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Abstract.

This paper presents  detailed analyses of  congruences modulo in the case of  even sum
S = A + B. These analyses were performed in order to design a way to demonstrate GSC in
an elementary logical way.
Even if we succeed with the rules of congruence in putting an even number in the sum of
two prime numbers, this does not constitute a definitive mathematical proof, which is why
the GSC remains unprovable. This is why we must resort to a logical reasoning which
consists of eliminating false propositions and keeping only one which is true. The one
which is true must lead us to the truth of the GSC and thus we succeed in demonstrating it
mathematically.
This  paper  provides  an  elementary  mathematical  proof  by  deciding  between  four
propositions  such  that  the  GSC is  the  only  true  one (logical  reasoning  by  an  indirect
proof). This conclusion is reached by taking into account established facts in mathematics
about prime numbers in [0 ▬ n] and [n ▬ 2n] intervals.

Keywords. Prime. Goldbach's strong conjecture. Euclidean division. Euclidean equation. 
Gap. Congruence. Modulo. Infinity. Exponential.

Abbreviations. GSC : Goldbach's strong cnjecture. P : prime. C : composite.
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Introduction.

I have recently reported in several papers that for an even number denoted S Goldbach's 
strong conjecture (GSC) depends on the presence of two equidistant primes p and Q such 
that p < S/2 and Q > S/2 and such that S/2 – p = Q – S/2 therefore S = p + Q [1-6]. In addition
I have shown that GSC depends closely on the gaps between primes especially gaps = 6 or 
4 [1,5]. I have also shown that GSC might hold true to infinity [4]. In the present paper, I 
study GSC in function of the remainders of euclidean divisions and rules of congruence. 
This is an attempt to demonstrate how Q primes are formed so that Q + p = S. I also study 
the impact of some gaps devoid of primes on the GSC. Finally, I analyse whether GSC 
might hold true to infinity. The paper paves a way for an elementary and basic 
understanding of the GSC or at least defines the critical elements that must be dealt with if
one attempts to solve it. It provides an elementary mathematical demonstration and a 
mathematical proof of this conjecture.

The article is organized into three parts in the first one I provide simple examples of illustrations of 
the congruence rules; the second one contains a logical mathematical demonstration of the GSC and
the third one a deductive demonstration of the GSC at infinity.
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Results.

A. The rules that apply to the remainders of Euclidean divisions of sums S = A + B

Let us take an even number S like S = 100. There are only four possible ways of putting it 
into the sum of two odd terms A and B such that S = A + B. Either the even number             
S = 100 is the sum of two composite (C) odd numbers with which it shares a common 
factor, e.g. S1 = 75 + 25 (if one term shares a common prime factor with S so the other one does 
too). Let 100 be the sum of two composite numbers with which it shares no common factor,
e.g. S2 = 49 + 51. Let 100 be the sum of two odd numbers, one of which is composite and 
the other prime, e.g. S3 = 67 + 33 and therefore not sharing a common factor. Or 100 is the 
sum of two primes, e.g.  S4 = 47 + 53 and therefore not sharing a common factor. These 
four types of sums will impose rules on the remainders of Euclidean divisions of S = 100 
by the primes q < S/2 = 50 or q <  S as divisors of the two terms A and B of the four sums    
S = A + B. 

Tables A1-4 are constructed using this method: i) The prime numbers denoted q < S/2 < S 
are determined. ii) Each of the 4 sums S = A + B such that B > A is taken and the terms A 
and B are divided by all the prime numbers q < B. iii) The remainder of the Euclidean 
division thus performed is noted each time. Let's note the remainders of the A terms as r1 
and those of the B terms as r2 and those of S as r3. We have two cases                                      
if r1 + r2 < q then r1 + r2 = r3. If r1 + r2 > q then (r1 + r2) : q = r3. In all cases, the sum            
S = A + B is such that S ≡ (r1 + r2) mod(q). Examples in the case of S2 = 49 + 51 we have         
49 : 17 has r1 = 15 and  51 : 17 has r2 = 0 → r3 = 15 + 0 = 15 of S2 : 17 and therefore                   
S2 ≡ (r1 + r2) mod(q) = 100 ≡ (15) mod(17). On the other hand, 49 : 29 has r1 = 20 and 51 : 29 
has r2 = 22 and so r1 + r2 = 42 > 29 and therefore (r1 + r2) : q = 42 : 29 leads to r3 = 13. When 
S is divided by one of its prime factors denoted q the remainders r1 + r2 = q however           
r3 = 0. Example 100 = 49 + 51 such that 49 : 5 has r1 = 4 and 51 : 5 has r2 = 1 so that r1 + r2 = 
5 but S = 100 : 5 has r3 = 0.
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Table 1A-D. Remainders of euclidean divisions of S = A + B by q including S : q ; A : q and B : q. The q 
represents primes < B of S = A + B such that B > A. S1 ; S2 ; S3 and S4 are explained in the text. Highlighted 0s 
determine  how many times A can be increased by a prime factor. Example in the case of S2 = 49 + 51 (Table 
B)  we have S2 ≡ 51 mod (7) and therefore r1 = 0.  This means that we can add 7 times 7 to get to 100 and so in
this case GSC is not verified because 7 x 7 = 49 is composite and not prime. By contrast in Table D, in the case
of S4 = 11 + 89 we have S4 ≡ 89 mod (11) and so r1= 0. However this time we can only add one 11 and so S4 = 
11 + 89 therefore satisfying the GSC. GSC depends on the fact whether the gap between S4 and B can be 
filled with ONE prime factor.

