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We present a simple approach for deriving velocity-dependent masses using the principle of rel-
ativity. Our analysis reveals that the transformations associated with Galilean, Lorentz, and other
space-time frameworks between two inertial reference frames are fundamentally equivalent in the
context of the relativity of mass. Consequently, the notion of velocity-dependent mass is not the ex-
clusive characteristic of Special Relativity (Lorentz transformation). Among the notable conclusions
drawn from our formalism are: mass can both increase and decrease with velocity, a particle can
never be completely at rest, and superluminal signaling is in principle feasible. Furthermore, we
discuss on the nature of mass and argue that a photon is not massless.

I. INTRODUCTION

To describe rest and motion (these being relative
trems), we require a frame of reference which consists
of a coordinate system and a time-measuring device
(clock) [and also an observer to tell the coordinates and
clock readings!]. A frame of reference in which New-
ton’s (first) law of motion is valid, without any pseudo
forces, is called an inertial frame of reference. In non-
inertial (rotating or accelerating) frames, Newton’s law
is correct only if certain fictitious (pseudo) forces are
added to the driving forces. Newtonian mechanics [1]
assumes that both space (lengths) and time (durations)
are absolute quantities, i.e., they are the same for all
observers, regardless of their location or of their mo-
tion. According to the principle of relativity, originally
proposed by Galileo, there are no priviledged inertial
frames. Put differently, physical scenarios of (Newto-
nian) mechanics are indistinguishable for observers ei-
ther at rest or in constant motion. Consider an iner-
tial frame of reference S at rest and another inertial
frame of reference S ′ moving relative to S with a ve-
locity ~v = vx̂ (see Fig. 1). Then S moves with a velocity
~v = −vx̂ with respect to S ′. The space and time co-
ordinates of a point in frames S and S ′ are denoted,
respectively, by xµ ≡ (x1, x2, x3, x0) ≡ (x, y, z, t) and
x′ν ≡ (x′1, x′2, x′3, x′0) ≡ (x′, y′, z′, t′). The relations be-
tween the coordinates of two inertial frames of reference
are called transformation equations:

x′k = x′k(x, y, z, t) = x′k(xµ)↔ x
′T
ν = Λ(v)xT

µ , (1)

xk = xk(x′, y′, z′, t′) = xk(x′ν)↔ xT
µ = Λ−1(v)x

′T
ν , (2)

where Λ(v) is the transformation operator (matrix).
If Eq.(1) is regarded as the direct transformation then
Eq.(2) is the inverse transformation, and vice-versa. In
classical relativity, the coordinates transformation be-
tween the different inertial systems are brought about
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FIG. 1. Two inertial systems S and S ′ moving relative to each
other with velocity ~v. Position vector of a point P in S is
~r ≡ (x, y, z, t) ≡ xµ and that in S ′ is ~r′ ≡ (x′, y′, z′, t′) ≡ x′ν.

by Galilean transformation:

x′ = x− vt, y′ = y, z′ = z, t′ = t. (3)

In classical (Galilean) relativity, positions and veloci-
ties are all dependent on the motion of the observer,
but other quantities like length, time duration, mass,
or the acceleration due to gravity are absolute quan-
tites, i.e., remain invariant. Under Galilean transforma-
tion, force is invariant along the boost and momentum
is conserved along the directions perpendicular to the
boost.

The principle of relativity was found, however, not
consistent with Maxwell’s equations of electromag-
netism. These equations are not covariant under
Galilean transformation. Moreover, Maxwell’s equa-
tions of electromagnetism predicted the speed of elec-
tromagnetic waves, including light, in vacuum based
on the fundamental constants of the vacuum (the elec-
tric permittivity ε0 and the magnetic permeability µ0)
as c = 1/

√
µ0ε0. Note that the vacuum is not sim-

ply ”empty space” but has intrinsic properties that in-
fluence the propagation of electromagnetic waves. The
constants ε0 and µ0 are inherent properties of the vac-
uum itself, and thus, the calculated speed is also a con-
stant. Hence, the constancy of the speed of light in
vacuum is tied to these fundamental properties of the
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vacuum and is independent of the motion of the light
source.

