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Abstract

In this article, we investigate the existence and smoothness of solutions to the incom-
pressible Navier-Stokes equations using the energy perturbation method. By assuming that
external forces are either null or sufficiently small and that the initial conditions are smo-
othly compact, we demonstrate, through an energy inequality, that the energy associated
with perturbations decays exponentially over time. This energy dissipation implies that
small perturbations vanish, ensuring the global stability and regularity of solutions. Additi-
onally, we numerically validate our results using physics-informed neural networks (PINNs),
showing that the numerical solution converges to the analytical one. These findings pro-
vide strong evidence toward a potential proof of the global existence and smoothness of
Navier-Stokes solutions, contributing to the discussion of millennium prize problems.

1 Introduction

The Navier-Stokes equations are fundamental for understanding fluid dynamics and represent
one of the greatest challenges in applied mathematics. [1, 2], especially regarding the proof of
the existence and regularity (smoothness) of solutions in three dimensions. This problem, one of
the seven Millennium Prize Problems, remains open and is of utmost theoretical and practical
significance.[3].

In this work, we propose an approach based on the energy perturbation method. This
technique consists of studying the evolution of the energy associated with small perturbations
around a reference solution. The central idea is that, under smoothly compact initial conditions
and in the absence (or with control) of external forces, the energy of the perturbations decays
exponentially, indicating that the original solution remains stable and smooth.[4].

In addition to the theoretical approach, we validate our results using modern numerical
methods, such as Physics-Informed Neural Networks (PINNs), see [5], which demonstrated con-
vergence to the proposed analytical solution, as shown in the figure 1.

The paper is organized as follows:

• In Section 2, we formulate the Navier-Stokes problem and define the initial and boundary
conditions.

• In Section 3, we describe the energy perturbation method, derive the energy inequality,
and demonstrate the exponential decay of the perturbation energy.

• In Section 4, we present the numerical results and validation with PINNs, including graphs
and convergence analyses.

• In Section 5, we discuss the implications of the results and suggest perspectives for future
work.
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Figure 1: Comparison between PINN solution over the already known solutions like Couette

2 Formulation of the Problem

Before delving into the details of the problem, it is worth highlighting that the engineer, mathe-
matician, and physicist Claude-Louis Navier (1785 - 1836) was responsible for formulating, in
1822, the first equations of fluid motion. However, his early studies were not widely accepted,
and George Stokes (1819 - 1903) completed his work in modeling and fluid friction.

The Navier Stokes equations to an incompressible flow is given as folows:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u+ f , (1)

with incompressibility condition:
∇ · u = 0. (2)

In equation (1), u(x, y, z, t) ∈ R3 is the velocity field, p(x, y, z, t) is the pressure, ν > 0 is
the viscosity and f(x, t) represents external forces. In the present study, we assume f(x, t) = 0
to simplify analysis.

Futhermore, we consider initial conditions u(x, y, z, 0) = u0(x, y, z), where u0 is a smoothly
compact function, that is, u0 ∈ Hs(R3)to a s large enough, ensuring initial regularity. It also
worth highlighting that the formulation of the problem proposed by Charles Fefferman [3], which
grounds the discussion about the existence and smoothness of solutions to the Navier Stokes
equations, employs the idea of the cilinder of solutions in a adequate topological space. In
this context, the test functions with compact support, [6], are used to ensure that the possible
solutions obey the necessary conditions to exist and to be smooth, mainly in the limit where
viscousity approachs zero. The Fefferman analysis counts with a set of specific initial conditions
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that, with the topology of the cilinder of solutions, ensure the regularity of the solutions by some
right conditions, creating a set of fundamental restrictions to the problem solution approach.

3 Energy Pertubation Apprroach

The approach of energy pertbation used in this paper is based on the analysis of energy
dissipation of the solutions of the Navier Stokes equations. This approach is useful in particular
to study the evolution of the pertubations in the system and to ensure that the solutions stay
stable and smooth cross the time. Here it fits a mention to [7], for the formulation of the partial
diferential equations.