                 
A. S1 B. S2

4

A B S1 = A + B A B S2 = A + B
25 (r1) 75 (r2) 100 (r3) 49 (r1) 51 (r2) 100 (r3)

3 1 0 1 3 1 0 1
5 0 0 0 5 4 1 0
7 1 1 2 7 0 2 2
11 3 9 1 11 5 7 1
13 12 10 9 13 10 12 9
17 8 7 15 17 15 0 15
19 6 18 5 19 11 13 5
23 2 6 8 23 3 5 8
29 25 17 13 29 20 22 13
37 25 1 26 37 12 14 26
41 25 34 18 41 8 10 18
43 25 32 14 43 6 8 14
47 25 28 6 47 2 4 6
53 25 22 47
59 25 16 41
61 25 14 39
67 25 8 33

71 25 4 29

73 25 2 27

q ≤ B  ↓ q ≤ B  ↓



C. S3

D.S4

5

A B S3 = A + B  A B S3 = A + B
33 (r2) 67 (r1) 100 (r3) 23 (r1) 77 (r2) 100 (r3)

3 0 1 1 3 2 2 1
5 3 2 0 5 3 2 0
7 5 4 2 7 2 0 2
11 0 1 1 11 1 0 1
13 7 2 9 13 10 12 9
17 16 16 15 17 6 9 15
19 14 10 5 19 4 1 5
23 10 21 8 23 0 8 8
29 4 9 13 29 23 19 13
37 33 30 26 37 23 3 26
41 33 26 18 41 23 36 18
43 33 24 14 43 23 34 14
47 33 20 6 47 23 30 6
53 33 14 47 53 23 24 47
59 33 8 41 59 23 18 41
61 33 6 39 61 23 16 39
67 33 0 33 67 23 10 33

71 23 6 29
73 23 4 27

q ≤ B  ↓ q ≤ B  ↓

A B S4 = A + B A B S4 = A + B
47 (r1) 53 (r2) 100 (r3) 11 (r1) 89 (r2) 100 (r3)

3 2 2 1 3 2 2 1
5 2 3 0 5 1 4 0
7 5 4 2 7 4 5 2
11 3 9 1 11 0 1 1
13 8 1 9 13 11 11 9
17 13 2 15 17 11 4 15
19 9 15 5 19 11 13 5
23 1 7 8 23 11 20 8
29 18 24 13 29 11 2 13
37 10 16 26 37 11 15 26
41 6 12 18 41 11 7 18
43 4 10 14 43 11 3 14
47 0 6 6 47 11 42 6
53 47 0 47 53 11 36 47

59 11 30 41
61 11 28 39
67 11 22 33
71 11 18 29
73 11 16 27
79 11 10 21
83 11 6 17
89 11 0 11

q ≤ B  ↓ q ≤ B  ↓



B. The case of S = A + B with A and B being both primes

Let B be a prime < S and suppose we don't know whether A is prime or composite (C). Let 
q be any prime < S. If S = A + B such that B > A and S   ≡   B mod(q) then A = nq. Let us pose
S = tq + r3 and B = t'q + r2 we then have r3 = r2 because  S ≡ B mod(q) therefore                     
A = S – B = (t – t') q + (r3 – r2) = (t' – t)q = nq. 

Given that A = nq The n factor is decisive for the GSC to be true. 
If n = 1  and if S = tq + r then B =  S – A = S – q = (t– 1)q + r. This means

S – B = tq – (t – 1)q = q  →S = B + q and because B is prime therefore S is sum of two primes
B and q.  

This always applies every time the GSC is true.

Why should this theorem be considered a critical element for understanding GSC? Let's take just 
two examples. The first example is S3 =  A + B = 33 + 67 such that A = 33 and B = 67. In this 
example we have  100 ≡ 67 mod(3) and therefore A = n x 3. If n = 1 then S3 = 3 + 67 = 70 and 
S3 < 100 and so to discard. If n = 2 then S3 = 73 < 100. If n = 3 then S3 = 76 < 100 ...and if n = 
11 then S3 = 100 which is correct. Therefore A = 11 x 3. This means that 67 is far enough 
from 100 for A to be C = 3 x 11, given that 3 is the smallest distance between two odd or 
prime numbers. This can be seen in the tables by the highlighted 0s in blue. Because r2 
(67 : 11) = r3 (100 : 11) we know then that r1(A : 11) = 0. Similarly A = n x 11 and if n = 1 
then S = 11 + 67 = 78 < 100 to discard ; if n = 2 then S3 = 89 < 100 to discard and if  n = 3 then 
S3 = 100 to keep. By contrast to S3 = 33 + 67, in the case of  S4 = 100 = 11 + 89 we have            
A = 1 x 11 and B = 89. Indeed 100 ≡ 89 mod(11) and therefore A = n x 11. If n = 2 we have S4 
= 22 + 89 = 111 > 100 to discard and if n = 3 we have S4 = 33 + 89 = 122 > 100 to discard. In 
this case we have certainly  n = 1 and therefore A = 11 thus prime. Hence S4 is sum of two 
primes 11 and 89. This is because 89 is closer to 100 than 67 which we denote here this way
89 → 100. Following the theorem demonstrated above we have A = 11  and B = (  8   x 11) + 1 
and S4 = 100 = (  9   x 11) + 1 and so we see that if  S4 = tq + r3 then B = (t – 1)q + r2 such that r3
= r2. This means that GSC is true when B and S  are separated by a gap equal to the value 
of a prime number. Since S4 = A + B with B > A means A < S/2 and B > S/2; this means that 
the GSC is true if S4 and B are separated by a gap that is equal to a prime number A < S/2. 
For GSC to be true we need a prime number > S/2 noted   Q = (t – 1)q + r  .  Otherwise             
S = ( a + 1)q + r and B = aq + r and then Q = aq + r.
Any even number S can be posed as S = tq + r with q any prime < S. If q > S/2 then t = 1 and
r is either prime or composite. If q < S/2 t > 1 and we have as many  Q = (t – 1)q + r odd 
numbers > S/2 as q primes < S/2. If ONE SINGLE Q = (t – 1)q + r is prime GSC is true. If 
we take any even S ; pose it as S = tq + r with q any prime < S and found one                          
Q = (t – 1)q + r that is prime then GSC is verified.
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C- How to determine if primes do exist in the [0 ▬ 2n] interval that verify the GSC ?
There is a symmetry in the GSC that we exploit to identify the occurrence of a prime
number Q > S/2. An even number is an interval [0 ▬ 2n] with n in the center. We will extrapolate
the prime numbers from the interval [0 ▬ n] to [0 ▬ 2n] and see if these same positions will be
occupied by prime numbers Q. Let's take the example of 100 and suppose that we don't know
the prime numbers between 50 and 100. Let's name the p's the prime numbers < 50, they
are 3; 5 (excluded) ; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43 and 47... So we'll place them in the
interval [50 ▬ 100]and we'll have 100 - 3 = X1; 100 - 7 = X2; 100 - 11 = X3; 100 - 13 = X4;...100
- 47 = X13. We'll apply the congruence rule by posing q any prime < p < S/2 and so if
100 ≡ p mod(q) then X is composite otherwise X is prime. For example 100 ≡ 97 mod(3) and
100 ≡ 3 mod(97) and therefore 97 is prime. 100 ≡ 7mod(3) and therefore 100 – 7 = X2 = 3n =
93 and therefore composite. Let's take 100 - 11 = X3 we see that 100  ≡ 89 mod(11) and
100  ≡  11 mod(89)  and therefore 89 is  prime.  In  the same way  100  ≡ 83  mod(17)  and
100 ≡ 17 mod(83). Hence 83 is prime. But 100 ≡ 19mod(3) and so 100 - 19 = 81 = 34 which is
composite.  100  ≡  23mod(11) and so 100 - 23 = 77 = 7 x 11 which is composite.  A prime
number that appears in the interval [n   ▬   2n]  at a position equivalent to that of [0   ▬   n]
satisfies the rule of GSC. Example 89 such that 100 - 11 = 89. We know 11 is prime but if
we  determine  that  100  –  11  is  prime  this  means  that  11  and  100  –  11  =  89  are  two
equidistant  primes  at  50  which verify  the  GSC.  This  method of  extrapolating p  from the
interval [0 ▬ n] to [n ▬ 2n] allows us to focus on the key positions in the interval [0 ▬ 2n] that
verify the GSC through congruence rules. This is the only way to predict whether a number is
prime at a key position where GSC is verified. Because if we analyze primeness of all odd
numbers in the interval [n ▬ 2n] except 3n and 5n that we recognize, we quickly realize
that the task is extremely tedious. Note that some primes (more or less numerous) are
absolutely useless for GSC. I name them here Qh because 2n – Qh = C (composite). These
primes can be avoided by this method of extrapolating the key positions of primes from
[0 ▬ n] to [n ▬ 2n].  
Let us suppose we have an even S = 2n. Let us suppose there are primes p < n and primes 
Q > n.Let us suppose there are primes q < p (q 1 ; q1 ; q3, ...qn < p) . 
If n : p = ap + r1 then 2n = 2ap + 2r1. Given that 2n : p = 2ap + 2r1, we have two cases either 
2r1 < p then 2r1 is the remainder of 2n ; and if 2r1 > p then 2r1 – p = is the remainder of 2n. 
Therefore r1≠2r1 in all cases and so n  2n mod(q) for every q < p < n. Therefore if                ≆
n ≡ p mod(q) ↔ 2n   p mod(q) and so if n – p = C then  ≆ 2n – p =  Q (prime) ; or  2n – p = C' 
such that C and C'have no common prime factor. Let us pose n = aq1 + r1 ; n= a'q2 + r2 ;       
n = a''q3 + r3 ;... n = anqn + rn. Then 2n = bq1 + r2 or b'q2 + r3...  bnqn + rn. Therefore if               
n ≡ p mod(q1) then n – p = C (multiple of q1) and therefore 2n ≡ p mod  (q2 or q3 or...qn) 
and then 2n – p = C' (multiple of other q but not q1). 
If n – p1 = p2 with p2 > p1. In all cases n  p1 mod(q)≆  for every q < p  but in all cases          
n     ≡ p2 mod(p1) because if n = ap1 + r1 and p2 = dp1 + r3 < then d = a – 1 and r1 = r3. If          
n – p1 = p2 with p2 > p1 → n ≡ p2 mod(p1) and  n ≡ p1 mod(p2). Reciprocal congruence 
occurs only in this case. 