In the 19th century, physicists believed that light
waves, like other waves, propagate through luminifer-
ous aether, a hypothetical stationary medium that per-
meated all of space. The Michelson-Morley experiment
[2] designed to detect the Earth’s motion through this
aether had failed to detect any “aether wind”, which
should have been apparent if the Earth was moving
through this stationary ether. The experiment consisted
of a Michelson interferometer, which split a beam of
light into two perpendicular beams, reflected them back
and then recombined them to produce an interference
pattern. The interferometer was set up to detect any
changes in the speed of light caused by the motion
of the Earth through the aether. The idea behind this
experiment was that if the Earth moves through the
aether, then the speed of light in the direction of the
Earth’s motion should be different from the speed of
light in the perpendicular direction. This would cause a
shift in the interference pattern that could be measured.
Contrary to the belief, the experiment yielded null re-
sult (the interference pattern remained unchanged) re-
gardless of the orientation of the apparatus or the time
of day or the season of year. This meant that the speed
of light was the same in all directions and that there
was no evidence of the existence of the aether. Lorentz
[3] sought to reconcile the idea of a stationary aether
with the constancy of speed of light regardless of the
motion of observers. He introduced a set of transfor-
mations that related the space and time coordinates of
two observers in relative motion, and could account for
the observed behavior of electromagnetic phenomena.
The notion of absolute space and absolute time prove
to be untenable.

This paper is organised as follows. We review Ein-
stein’s Special Relativity briefly in Sec. II, and the as-
sociated issues in Sec. III. Thereafter, in Sec. IV, we
provide an alternative approach to obtain the velocity-
dependent mass followed by several remarks. In Sec. V,
we argue that photons have mass. Finally, we conclude
in Sec. VI.

II. EINSTEIN SPECIAL RELATIVITY

The theory of relativity is about the dependence or
the invariance of physical statements on the reference
system of the observer. The null result of Michelson-
Morley experiment proved a major challenge to the pre-
vailing scientific theory of the time. It played a key role
in the development of Special Relativity (SR), which
abandoned or eliminated the need for the aether and
revolutionized our understanding of space and time.
The theory of SR introduced by Einstein in 1905 [4–7]
emerged from a confluence of perplexing observations
and theoretical inconsistencies within classical physics,
most notably the behavior of light. It becomes indis-

pensable whenever the relative velocity between refer-
ence frames approach the velocity of light. The classi-
cal relativity turns out to be the limiting case of SR for
small relative velocities. The theory of special relativity
is based on two key postulates:
(P1) (The principle of relativity or equivalence) The
laws of physics are the same for all observers in uni-
form motion relative to each other. Put differently, there
is no preferred inertial frame. All inertial frames enjoy
equal status.
(P2) (The principle of the constancy of speed of light)
The speed of light in vacuum is always the same, re-
gardless of the motion of the observer or the source of
the light.

A. Lorentz Transformation

The transformation, for a boost ~v = vî along x-axis,
which is compatible with the above two postulates of
SR is the Lorentz transformation [3, 7] (see also [8] and
[9]), given by

x = γ(v)(x′ + vt′),

y = y′, z = z′, (4)

t = γ(v)(t′ +
v
c2 x′),

and

x′ = γ(v)(x− vt),

y′ = y, z′ = z, (5)

t′ = γ(v)(t− v
c2 x),

where the Lorentz factor γ(v) = (1 − kv2)−
1
2 with

k = 1/c2 depends on the relative velocity of the frames
(observers) and c is the speed of light in vacuum. These
transformation equations reduce to Galilean transfor-
mation when v << c or c → ∞. The Lorentz trans-
formation refers only to uniformly straight-line rela-
tive motions of the considered systems and thus does
not tell anything about systems which are acceler-
ated relative to each other. The Lorentz transforma-
tions preserve the speed of light, lead to time dila-
tion (moving clocks run slow) and length contraction
(moving rods shorten along the boost), unifies or en-
tangles space and time into four-dimensional contin-
uum “spacetime”, and form the basis of special rela-
tivity. Other notable milestones of SR are variation of
mass with velocity and equivalence of mass and energy.

