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Abstract 

   This paper is an extension of a paper by the author where a quantization of classical spinning 

particle equations is carried out using the Euler angles of the particle.   Relativistic corrections  

are found and compared to the Foldy-Wouthuysen transformation of the Dirac equation.   We 

only consider constant linear electric and magnetic fields, and find agreement to all orders of 

 1/c2. 

 

I.Introduction 

   This paper is an extension of a previous paper by the author [1], referred to as the initial paper 

in this article.  The initial paper is based on the equations of motion for a relativistic spinning 

charge in an external electric and magnetic field.  These equations can be found in Jackson [2]. 

Only linear constant external fields are considered.  Using the Euler angles and particle position 

as degrees of freedom, a Lagrangian and Hamiltonian are found for these equations and then the 

system is quantized using the method of Bopp and Haag [3].    

  In the initial paper we found that we could quantize the system up to third order in 1/c2, and 

found agreement with the Foldy-Wouthuysen transformation [4] of the Dirac equation.   More on   

the Dirac equation can be found in Sakauri [5].   In this extension of the initial paper we find a 

solution to all orders of 1/c2 which agrees with the Foldy-Wouthuysen transformation as found 

in Chiou and Chen [6]. 



 

II.Review of initial paper 

    From Jackson [2] we have the equations of motion for a spinning charge in a general inertial  

frame 
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where s is the spin angular momentum in the particle's rest frame and E and B are the electric 

and magnetic fields in a general frame.   In these expressions 𝛃 = 𝐯/c and γ = (1 − β2)−1/2   

where v is the velocity of the particle in the general frame and c is the speed of light.  q is the  

charge of the particle, m is its rest mass, and t represents the time in a general inertial frame.    

g is the gyromagnetic factor which based on the Dirac equation is taken to be 2.   We use a bold  

symbol to indicate a vector. 

   Now set  s = I where I is the moment of inertia for the particle and  is its angular velocity.   

A factor of  is included because in this paper  represents the derivatives of the Euler angles  

with respect to the time t in a general frame, not the time in the rest frame of the particle.   

   Using the Euler angles and particle position as the degrees of freedom, we have from the  

initial paper the Hamiltonian H and conjugate momentum 𝐩𝐯 and  𝐩𝛚  

   

    H = (m0c2 +
1

2
Iγ2ω2) γ +

Iq

mc

γ2

γ+1
𝛃 ⋅ (𝛚 × 𝐄) + qΦ                                                              (3) 

  



    𝐩𝐯 = (m0c2 +
1

2
Iγ2ω2)

1

c
γ𝛃 +

q

c
𝐀 +

Iq

mc2 (
γ

γ+1
𝛚 × 𝐄 +

γ𝟑

(γ+1)𝟐 (𝛃 ⋅ (𝛚 × 𝐄))𝛃)                    (4) 

 

     𝐩𝛚 = Iγ𝛚 +
Iq

mc
(𝐁 −

γ

γ+1
𝛃 × 𝐄)                                                                                             (5) 

 

where m0 = m −
1

2c2 Iγ2ω2 and can be considered the non-rotating rest mass.   A is the vector  

potential and  is the scalar potential. 

   To quantize the system we want to express the Hamiltonian H in terms of 𝐩𝐯 and 𝐩𝛚.   From  

the initial paper we were able to do this exactly for only the case of a non-zero B field where we  

obtained 
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where 𝛑 = 𝐩𝐯 −
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2.  We have only kept linear fields. 

    When we include a non-zero E field we were able to find a solution up to third order in 1/c2  

which is given by 
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By comparing equation (6) to equation (7) we find 
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to second order in 1/c2. 

 

III.Exact Solution and Quantization   

  To extend the solution given in equation (7), assume that equation (9) is valid to all orders in  

1/c2 so that equation (7) becomes 
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Then using the relation 
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  To test our assumption of the validity of equation (12) we can use equations (4) and (5) for 𝐩𝐯  

and 𝐩𝛚 in equation (12) to see if we obtain equation (3) for H.  Using equation (5) we can write 
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Then using equation (13) in equation (4) along with 𝛑 = 𝐩𝐯 −
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and that 
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Then using equations (14) and (15) in equation (12) we obtain 
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Then using equations (13) and (5) in equation (16) we obtain equation (3).  In these calculations 

we have used the relation γ2 − 1 = γ2β2 and only kept linear field terms.   Since we can obtain 

equation (3) in this way it shows that equation (12) is a valid solution. 

   Following the initial paper we can quantize the solution for H in equation (12) by replacing m'  
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vector form and a hat represents an operator.  Thus equation (12) becomes the corresponding 

quantum equation 
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where γ̂𝛑 = (1 +
π̂2

m2c2)
1

2.  This agrees with the Foldy-Wouthuysen expansion of the Dirac  

equation given by Chiou and Chen [6]  

 

Conclusion 

    As in the initial paper we have only considered the spin 1/2 case and compared our results to  

the Foldy-Wouthuysen transformation of the Dirac equation.  In principle higher order spins 

could be considered and compared to non-relativistic expansions of higher order relativistic spin 



 equations.   It would be interesting if  this method could also be extended to non-constant fields. 

   The fact that we get agreement to all orders of the Foldy-Wouthuysen transformation as given  

by Chiou and Chen makes it more probable that the electron can be considered as actually 

spinning, or at least that its spin is as real as its position.  From this calculation it would appear  

that the Dirac equation is equivalent to the canonical quantization of a classical spinning charge, 

at least for constant fields of low intensity.  The fact that we ignore non-linear field terms is an 

indication that this result only agrees with the Foldy-Wouthuysen transformation for low 

intensity fields.   
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