7



The difference between  n – p = C and n – p1 = p2 is that if the former n ≡ p but n  C while≆
by contrast in the latter n ≡ p2 mod(p1) and n ≡ p1mod (p2). If n – p1 = p2 then                      
2n – p1 = p2 + n but p2 + n is either prime or composite. Although these congurence rules 
can help determining whether p2 + n is prime or not,n     ≡ p2 mod(p1)  they require 
performing calculation of remainders which is the same as factoring.
We have therefore 2n  n mod(p) with p < n and for every q < p. ≆

 The table 2 shows by simple visual examination of the sums of two primes that some 
same primes are involved in those sums in both n and 4n on one hand ; and in both 2n and
8n in the other hand. By contrast no common primes are seen in n compared to 2n ; in 2n 
compared to 4n ; and in 4n compared to 8n. The only prime shared by all these is 3.  This 
shows that congruence rules change at each 2n and return back at 4n.

D. The different categories of 2n numbers important for the application of GSC
 On the other hand as I have previously reported [3,5] there are three categories of 2n 
numbers inlcuding 6x ; 6x + 2 and 6x + 4. Primers are either 6x + 1 or 6x – 1. A number         
2n (6X) = (6x – 1) + (6x' + 1) ; 2n (6X + 2) = (6x' + 1) + (6x + 1) ; 2n (6x' - 2) = (6x - 1) + (6x – 1).  
Tables 3A-C show that each of these even numbers has its own configuration to produce 
primes or composites according to S - P1 = C; or S - P1 = P2 which only satisfies GSC. To 
illustrate this with examples, I chose an even number 2n from each category and then 
performed the subtraction 2n - p such that p < 2n.
We have  6X - (6x - 1) = 6X + 1 and 6X - (6x + 1) = 6X - 1 each of which can be prime or 
composite but by no means 3n (Table 3A; 2n = 120) . Whereas an even number 6X + 2 is as 
follows: (6X + 2) - (6x - 1) = 6X and (6X + 2) - (6x + 1) = 6X + 1 (Table 3B; 2n = 50). Finally; an
even number 6X - 2 is as follows: (6X - 2) - (6x - 1) = 6X - 1 and (6x - 2) - (6x + 1) = 6X (Table 
3C; 2n = 76).  Unlike an even number 6x, even numbers 6X + 2 and 6X - 2 will always 
produce multiples of 3 or 3n which might be the most numerous in [n   ▬   2n]. Note that 
50 is 6X + 2 whereas  76 is 6X - 2. The three categories of the Even numbers obey specific 
congruence rules depeding on 6x ± 1 equations ; for example, one even number cannot be 
congruent to all primes at once < S/2, or to all composite numbers < S/2 at once. In 
conclusion, E - P = C and E - P1 = P2 depends on the type of even numbers according to the
6x ± 1 equations.
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E. Elementary demonstration by an indirect proof or reductio ad absurdum of Goldbach's 
strong conjecture (GSC)

Even if we succeed with these rules of congruence in putting an even number in the sum of two 
prime numbers, this does not constitute a definitive mathematical proof, which is why the GSC 
remains unprovable. This is why we must resort to a logical reasoning which consists of eliminating
false propositions and keeping only one which is true. The one which is true must lead us to the 
truth of the GSC and thus we succeed in demonstrating it mathematically.