B. Velocity Composition and Acceleration

The velocities of a particle are given by ~u = d~r
/

dt

in S and ~u′ = d~r′
/

dt′ in S ′. Hence, using the Lorentz
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transformation Eq.(4) in their differential form, veloci-
ties transform as

u1 =
u′1 + v

1 + u′1v/c2 =
γ(u′1)γ(v)

γ(u1)
(u′1 + v), (6)

u2 =
u′2

γ(v)(1 + u′1v/c2)
=

γ(u′1)
γ(u1)

u′2, (7)

u3 =
u′3

γ(v)(1 + u′1v/c2)
=

γ(u′1)
γ(u1)

u′3, (8)

where

γ(u1) = γ(u′1)γ(v)(1 + u′1v/c2). (9)

Similarly, using Eqs.(6, 7, 8) and Eq.(9), accelerations
~a = d~u

/
dt in S and ~a′ = d~u′

/
dt′ in S ′ transform

according to

a1 =
a′1

γ3(v)(1 + u′1v/c2)3 =
γ3(u′1)
γ3(u1)

a′1, (10)

a2 =
1

γ2(v)(1 + u′1v/c2)2

(
a′2 − a′1

u′2v/c2

1 + u′1v/c2

)

=
γ2(u′1)
γ2(u1)

(
a′2 − a′1

u′2v
c2

γ(u′1)γ(v)
γ(u1)

)
, (11)

a3 =
1

γ2(v)(1 + u′1v/c2)2

(
a′3 − a′1

u′3v/c2

1 + u′1v/c2

)

=
γ2(u′1)
γ2(u1)

(
a′3 − a′1

u′3v
c2

γ(u′1)γ(v)
γ(u1)

)
. (12)

C. Variation of Mass with Velocity

The relationship between mass of an object and its
speed were investigated and discovered by early physi-
cists [3, 10]. Einstein SR also posits that mass varies
with velocity. Three widely-known expressions of vari-
ation of mass with velocity are:

m = m0

(
1− u2/c2

)− 3
2 , (13)

m = m0

(
1− u2/c2

)− 1
2 , (14)

m = m0 e
Qu2

2c2 , (Q > 0), (15)

where m0 ≡ m(~u = 0) is the rest mass and m ≡
m(~u 6= 0) is the moving or relativistic mass of a par-
ticle. Conventionally, mass in Eq.(13) is called longitu-
dinal mass and that in Eq.(14) is called transverse mass.
These two masses have a singularity at u = c. The
mass varying exponentially with velocity in Eq.(15) di-
verges when u → c and Q is unusually high. The
expressions of velocity-dependent masses in Eqs.(13,

14) have been obtained in literature using different ap-
proaches [4, 11? –18] with and without Lorentz trans-
formations, such as (i) relativistic invariance of laws of
electrodynamics, (ii) energy and momentum conserva-
tion in elastic and ineleastic collisions of two particles,
(iii) momentum conservation in splitting or fission pro-
cess, (iv) force moment balance method, (v) relativity
and symmetry principles, (vi) Hamilton’s principle of
least action and Lagrangian. Nevertheless, these ap-
praches have inherent limitations. In another approach,
the velocity-dependent mass is obtained using momen-
tum conservation to a single particle subject to a force
[15]. Sharma [18], in order to avoid divergence (singu-
larity) at u = c, arrived at Eq.(15) using the assumption
that the variation of mass with velocity ( dm

du ) is propor-
tional to velocity (u) of body and its mass (m).

D. Consequences of Velocity-dependent Mass

Two remarkable conclusions follow from the velocity-
dependent mass in Eqs.(13, 14). (i) Since mass increases
with velocity, relativistic mass m will be exceptionally
large when u→ c for a massive particle (m0 6= 0). But it
will require an infinite amount of energy to accelerate
a particle to speed u ≈ c which is not possible. Due
to this energy constraint, a massive particle has a upper
speed limit which is c. (ii) Since light travels with speed
c, its rest mass is assumed zero. Another argument for
masselss photon is given by the uncertainty principle
according to which the range of the force is inversely
proportional to the force-mediating particle mass. Since
the electromagnetic interaction is long-ranged, the pho-
ton must be massless.

