2024). A Necessary and Suffi- cient Condition for Proof of the Binary Goldbach Conjecture. Proofs of Binary Gold- bach, Andrica and Legendre Conjectures. Notes on the Riemann Hypothesis. In- ternational Journal of Pure and Applied Mathematics Research, 4(1), 12-27. doi: 10.51483/IJPAMR.4.1.2024.12-27.

Figure 1: Graph of t against x