Be n any even ≥ 8. Be p any prime < n and q any prime < p (depending on p value we have a variable
number of q such q1 ; q2 ; q3 ; ...qn < p). Be Q any prime > n and < 2n. Prime factors of the even 2n 
are excluded. Let note c any composite < n and C any composite > n and < 2n. 

1. 2n – p = Qg such that Qg > n. Therefore if 2n = (a + 1)p + r then Qg = ap + r.  This kind of 
Qg primes are required for the GSC to be true.

2. 2n – p = C then 2n ≡ p mod(q) and if 2n = (a + 1)p + r then C = ap + r although C is a multiple
of q.

3. 2n – c = C then  2n ≡ c mod(q) such that C is a multiple of q.
4. 2n – c = Qh then  2n ≡ Qh mod(q) such that c is a multiple of q. This kind of Qh prime is 

NOT required for the GSC to be true.

Therefore only if  2n = (a + 1)p + r and Qg = ap + r prime, GSC can be true. However   
ap + r = C in the case 2n – p = C does not make GSC true. We must then decide between these two
opposing cases.

We only have four propositions one of which is true if the others are false or contradictory :
1. All supposed Qg = 2n – p (p < S/2) are composite such that Qg = ap + r = C in [n  2n]▬  ;

therefore there would be only primes Qh = 2n - c that do not verify GSC  GSC untrue→ .   This is
impossible because as we saw above an even number produces primes according to 6x ± 1
equation and cannot be congruent to all primes < S/2 at once. Evens 6X + 2 and 6X – 1
produce 3N composites while 6X evens do not produce 3N composites which show that
evens obey to different congruence rules in [0  n] interval. What's more, the composite▬
numbers C in the interval [n  2n]▬  come from the c's in the interval [0  n]▬  , and we've seen
that n and 2n cannot be congruent to the same q < p < S/2 and therefore can in no way
produce the same prime factors of the same composite number. That 2n - p = C every time
is impossible, so there is at least one P1 such that 2n - P1 = P2. This is true ad infinitum
whether there are long or short gaps between primes and whatever their density.

2. All ap + r = Qh Prime and therefore there would be more primes (Qg + Qh) in [n  2n] than ▬
[0  n] which contradicts the well-known fact that [0  n] contains more primes. Although ▬ ▬
GSC is true in this case, it cannot be accepted due to the contradiction. Let us remember 
that Qg in [n  2n]  interval are equidistant at n to p in [0  n] because 2n – p = Qg and this ▬ ▬
is why if all Qg are primes, there would be more primes in [n  2n].▬

3. At least One ap + r = Qg  is prime  GSC is TRUE. Because prime factors of S = 2n are →
excluded in GSC in addition to 3 (for 3n evens) and 5 for 5n ; primes Qg density in [n  2n] ▬
is < than that of [0  n] in this case which is what expected.▬

4. All ap + r = C and all 2n – c = C which means no primes at all in [n  2n] which absolutely ▬
would contradict Bertands's postulate.

Among the four propositions 3 of them are subject to contradictions including the first ; second 
and fourth. Only the third is correct and therefore GSC is true. 
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Example
50 – 11 = 39 = 3 x 13 ↔ 50 ≡ 11 mod (3) ↔ 50 – 11 = 3n = 3 x 13.
Therefore 100  11 mod (3) ≆ ↔ 100 – 11 cannot be composite and 100 – 11 = 89. Of note 100  ≆
11 mod (7) and so  100  11 for every q < p = 11.≆
50 – 13 = 37 ↔ 50 ≡  37 mod (13) because 37 = (2 x 13) + 11 and 50 = (3 x 13) + 11 and              
50 – 37 = 11. Therefore 100  37 (mod 13) but ≆ 100 ≡ 37 mod (3) and  100 ≡ 37 mod (7) → 
100 – 37 = (3 x 7)n = 63 = 3 x 21 = 32 x 7.
 50 – 17 = 33 ↔ 50 ≡ 17 mod (11) and 50 ≡ 17 mod (3) and therefore 50 – 17 = (3 x 11)n = 33.
By contrast 100  17 mod (11)≆  ; 100  ≆  17 mod (3) ; and 100  ≆  17 mod (3). In addition 
100  17 mod (7)≆  ; 100  17 mod (13). Hence 100 – 17 = Q prime = 83.≆
Let us take another even number like 2 = 200 ad n = 100.
We have 100 – 37 = 63 because 100 ≡ 37 mod (3) and 100 ≡ 37 mod (7) and thus  100 – 37 = (3
x 7) x 3 = 63. Therefore, 200  37 mod(3)≆  and 200  37 mod(7)≆  ; in addition, 200  37 mod(q) ≆
for any q < 37. Given all that we can expect 200 – 37 = Q ptime = 163.
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Table 2 : Congruence rules mean that the SAME prime numbers don't add up to form the even numbers n 
and 2n. The table shows 50 (n); 100 (2n). 100 (n); 200 (2n). 200 (n) 400 (2n). 400 (n) 800 (2n). 800 (n) 1600 (2n). 
1600 (n) 3200 (2n). Then, for example, 50 (n) 200 (4n) and so on.The table shows data highlighted in yellow 
and green. Yellow indicates n and green 2n. The underlined primes are common to n and 4n.  No common 
primes between n and 2n.
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50 100 200 400 800 1600 3200
3+47 3+97 3+197 3+397 3+797 3+1597 13+3187

13+787 19+3181
31+769 29+1571

29+71 43+757 37+3163
79+3121

67+733
73+727 101+1499 151+3049

97+103 109+691 107+1493 163+3037
113+1487

131+269 149+1451
137+263 167+1433
149+251 173+1427 283+2917

191+1409
349+2851

223+577
239+1361 397+2803

277+523 281+1319 409+2791
433+2767

337+463 487+2713
523+2677

379+421 541+2659
419+1181 607+2593
449+1151 643+2557
491+1109 661+2539
503+1097 727+2473
509+1091 733+2467
569+1031 811+2389
587+1013 823+2377
617+983 829+2371
647+953 853+2347
653+947 859+2341
659+941 907+2293
719+881 919+2281
743+857 997+2203
761+839 1021+2179
773+827 1039+2161