III. ISSUES WITH EINSTEIN SPECIAL RELATIVITY

The theory of special relativity has proved revolution-
ary, has had profound implications for our understand-
ing of the universe, and has refined our understanding
of space and time considerably among other notable
developments. Regardless of its tremendous acclaim,
Einstein theory of special relativity is viewed with skep-
ticism and has drawn much criticism [19–25]. There are
concerns on the bases of conceptual, scientific, mathe-
matical, and phlosophical arguments. We remark a few
issues below.
1. Aether and null result of Michelson-Morley experiment:
The Michelson-Morley experiment failed to detect the
stationary luminiferous aether. There could be several
possible reasons of this null result [26–28]: (i) the aether
simply does not exist, (ii) the Earth drags the aether
along with it, (iii) the experiment was not sensitive
enough, (iv) there were experimental methodological
errors, i.e., experimenters did not exhaust all the opera-
tion modes or settings, (v) the experiment was affected
by external factors such as variations in temperature or
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air pressure, (vi) the calculation was made on the wrong
premises. The concept of zero-point energy fluctuations
[29, 30] reveals that space is not truly empty. This “neo-
aether” (quantum field) is, however, different from the
early concept of the static aether.
2. Constancy of speed of light: There is a general consen-
sus within the scientific community that the speed of
light in vacuum is a fundamental constant. However,
there are theoretical considerations and cosmological
implications such as horizon problem, cosmic inflation,
etc. that question this assumption and have prompted
investigations into the variable speed of light (VSL) the-
ories [31]. A few arguments against the constancy of
speed of light are: (i) The speed of light c = 1/

√
µ0ε0 in

vacuum is characteristic of the fundamental properties
of vacuum. Light slows down when passing through
a denser medium (v = c/

√
µrεr). Extending this logic,

it is possible that in the early universe conditions were
such that light travelled with a speed greater than c.
This could be true even today in some corners of the
universe. Hence, speed of light appears to be character-
istic of the properties of the underlying medium (sub-
stratum of matter) in which it travels. (ii) Until now
the speed of light has been measured in a round trip.
It is possible that one-way light is anisotropic and its
speed has different value from c. (iii) Light is affected
by gravity. It bends around massive stars and stops at
(or is completely absorbed by) black holes.
3. Lorentz transformations: It is not necessary to postu-
late the constancy of speed of light in vacuum to arrive
at Lorentz transformation. It can be derived even with-
out light [32–52]. Moreover, the paradoxial nature and
redundancy of Lorentz transformation has also been re-
ported [53–55]. Not only Lorentz transformations but
other space-time transformations such as Voigt [56, 57]
and Selleri [58, 59] also render spherical wavefront co-
variant.
4. Velocity composition rule: Using Eq.(6) we see that for
p 6= 0 (i) if v = c

p and u′1 = − c
p then u1 = 0

1− 1
p2

= 0,

(ii) if v = c and u′1 = −c then u1 = 0
0 is undetermined,

and (iii) if v = c
p and u′1 = ±c then u1 = ±c seems

to be independent of the relative velocity between the
frames. In another case let v 6= 0, u′1 = 0 and u′2 = c
(say, a laser light is shown along y-axis in frame S ′).
Then, u1 = v from Eq.(6) and u2 = c

γ(v) from Eq.(7).
Thus, an observer in frame S does not see light moving
with speed c along the y-direction but in the xy-plane.
5. Variation of mass with velocity: Relativistic mass in
Eq.(14) increases with increasing velocity. Since photon
(light) travels with speed c, its rest mass m0 is assumed
zero and hence its relativistic mass is undefined. But
it has nonzero momentum and energy. A neutrino has
negligible rest mass and it travels at nearly the speed
of light. Does its relativisic mass is exceptionally large?
Does mass really increase with velocity [61–63]? What
happens to the enhanced mass of a moving particle
when it is brought to rest?

6. Equivalence of mass and energy: Is Lorentz transforma-
tion inevitable to arrive at the mass-energy equivalence
[64–68]? What is its real meaning or interpretation? Is
it true in the sense that mass and energy are intercon-
vertible freely? If it were true then given an energy E,
one should be able to create a matter particle of mass
m = E

c2 . Has this ever been achived? Conversely, for a
nonzero mass m to have an equivalent energy E = mc2,
it must travel with speed c which is impossible for a
massive particle. Even if mass and energy are equiva-
lent and they are convertible into one another, there has
to be a systematic mechanism behind that. Actually, the
binding (or disassociation) energy and the mass defect
are equivalent [69, 70].