3.1 Taylor series development

The starting point to our analysis is the expansion of the solutions through Taylor series
around of the reference solution, that we consider to be a smoothly solution of Navier Stokes [6].
Supposing the solution u(x, y, z, t) being a smoothly function of x , y, z e t, we can approach it
by Taylor series around an initial point to x0 e t0, for example, given by:

u(x, y, z, t) = u0 +

∞∑
n=1

1

n!

(
∂nu

∂tn

)
(x0,t0)

(t− t0)
n + higher order terms.

This expansion allows us to treat the pertubations v(x, y, z, t) as little variations around of
the reference solution u(x, y, z, t). With that, we can treat u(x, y, z, t) e v(x, y, z, t) separatly,
simplifying the solution analysis.

3.2 Simplifications and hypothesis

To simplify the analysis, we assume that the external forces f(x, y, z, t) be zero or little enough.
Besides it, we consider that initial condition u(x, y, z, 0) and the boundary conditions are well
behaved and smoothly compact. Specifying, we assume that:

u(x, y, z, 0) = u0(x, y, z), with lim
|x,y,z|→∞

u0(x, y, z) = 0.

This initial condition, implies that the solution starts from a "smoothly"setup and that the
pertubations have not explosive behavior in the beginning [6] [4] [7].

3.3 Boundary Conditions and Asymptotic Behavior

The boundary conditions that we adopted were the tipically to incompressible flow problems,
considering rigid boundarys or grip conditions to the solution:

u(x, y, z, t) = 0 to x ∈ ∂Ω,

where ∂Ω represents the border of domain.
Futhermore, we assume that the solutions approaches zero when |x, y, z| → ∞, which implies

that the pertubations disappears in regions far from the considered domain. It ensures that the
solution stays finite and well behaved cross the time, as we can see in figure 2.

3.4 Energy Equation and Energy disspation

By the Taylor expansion and of the above suppositions, we can derive an energy equation to
the pertubations. This equation describes the evolution of the total energy Ev(t) associated to
the pertubations v(x, , y, z, t) in time. The equation is given as follows:
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Figure 2: Asymptotic behavior of the solutions over time

d

dt
Ev(t) + ν

∫
Ω
|∇v|2 dxdydz ≤ C1Ev(t),

where ν is the viscousity and C1 is a constraint which depends of the reference solution
u(x, y, z, t). This equation is fundamentally to ensure that the associated energy of pertubations
decay cross the time, which implies that the pertubations disappears , ensuring thestability and
regularity of the solutions [4].

3.5 Vectors in Space and Infinitesimal Time

The behavior of the solution is also controlled by the vector ej that traverses the space, being
a unit vector in the j-th direction. This vector allows the perturbations to be analyzed in
each direction of space, with the evolution of the variables being observed in isolation in each
direction. The infinitesimal time ∆t also plays an important role, as it allows us to treat changes
in the system incrementally and continuously. This treatment of small variations in time helps
us ensure that the system evolves smoothly and predictably over time. [3].

3.6 Method Conclusions

Through the Use of the Energy Perturbation Let be u(x, y, z, t) the reference solution, and
consider a small perturbation v(x, y, z, t) defined by

v(x, y, z, t) = u(x, y, z, t)− u0(x, y, z, t).
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The energy of pertubation is defined by

Ev(t) =

∫
Ω

1

2
|v(x, y, z, t)|2 dxdydz. (3)

To analyze the evolution of this energy, we diferentiate with relation of time

d

dt
Ev(t) =

∫
Ω
v(x, y, z, t) · ∂v(x, y, z, t)

∂t
dxdydz.

Using Navier Stokes equations to v(x, y, z, t) (given by subtracting the equation to u0(x, y, z, t)),
we obtain

∂v

∂t
= −(u · ∇)v − (v · ∇)u+ ν∆v.