1063+2137
1069+2131
1087+2113
1117+2083
1171+2029
1201+1999
1213+1987
1249+1951
1321+1879
1327+1873
1399+1801
1423+1777
1447+1753
1453+1747
1459+1741
1531+1669
1543+1657
1579+1621

7+43 11+89 7+193 11+389 17+1583
13+37 17+83 19+181 17+383 31+3169
19+31 37+163 41+359 41+1559

41+59 43+157 47+353 61+739 47+1553
47+53 61+139 53+347 89+1511 139+3061

73+127 83+317
89+311

107+293 127+673 181+3019
139+661 199+3001
157+643 229+2971
181+619

167+233 193+607 313+2887
173+227 199+601 227+1373

233+1367 367+2833
229+571

313+487 293+1307
311+1289

367+433 317+1283
383+1217



Table 3 : There are three types of even numbers 6x. The table shows illustrative examples. 6X = 120 ; 6X + 2 =
50 and 6X – 2 = 76. The 6x + 1 primes are highlighted. Evens 6x + 2 and 6x – 2 always produce some  
composite numbers 3n that might be the most numerous while 6X evens produce composite numbers (C) 
that are not 3n. These three categories of evens do produce pirme numbers (P) in a sdifferent way and 
therefore GSC although verified with all of them involves different kind of primes.This shows that evens 
numbers obey different congruence rules depending on 6x ± 1 equations.  A 6X ; B 6X + 2 ; C 6X – 2. 
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A 120 6x
P 120 – P P or C

7 113 P
11 109 P
13 107 P
17 103 P
19 101 P
23 97 P
31 89 P
37 83 P
41 79 P
43 77 C
47 73 P
53 67 P
59 61 P
61 59 P
67 53 P
71 49 C
73 47 P
79 43 P
83 37 P
89 31 P
97 33 C
101 19 P
103 17 P
107 13 P
109 11 P

B 50 6x + 2
P 50 – P = X P or C 3n or not
7 43 P  
11 39 C 3n  
13 47 P  
17 33 C 3n
19 31 P  
23 27 C 3n
29 21 C 3n
31 29 P  
37 33
41 9 C 3n
43 7 P  
47 3 P  3n

C76 6x – 2
P  76 – P  P or C 3n or not
7 69 C

11 65 C 3n  
13 63 C
17 59 P  
19 57 C 3n  
23 53 P  
29 47 P  
31 45 C 3n  
37 39 C 3n  
41 35 C
43 33 C 3n  
47 29 P  
53 23 P  
59 17 P  
61 15 C 3n  
67 9 C 3n  
71 5 P  



F. The Ultimate-Goldbach-Gap-of-a-Prime-Value (UGGPV)
Let S be an even number that can verify the GSC. Let q be any prime < S. Among q, we
have the primes P < S/2 and Q > S/2. If we subtract S - Q, we'll obtain numbers X that are
either prime P < S/2 or composites C < S/2.  So we perform these subtractions in series
S - Q1 = X1; S - Q2 = X2; S - Q3 = X3; S - Q4 = X4...S - Qn = Xn with Qn...>Q4>Q3>Q2>Q1.
We'll  obtain  a  sequence  of  prime  and  composite  numbers  in  reverse  order
Xn...<X4<X3<X2<X1. Assume that X4; X3; X2; and X1 are primes and therefore S - Qn = Xn
= Pn then Pn is the UGGPV. The UGGPV is the prime number P that separates a prime
number Q > S/2 from S. For an ,even number that is not a multiple of 3, the minimum
value of a UGGPV is 3.  On the other hand, the UGGPV has a minimum value of 7 for even
numbers that are multiples of 3.  We need to exclude prime numbers P that are prime
factors of S. If we set S = tq + r, then UGGPV = S - Qn = tPn + r - ((t -1)Pn + r) = Pn,
provided that S ≡ Qn mod(Pn).  The smallest UGGPV depends upon the gap between the
even number S and the last prime number Qn that precedes it. The more the gap is larger
the higher is the value of the UGGPV.
In  Tables  5,  we consider  the  case  of  S  =  100.  We take  the  prime numbers  <  100 and
subdivide them into P < S/2 = 50 and those > S/2, which we denote Q. Then divide all the
Qs by a P. The table shows the quotients. We can see that each UGGPV is deduced from
the subtraction of two quotients that differ by a single unit. Example 100 = 11 x 9 with
r = 1 ; and 89 : 11 = 8 with r = 1. We see 100 ≡ 89 mod (11) and 9 - 8 = 1. When the difference
> 1, the number is ccomposite denoted by C e.g. 100 - 73 = 27 with 100 : 3 = 33 and r = 1and
73 : 3 = 24 and r = 1 and so 33 - 24 = 9 such that 9 x 3 = 27 = C (Table 4A).