IV. ALTERNATIVE DERIVATION OF
VELOCITY-DEPENDENT MASSES

In this section, we present a simple yet elegant ap-
proach to obtain velocity-dependent masses, in partic-
ular Eqs.(13, 14), using the principle of relativity alone
under Lorentz transformation. Newton’s second law of
motion F = dp

/
dt m=const−→ ma is a physical law. And

conservation of momentum is another physical law in
the absence of a net external force. Therefore, for a
given boost, we require from the first postulate that un-
der Lorentz transformation, as in Galilean transforma-
tion, force is invariant along the boost and momentum
is invariant (conserved) along the directions perpendic-
ular to the boost. The physical quantities in S are un-
primed and those in S ′ are primed.

Case 1. First, we demand invariance of momentum
perpendicular to the direction of boost in the two iner-
tial frames, and obtain using Eqs.(7, 8),

m′ku′k = mkuk = mk
γ(u′1)
γ(u1)

u′k

⇒ m′k
γ(u′1)

=
mk

γ(u1)
=

mk0
γ(0)

(say)

⇒ mk = mk0γ(u1) (k = 2, 3). (16)

Here the velocity-dependent mass, following from in-
variance of momentum, along y− or z−axis depends
only on the velocity along x. Here mk0 denotes the rest
mass of a particle along the spatial coordinate xk. It
must be invariant (mk0 = m0).

Case 2. By demanding invariance of force F = ma
along the x-axis in two inertial frames, we get the lon-
gitudinal mass

m′a′1 = ma1 = m
γ3(u′1)
γ3(u1)

a′1

⇒ m′

γ3(u′1)
=

m
γ3(u1)

= m0 (say)

⇒ m = m0γ3(u1) = m0

(
1− u2

1/c2
)− 3

2 . (17)
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Case 3. Demanding invariance of force F = dp
/

dt
along the x-axis in two inertial frames, we get the trans-
verse mass. Moreover, we get a new expression of rela-
tivistic mass which is inversely proportional to velocity
of the particle. First, note that

F =
d(mu)

dt
=

(
m + u

dm
du

)
a. (18)

Then d(m′u′1)
dt′ = d(mu1)

dt yields(
m′ + u′1

dm′

du′1

)
a′1 =

(
m + u1

dm
du1

)
γ3(u′1)
γ3(u1)

a′1 (19)

⇒ 1
γ3(u′1)

(
m′ + u′1

dm′

du′1

)
=

(
m + u1

dm
du1

)
1

γ3(u1)
.

While the expression on lhs is a function of u′1, that
on rhs is a function of u1. This is possible only when
each of them is separately equal to a constant, say, m0.
Consequently, we get

dm
du1

+
m
u1

= m0
γ3(u1)

u1
(0 < u1 < c). (20)

Eq.(20) is an ordinary first-order linear nonhomogenous
differential equation. Its complementary solution is ob-
tained by equating the lhs of Eq.(20) to zero. That is,

dm
du1

+
m
u1

= 0

⇒
∫ m

m0

dm
m

= −
∫ u1

u10

du1

u1

⇒ mu1 = m0u10 ≡ χ, (21)

where χ, we believe, depends on composition of the
particle and medium (substratum of matter). It is easy
to verify that the particular solution of Eq.(20) is

m = m0

(
1− u2

1/c2
)− 1

2 . (22)

Hence, the general expression of velocity-dependent
mass is given by

m =
χ

u1
+ m0

(
1− u2

1/c2
)− 1

2 . (23)

Based on the above developments, a few remarks are
in line.
Remark 1. In our derivation above, m0 is not the rest
mass of Einstein because u1 = 0 is not permissible by
Eq.(20). Rather, it is the mass corresponding to some
threshold or critical speed m0 = m(u1 = u10 6= 0) by
Eq.(21). Thus, a particle is never completely at rest
(though its net displacement might be zero). More-
over, every existing particle has an intrinsic (or existen-
tial) mass m0 based on its origin and composition. The

mass m of a particle at any instant depends on its in-
trinsic mass and velocity ~u at that instant, and is given
by m := m(m0,~u).
Remark 2. While m is always greater than m0 according
to Eq.(22), it can be smaller or greater than m0 according
to Eq.(21). Thus, mass can decrease with speed. Eq.(23)
is the extended expression of mass varying with veloc-
ity.
Remark 3. Because there is no singularity (divergence)
issue as seen from Eq.(21), speed of the particle can,
in principle, exceed the speed of light in vacuum.
We, therefore, propose that there exists an ultimate
(maximum theoretical possible) speed C ≥ c. Cor-
respondingly, the Lorentz factor modifies to γ(u) =(
1− u2/C2)− 1