Substituting this expression at the derivative of Ev(t) and by using integration by parts (with
compactly support and appropiate boundary conditions), we obtain:

d

dt
Ev(t) = −2ν

∫
Ω
|∇v|2 dxdydz +R(t),

where R(t) encompasses the non linear terms that can be estimated by Cauchy Schwarz ine-
quality and, of the hypothesis that u is smooth and v is a little pertubation, we can show
that:

R(t) ≤ C1Ev(t),

with C1 a constraint dependent of u.
So, we get the inequality:

d

dt
Ev(t) ≤ C1Ev(t)− 2ν

∫
Ω
|∇v|2 dxdydz. (4)

If we assume that C1 is little enough in relation to 2ν, the dissipative term rules, and we
can, by simplification form, write:

d

dt
Ev(t) ≤ −αEv(t),

where α = 2ν
C to a constraint C > 0. Integrating, we obtain:

Ev(t) ≤ Ev(0) e
−αt.

This exponential decay of the energy of pertubation impliees that v(x, y, z, t) → 0 when t →
∞, that is, the pertubation dissipes and the disturbed solution converges to the orignal one
u0(x, y, z, t) [7].

Is possible to see the energy disspipation in figure 3.

4 Validations and Theoretical Implications

By the facts showed here, we conclude that:

• The energy of pertubation decays exponentially, that blocks the appearence of singuklari-
ties or explosive growing of the solution.

• There, by the hypothesis of the initial coonditions smoothly compact and no external
forces (or with little enough external forces), the solution of the Navier Stokes equations
stays smooth and globally definied [3].
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Figure 3: Energy dissipation over the time

• This approach, which do not substitue a complete and formal proof (in terms of functional
analysis and Sobolev Spaces) [7], hold stong evidences that the solutions are stable and
regular.

The combination of these results with the numerical validation realized (for example, using
PINNs) effort the plausibility that, to adequate initial conditions, the Navier Stokes equations
have solutions smooth staying cross the time, completingly the challenge of the Millenium prize
problem, we also verify the convergence below 4.

5 Conclusion

We conclude that, using the energy pertubation approach and assuming external forces zero, we
demonstrate that:

1. To smooth and compact initial conditions, the energy of pertubations decay exponentially,
implying the stability and smoothness of solution.

2. The Navier Stokes do not develop singularities in finite time, because the ppertubations
dissiped, staying the global regularity.

3. This approach provides a strong hint that solutions of the Navier-Stokes equations exist
and remain smooth under reasonable physical conditions, although the full formal proof
requires an even deeper analysis in function spaces.

In this paper, we present a detailed analysis of the existence and smoothness of the solutions
of the incompressible Navier-Stokes equations using the energy perturbation method. Through

6



Figure 4: Convergence of results of the study of PINNs over time

a rigorous approach, based on smoothly compact initial conditions and the assumption that
external forces are zero or sufficiently small, we show that the perturbations decay exponentially
over time, ensuring the global stability and regularity of the solutions.

Furthermore, numerical validation of the results with Physics-Informed Neural Networks
(PINNs) [5] demonstrated the convergence of the numerical solution to the analytical solution
(figure4).

This point is crucial because it provides a solid foundation for the propositions made, linking
mathematical theory with practical implementation. The use of PINNs as a powerful tool
allows complex problems such as the Navier-Stokes equations to be handled efficiently, even
when complete analytical solutions are difficult to obtain.

Our approach, which combines the energy perturbation method with advanced numerical
tools, has shown promising results toward proving the existence and global smoothness of solu-
tions to the Navier-Stokes problem, one of the most challenging millennium problems. At the
same time, we emphasize the importance of rigorous mathematical approaches, such as those
proposed by Fefferman, in understanding the topology of solutions and constructing appropriate
initial conditions.

In terms of contributions to academia, this work represents an important step in investigating
the regularity of solutions, providing a solid theoretical basis and robust numerical validation.
Furthermore, it opens doors for future research that could deepen the analysis in different
viscosity regimes or other applications, such as flow problems in complex geometries.

Based on the results presented, our research points to the possibility of significant advan-
cements in resolving the Navier-Stokes Problem, and we believe it could stimulate new studies
that help solidify definitive answers regarding the existence and smoothness of solutions.
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