In Table 4B we see 100 : 7 = 14 with r = 2 and 79 : 7 = 11 with r = 2 so that 14 - 11 = 3 and
therefore 3 x 7 = 21 = C. On the contrary, 100 : 11 = 9 and r = 1 and 89 : 11 = 8 and r = 1 and
therefore  9  -  8  =  1.  This  means  that  between  11  and  100  we  have  the  odd  numbers
11 x 2 + 1, 11 x 4 + 1; 11 x 6 + 1; 11 x 8 + 1 alternating with the even numbers 11 x 3 + 1;
11 x 5 + 1; 11 x 7 + 1 and 11 x 9 + 1. Note that two of these are < S/2 = 50 and the other two
are > 50. Between two successive even and odd numbers there are 2 x 11 and between an
odd and an even number there are 11. If the odd before S is prime, the GSC proves true. So
if S = tP + r, the equation Q = (t - 1)P + r will generate an infinite number of possible primes.
The primes Q > S/2 follow from each prime P < S/2 so that the even number S = tP + r and
Q = (t - n)P + r. If n = 1 GSC is proved, and if n > 1 we have a composite number and so
GSC does not apply. Other examples are shown in Table 4C – E.
The GSC can be proved using this method. Take all prime numbers P < S/2 and calculate
S = tP + r. If only one number is prime of type Q = (t - 1)P + r which is > S/2, the GSC is true.
For small even numbers S (relative to infinity), the primes are dense enough that at least
one number Q = (t  -  1)P + r  is  prime.  For infinitely large S,  there are infinitely  many
numbers P and therefore infinitely many possible primes of type Q = (t - 1)P + r.
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An odd number is not only constructed by the Euclidean path of a multiple of prime
factors, but also by the Euclidean equation ax + r, and can be composite or prime . The
GSC means that an even number S = (a + 1)x + r is  always preceded by one or many
Q = ax + r prime such that S – Q = x with x any prime < S/2 and Q any prime > S/2. 
 The distance between x and ax + r is (ax + r) - x = (a - 1)x + r and therefore the distance of   
x and ax + r from S/2 is ((a - 1)x + r)/2. Example (89 - 11)/2 = 39 and therefore 11 + 39 = 50 
and 50 + 39 = 81 and therefore 11 and 89 are equidistant from S/2. In fact 89 = 8 x 11 + 1 and
so 89 – 11 = (8 – 1) x 11 + 1 = 7 x 11 + 1 = 78 and then 78/2 = 39.
Goldbach then sees even numbers in the form of the Euclidean linear equation (a + 1)x + r 
and prime numbers as ax + 1 with a gap = x between them. GSC can then be used to find 
new primes to infinity, starting from an even number S. Prime numbers multiply with 
each other to generate even or odd natural numbers; or follow the Euclidean equation        
ax + r to generate odd numbers, including odd prime and composite numbers and even 
numbers. We can conclude that an even number S of type (a + 1)x + r is an interval in 
which at least one prime Q of type ax + r >S/2 is formed with x any prime < S/2 such that 
S≡Q mod(x) and S≡x mod(Q). The number 8 would be the first even number that 
satisfies this interval rule, since we have 8 = (2 x 3) + 2 and it is preceded by the prime 
number Q = (1 x 3) + 2 = 5. And so (5 - 3)/2 = 1 and so 5 and 3 are one unit away from 8/2 =
4. And so 8 would be the smallest interval in the whole set N that obeys this GSC rule 
(the case P1 = P2 is excluded).
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Table 4 : Verification of the GSC by calculating the UGGPV or a prime gap between the 
even number S = 100 and the prime numbers Q > S/2 preceding it. The primes Q are all 
divided by one prime < S/2 as shown. The congruence rules required for the GSC to be 
true are shown in the tables. Some Composite numbers not satisfying The GSC are shown 
on the right of the table.

G. GSC representation in a table or graph based on the remainders of Euclidean 
divisions
G1. A Table to test GSC
First, the example is the even number S = 74. We take prime numbers close to and less than
74 and prime numbers close to 0; and we divide the first by the second and then we note 
the remainders of the divisions thus carried out (Table 5). We compare all the remainders 
obtained with the prime numbers to those obtained with S = 74 and when they are 
identical we subtract them from 74. The GSC is true when the difference has a value of a 
prime number or what is called here UGGPV. Exampe 74 : 3 has a remainder r = 2 identical
to that of 71 and 74 – 71 = 3 which is prime and so GSC is verified. Also 74 : 7 has r = 4 
which is identical to that of 67 : 7 and so 74 – 67 = 7 another UGGPV that verifies GSC. 
Although 74 : 11 has the same r = 8 than 41 : 11 we have 74 – 41 = 33 which is not an 
UGGPV and therefore GSC is not verified in this case. Other divisors such that 13 and 31 
are UGGPV that verify GSC. 
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4A
53 59 61 67 71 73 79 83 89 97 100

Q/3 17 19 20 22 23 24 26 27 29 32 33
S – Q 47 41 39 33 29 27 21 17 11 3

mod(3)  ≆  ≆ ≡ ≡  ≆ ≡ ≡  ≆  ≆ ≡

4B
53 59 61 67 71 73 79 83 89 97 100 93 = 3 x 31

Q/7 7 8 8 9 10 10 11 11 12 13 14 13
S – Q 47 41 39 33 29 27 21 17 11 3

mod(7)  ≆  ≆  ≆  ≆  ≆  ≆ ≡  ≆  ≆  ≆ ≡

4C            

53 59 61 67 71 73 79 83 89 97 100
Q/11 4 5 5 6 6 6 7 7 8 8 9
S – Q 47 41 39 33 29 27 21 17 11 3

Mod(11)  ≆  ≆  ≆ ≡  ≆  ≆  ≆  ≆ ≡  ≆

4D
53 59 61 67 71 73 79 83 89 97 100 87 = 3 x 29

Q/13 4 5 5 5 5 5 6 6 6 7 7 6
S – Q 47 41 39 33 29 27 21 17 11 3 9

Mod(13)  ≆  ≆ ≡  ≆  ≆  ≆  ≆  ≆  ≆  ≆ ≡

4E
53 59 61 67 71 73 79 83 89 97 100

Q/17 3 3 3 3 4 4 4 4 5 5 5
S – Q 47 41 39 33 29 27 21 17 11 3

Mod(17)  ≆  ≆  ≆  ≆  ≆  ≆  ≆ ≡  ≆  ≆

Q → 

Q → 

Q → 

Q → 

Q → 



Such tables can be therefore useful to test if an even number S  is preceded very closely by 
primes such that the difference between them and S has values of primes and so verifying 
GSC.
 
Table 5. Remainders of the Euclidean divisions of numbers in the first column by the numbers in the first 
line. All numbers are prime (close to 74 in the column) or closer to 0 in the line. Identical remainders 
obtained with a same prime divisor are highlighted.  GSC is true depending on how far is the congruent 
prime from S = 74 in the column. In Green GSC satisfied with an UGGPV but not in blue.

G2. GSC in graphics of remainders
 Using the same method as in Table 5 here for the even number S = 180. Primes P close but 
lower than S = 180 are divided by primes denoted q close to 0 (3 ; 7 ; 11 ; …).
In the Graphic 1A, the remainder of S is shown by the red arrow at the left. We see for 
example that 180 – 173 = 7 which is an UGGPV that verifies GSC.  The prime number 173 is
indicated by the red arrow at the right. Note how close are the arrows because the gap = 7 
is too small. The square correspond to composites.