2 and the speed of a particle is con-
strained to 0 < u < C. The issue of singularity is also
automatically resolved with this conception. Moreover,
m → 0 when u10 << u1 → C. This result is quite
interesting and reasonable as it explains why neutri-
nos travelling nearly at the speed of light have negligi-
ble masses. We also argue below that a photon has a
nonzero (existential) mass.
Remark 4. We are familiar with Galilean and Lorentz
transformations. There exist, however, several other
space-time transformations depending on different
physical (and mathematical) requirements. The princi-
ple of relativity together with Galilean transformation
also provides velocity-dependent mass. For velocity-
dependent masses obtained using Galilean and other
space-time transformations, see Table I. Thus, Lorentz
transformation or SR is not sacred anymore in this re-
gard.
Remark 5. Does mass vary with velocity? In our for-
mulation m0 is not the rest mass. It is invariant and is
characteristic of the existence of a particle. The veloc-
ity of a particle can depend on several factors such as its
composition, medium in which it resides, and the exter-
nal forces imparted to it. We are of the opinion that the
change in mass with velocity is apparent, and is a mea-
sure of inertia (analogous to workfunction or barrier
potential) [70, 71] and/or energy. While the solution of
homogeneous equation ensures that the boundary con-
ditions are satisfied, the particular solution ensures that
the inhomogeneous equation is satisfied. The particular
solutions are characteristics of the space-time transfor-
mations.

V. ON PHOTON MASS

In this section, we argue that a photon also has a
nonzero (existential) mass depending on its origin [72],
though it may be quite insignificant.

Photons are regarded as quanta (elementary parti-
cles) of light. Because a photon is never found at rest,
its rest mass is postulated zero. Its relativistic mass,
m = m0γ(c), is then undetermined. It is believed that
photons follow a unique set of rules that are different
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Transformation m′a′ = ma d(m′u′)
dt′ = d(mu)

dt
Galilean
x′ = x− vt
y′ = y, z′ = z
t′ = t

m′k = mk
(k = 1, 2, 3)

complementary: mkuk = mk0uk0

particular: mk = mk0

(
1 + uk0

uk

)
(k = 1, 2, 3)

Lorentz [3]
x′ = γ(v)(x− vt)
y′ = y, z′ = z
t′ = γ(v)(t− v

C2 x)

m1 = m10γ3(u1)
complementary: m1u1 = m10u10
particular: m1 = m10γ(u1)

Voigt [56]
x′ = x− vt
y′ = y/γ(v), z′ = z/γ(v)
t′ = t− v

C2 x

m1 = m10γ3(u1)
complementary: m1u1 = m10u10
particular: m1 = m10γ(u1)

Selleri [58]
x′ = γ(v)(x− vt)
y′ = y, z′ = z
t′ = t/γ(v)

m′1 = m1γ3(v)
m′k = mkγ2(v)
(k = 2, 3)

m′1 + u′1
dm′1
du′1

=
(

m1 + u1
dm1
du1

)
γ3(v)

m′k + u′k
dm′k
du′k

=
(

mk + uk
dmk
duk

)
γ2(v)

(k = 2, 3)
Edwards [60]
x′ = γ(v)(x− vt)
y′ = y, z′ = z
t′ = γ(v)[(1 + a v

C )t− ( v
C2 +

a
C )x]

· · · · · ·

Generalized
x′ = a1(x− v1t)
y′ = a2(y− v2t)
z′ = a3(z− v3t)
t′1 = a0

[(
1 + ~b.~v

C

)
t−∑3

k=1 ek

(
vk
C2 +

bk
C

)
xk

]
t′2 = a0

[(
1 + ~b.~v

C

)
t−∑3

k=1

(
ekvk
C2 + bk

C

)
xk

]
· · · · · ·

Symmetric [92]
x′k = γ(vk)(xk − vktk)
t′k = γ(vk)(tk − vk

C2 xk)

mk = mk0γ3(uk)
(k = 1, 2, 3)

complementary: mkuk = mk0uk0
particular: mk = mk0γ(uk)
(k = 1, 2, 3)

TABLE I. Velocity-dependent masses obtained using invariance of Newton’s second law for various space-time transformations.

Here γ(ξ) =
(
1− ξ2/C2)− 1

2 with C ≥ c and c is the speed of light in vacuum. A careful observation reveals that space and
time coordinates of these transformations are related. Note that Lorentz ≡ γ(v)Voigt, and Edwards transformations reduce to
Lorentz and Selleri transformations, respectively, for a = 0 and a = − v

C . Furthermore, Galilean, Lorentz, Voigt, Selleri and
Edwards transformations are special cases of the generalized transformation for appropriate values of parameters (a1, a2, a3, a0),
(b1, b2, b3), (e1, e2, e3), and velocities (v1 = v, v2 = 0, v3 = 0). mk0 is the intrinsic mass of a particle along the spatial coordinate
xk. It must be invariant (mk0 = m0). The velocity-dependent mass mk of the particle along different spatial coordinates may be
different suggesting that relativistic mass should be treated as a vector quantity. The particular solutions are characteristics of
the space-time transformations. The Galilean and Lorentz transformations are equivalent with regard to the relativity of mass,
and hence the concept of velocity-dependent mass is not unique to Lorentz transformation or SR. While Galilean, Lorentz, Voigt,
and symmetric transformations suggest the presence of an inherent (existential) mass, Selleri transformation relates the masses
in two inertial frames.

from those governing massive particles. But light can be
slowed down, captured or freezed [73–76]. Moreover, it
can be converted into a supersolid [77]. A supersolid acts
as both a solid and a fluid and has zero viscosity.

The four fundamental forces (interactions) in na-
ture can be understood in terms of the exchange of
force-carrying particles (spin-1 bosons). The symmetry
property of the gauge interactions requires that spin-
1 gauge bosons must be massless. This is fine with
photons (electromagnetic force) and gluons (strong nu-
clear force) but is in conflict with massive W− and
Z−bosons of weak nuclear force. To preserve the sym-
metries of gauge theories, Higgs introduced the mecha-
nism of spontaneous symmetry breaking and predicted
the existence of a spin-0 uncharged particle, the Higgs

boson, which is responsible for masses of the particles.
But what if all elementary particles, including the force-
mediating ones, have nonzero mass? All gauge interac-
tions will be on equal footing.

A photon has energy (E = hν) and momentum (p =
E/c). Note that this expression for momentum cannot
be obtained from the energy-momentum relation

E2 = p2c2 + m2
0c4 (24)

by substituting m0 = 0. This is because m0 = 0 implies
p = mv = γ(v)m0v = 0

0 and E = 0
0 . That a photon has

momentum is derived by using the de Broglie wave-
particle duality: every matter particle is associated with
a wave whose wavelength is given by λ = h

p

(
= h

mv

)
.
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Thus, E = hν = pc. This suggests that photon is a mat-
ter particle and should have an inherent mass. Now
considering the equivalence of mass and energy (as-
suming there exists a mechanism and a machine with
100 percent efficiency to convert matter into energy!),
photon has a nonzero mass given by

m0(λ) =
E
c2 =

hν

c2 =
h

λc
. (25)

The mass of a photon corresponding to the wavelength
λ = 7000 nm is m0 = 3.159 × 10−36 kg (roughly one
million times smaller than the electron’s mass). Light is
“heavy” and several theoretical limits on photon mass
have been proposed using various approaches [78–91].
For such a vanishingly small limiting mass, (m0c2)2 →
0, and Eq.(24) essentially yields E ∼ pc. Photons will
respect Eq.(24) if they have a nonzero mass.

VI. CONCLUSION

In summary, we obtained the velocity-dependent
masses using the invariance of Newton’s second law
employing various space-time transformations. We
found that even Galilean transformation renders mass
to vary with velocity. The concept of velocity-varying
mass is thus not unique to Special Relativity. As far as
relativity of mass is concerned, all inertial transforma-
tions are equivalent. As byproducts, we observed that
a particle is never entirely at rest, and has an intrinsic
(existential) mass that remains invariant. The change
in mass with velocity is apparent, and superluminal
communication is possible. We also argued that pho-
tons (and all other fundamental entities) possess mass.
Apart from shedding valuable insights in foundations
of physics, our approach is also useful from the peda-
gogic viewpoint.
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