Graphic 1A.
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3 5 7 11 13 17 19 23 29 31
74 2 4 4 8 9 6 17 5 16 12
73 1 3 3 7 8 5 16 4 15 11
71 2 1 1 5 6 3 14 2 13 9
67 1 2 4 1 2 16 10 21 9 5
61 1 1 5 6 9 10 4 15 3 30
59 2 4 3 4 7 8 2 13 1 28
53 2 3 4 9 1 2 15 7 24 22
47 2 2 5 3 8 13 9 1 18 16
43 1 3 1 10 4 9 5 20 14 12
41 2 1 6 8 2 7 3 18 12 10



By contrast a larger gap is seen with 11 (Graphic 1B) because 180 – 103 = 77 as deduced 
from the remainders, which is not an UGGPV that verifies the GSC . We see the two 
arrows are more distant from each other because the gap = 77. Therefore 11 is not an 
UGGPV.

Graphic 1B.

In Graphic C we see that 13 is an UGGPV because 180 – 167 = 13 as deduced from the 
remainders and again the two arrows are closer to each other. We can have large gaps 
between the two arrows which nevertheless verify the GSC for example 180 - 83 = 97 
which is therefore the largest UGGPV gap for this number.

Graphic 1C.
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H. GSC remains true despite large gaps between even numbers and the prime numbers 
preceding them

H1. Example of an even after a gap = 35.

 Large known gaps between primes are shown in https://t5k.org/notes/GapsTable.html by 
Chris Caldwell, et al. Suppose we have two primes p and q between which there is a larger
gap. If we take the even S = q + 1 then S will be as distant from p as q which allows to 
determine how gaps can impact the GSC. In Table 6, I take the prime number 9551 after 
which there is a gap = 35 before finding the next prime and therefore I take the even            
S = 9551 + 35 = 9586. The same method as above is used to analyze remainders of euclidean
divisions of 9586 and close primes lower than it divided by primes closer to 0 (7 ; 11 ; 13 ; 
17 ;...47). In Table 6 we see that 7 does not verify the GSC with the even number S = 5986 
because there is the gap of 35 between 5986 and the prime number that precedes it 9551 
and therefore 9586 - 9551 = 35 = 5 x 7. This is also the case with 13 because we have             
9586 - 9547 = 39 = 3 x 13; or with 19 because we have 9586 - 9491 = 95 = 19 x 5. We must go 
up to the prime number 47 so that the GSC is verified with the number 9586 - 9539 = 47. 
We see that the initial gap of 35 between 9586 and 9551 eliminates the prime numbers from
7 to 43 before the GSC is verified correctly at 47. Note that 9586 is congruent with prime 
numbers whose remainders are highlighted mod(7) ; mod(13) ; mod(19) and mod(47).

Table 6. Gaps can delay GSC to be true depending on prime sequence after the gap. 
Example of the even 9586 is preceded by a prime number 9551 at a gap = 35.

H2. Exponential shift between the values of even numbers after a gap and those of their
first prime numbers that satisfy the GSC
Table 7 shows a sample of the first even numbers that occur just after a prime number 
before which there are gaps in ascending order. While the even numbers increase from 96
to 2,010,880, the gaps vary only from 7 to 147. The even numbers have increased 20,946 
times, while the gaps have only lengthened 7 times. In this sample of numbers in Table 7, 
the even numbers are growing almost 3,000 times faster than the primes preceded by 
increasing gaps, and their growth has an exponential tendency.
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7 11 13 17 19 23 29 31 37 41 43 47
9586 3 5 5 15 10 18 16  x 3  x 40 45
9551 3 3 9 14 13 12 10 x 5 x 5 10
9547 x 10 5 10 9 2 6 x 1 x 1 6
9539 x 2 x 2 1 17 27 x 30 x 36 45
9533 x 7 x 13 14 11 21 x 24 x 30 x
9521 x 6 x 1 2 22 9 x 12 x 18 x
9511 x 7 x 8 11 12 28 x 2 x 8 x
9497 x 4 x 11 16 21 14 x 25 x 37 x
9491 x 9 x 5 10 15 8 x 19 x 31 x
9479 x 8 x 10 x 3 25 x 7 x 19 x
9473 x 2 x 4 x 20 19 x 1 x 13 x

https://t5k.org/notes/GapsTable.html


Table 7. Even numbers after a gap devoid of primes grow much faster than the gaps thand 
primes that surround them. They still verify the GSC with their primes closer to 0. For 
instance the even number 360,748 occurrig after a gap = 95 verifies the GSC with a prime 
number as small as 137 (meaning  360,748 – 137 = 360,611 is prime).

Graphic 2A shows an exponntial acceleration in the increase in even-numbered values 
following an empty prime gap.
On the other hand, for each even number S, we note their first prime < S/2 that verifies the 
GSC. For example, for the number 540, the GSC is verified from 17 onwards, while for the 
number 2,010,880, the GSC is verified from 191 onwards (Table 7). Graphic 2B, on the 
other hand, shows a very slow increase in the value of prime numbers verifying the 
GSC after empty prime number gaps. Correlation coefficient values approach 0.9.
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S gap S – Q = q Order
96 7 7 1
126 13 13 2
540 17 17 3
906 19 19 4

1150 21 41 5
1360 33 41 6
9586 35 47 7
15726 43 43 8
19660 51 83 9
31468 71 71 10
156006 85 113 11
360748 95 137 12
370372 111 131 13
492226 113 113 14

1349650 117 179 15
1357332 131 131 16
2010880 147 191 17



Graphic 2A

Graphic 2B
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Then, for each gap that appears, we assign its order of appearance, i.e. the first gap, then 
the second, third and nth. We then calculate the ratio between the even number and the 
gap before it. The even number occurring after a gap is noted Sg and the gap is noted gp. 
Each Sg shown verifies the GSC (see Table 7). Graphic 2C shows the Sg/gp ratios as a 
function of the order of appearance of the gaps; and it shows that Sg even numbers 
verifying the GSC go 12,000 times faster towards infinity, while the lengths of gaps devoid 
of primes, on the contrary, increase remarkably slowly. Even if an even number Sg goes 
very far to infinity, it will still verify the GSC with prime numbers < Sg/2 much closer to 0 
or going very slowly to infinity. The correlation coefficient shows a much higher value of 
0.97, proving that Sg go to infinity exponentially, while their GSC-verifying primes still 
remain close to 0.The occurrence of an empty gap of primes before an even number does 
not equivocally mean that the GSC might not be verified, for two reasons: the length of the
gap is always much lesser than the value of the even number after it ; and increases very 
slowly. Whereas by constrast the even numbers soar exponentially; and the primes 
verifying the GSC still remain closer to 0 and increase much more slowly.

Graphic 2C
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Conclusion
This paper shows for the first time a detailed elementary demonstration of the 
Goldbach's strong conjecture (GSC).
If we set an even number as Sg = (a + 1)p + r (with p prime < S/2), then there are infinitely 
many prime numbers Q = at + r > S/2 and < S, such that S - Q = p and therefore S = p + Q 
according to the GSC. The first number that satisfies this equation is 8 = (2 x 3) + 2, 
preceded by the prime number 5 = (1 x 3) + 2. In this equation, S ≡ Q mod(p) such like          
8 ≡ 5 mod(3) and also 8 ≡ 3 mod(5). The Euclidean equation will likely generate infinitely 
many possible prime numbers. For each even number S, there are as many possible prime 
numbers Q as there are as many prime numbers p < S/2.
Even numbers are not only formed by the Sieve of Erastothene, that is, by the product of 
prime factors with 2, but also by the equation of Euclidean division ap + r. If we have a 
prime number of the form Q = ap + r, then the even number S is of the form (a + 1)p + r. We
increase the number of p by 1. This process makes the even number S obtained congruent 
to Q mod (p). If we increase the number of p following an odd progression (3; 5; 7... times),
the even number S increases in parallel but remains congruent to Q mod (p). Example         
(3 x 11) + 4 = 37 and S = (4 x 11) + 4 = 48. Or (4 x 7 ) + 3 = 31 and (5 x 7) + 3 = 38. However, 
the equation can also give composite odd numbers, but an even number S has as many       
p < S/2 as it is large and therefore there are several chances that a number Q = at + r is 
prime. Therefore, the analysis of the remainders of the Euclidean divisions of S : p and       
Q : p is crucial for the verification of the GSC. 
Indeed, an even number S can be written in the form of a Euclidean equation with all p < 
S/2 and this is also the case for prime numbers Q > S/2 and therefore S follows the 
progression of Q as a function of p. We have in general S = (a + n)p + r and Q = ap + r with 
n ≥ 1. Only if n = 1 does the GSC prove to be exact because S – Q = p and therefore               
S = p + Q. There are ways to twist these Euclidean equations. For example, 7 = (1 x 5) + 2 
and the resulting even is 12 = (2 x 5) + 2 and therefore 12 = 5 + 7. However 3 cannot be used
neither 2. That starts with 5. The integers form a tree whose trunk is the Sieve of 
Erastothene but the branches follow the Euclidean equations ap + r. Example 5 x 7 = 35. But
5 x 7 + 2 = 37 (prime) or 5 x 7 + 4 = 39 = 3 x 13 (composite). Now 5 x 7 - 2 = 33 = 3 x 11 
(composite) and 5 x 7 - 4 = 31 (prime). The prime numbers follow from the Sieve of 
Erastothene to which we add or subtract remainders. The prime number is then a branch 
but if the equation ap + r gives a composite then we  back to the trunk. An even number S 
is continuous with the prime numbers Q > S/2 which precede it, some of which share 
the same remainder with it when divided by the prime numbers < S/2. We therefore 
have S ≡ Qmod (p) and S - Q = X. X will be prime depending on the distance which 
separates Q from S and depending on the value of the prime number p (is it repeated n 
times or once?) Only if S - Q = p does the GSC holds true. However, if we change our 
point of view and look at evens S in the form of Euclidean equations (a + 1)p + r and 
similarly at  Q = ap + r, we will see that GSC is natural and occurs for every even.
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To demonstrate GSC, we really need to set aside the concept that an integer is always a 
multiple of prime factors, and its multiples align with the Sieve of Erasthotene. We must 
now recognize that an even number is also in the form (a + 1)p + r, which relates it to 
prime numbers Q of the form ap + r. Odd numbers in general are also of the form ax + r, 
the most classic of which is the equation 2x + 1. Bearing this in mind, GSC holds naturally 
true.
After each prime number of form ap + r will give an even number of form (a + 1)p + r to 
infinity. Either the even numbers follow the trunk of Erasthotene by multiplying prime 
factors by 2 or they follow the branches by deriving from the prime numbers of type ap + r
which precede them. It is in this last case that the GSC is verified and finds its meaning.
It follows that an even number S of form (a + 1)p + r is always preceded by a prime 
number Q of form ap + r. However, the prime number Q might be very far before the even 
number S. In fact, the growth of even numbers does not follow that of prime numbers Q; 
but it is much faster and follows an exponential trend.
GSC means that an even number S is an interval where there exists at least one pair of 
primes (p, Q) equidistant from S/2 whose sum p + Q = S. But S ≡ Q mod(p) and this means 
that an even number that tends to infinity will have an infinity of possible primes Q. This 
makes empty gaps of primes not contradict GSC because the growth of even numbers is 
infinitely greater than that of the primes that precede them. But since the primes Q can in 
turn give primes in the form tp + r then the primes continue to be present as far as the even
numbers go. 
The Bertand's postulate indicate that there exists at least one prime in  [n ▬ 2n] interval 
but what is if this postulate is true in two opposite symmetric directions? We have an   
[n ▬ 2n] interval and a [0 ▬  n] interval of the same length. Therefore, a prime number Q 
is between n and 2n, but at the same time, another symmetric number p is present between
n and 0. The two prime numbers are equidistant from n. For example, between 5 and 10 
there is 7, and between 5 and 0 there is 3. Or between 7 and 14 there is 11, and between 7 
and 0 there is 3. This Bertrand postulate does not hold only in one [n ▬ 2n] interval, but in
two symmetrically spaced intervals, [0 ▬ n] and [n ▬ 2n] at the same time. The GSC 
seems to signify a doubling of Bertrand's postulate in two intervals of the same length. 
This also means that  primes in [n ▬ 2n] interval are related to those in [0 ▬ n] interval by 
the ap + r equation. Prime numbers follow a mirror symmetry rule such that a prime 
number never appears alone out of nowhere but occupies a specific position in the       
[n ▬ 2n] interval that is mirror symmetric to another one in the [0 ▬ n] interval as if 
prime numbers appear in pairs at a time. The Euclidean equation exhibits this mirror 
symmetry because we have Q = ap + r or Q = ap - r. This idea deserves future research.
In a whole, this article shows that GSC is true at infinity and follow euclidean equation    
ap + r. Primes numbers Q préceding an even are related to it by congruence rules and the 
gap between them.
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