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Abstract

This paper presents an approach that reinterprets the Collatz sequence by transforming it into a new
sequence, highlighting the dynamic relationship between the trailing and leading bits of its elements. This
mapping enables the study of a ”bit-race,” whose well-defined statistical properties rigorously guarantee the
convergence of all Collatz sequences to 1.

1 Statement of the Collatz Conjecture

The Collatz Conjecture is a famous unsolved problem in mathematics. It states that for any positive integer
n ∈ N, the sequence defined by:

c0 = n,

and recursively for all i ≥ 0,

ci+1 =

{ci
2

if ci ≡ 0 (mod 2),

3ci + 1 if ci ≡ 1 (mod 2),
(1)

will eventually reach the number 1. Once ck = 1, subsequent terms enters the cycle 4, 2, 1.

The conjecture is often phrased as:

”No matter what value of n you start with, you will always eventually reach 1.”

We call the application of the transition from ci to ci+1 a Collatz-step and the sequence {ci} the Collatz-sequence.
A thorough overview about the current status of mathematical investigations is presented in [Lagarias, 2021].

2 Key Observations and Challenges

• The conjecture has been verified computationally for all starting values up to 268 [Barina, 2020], but no
general proof exists.

• Despite its simple formulation, the problem exhibits chaotic behavior due to the interplay of additive
(3ci + 1) and multiplicative (ci/2) operations.

• It belongs to the broader field of dynamical systems and is linked to problems in number theory like
Syracuse sequences.

3 Proof Strategy

Our approach to proving the Collatz Conjecture involves a multi-step methodology, which can be succinctly
outlined as follows:

• We commence by establishing the requisite mathematical foundations, including the introduction of rele-
vant functions, definitions, and notation.
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• Subsequently, we map the Collatz Conjecture to distinct number classes.

• A reformulation of the Collatz Conjecture is then presented, which facilitates a more manageable mathe-
matical treatment and does not exhibit the chaotic behavior.

• We then identify the underlying race of leading and trailing bit in the reformulated Collatz-sequence.

• Furthermore, we are given the basis for proof by contradiction.

• Given the inherent race, we are determining the upper limit for the speed of the leading bit.

• Then we are estimating the speed of the trailing bit based on stochastic assumption.

• Finally we come up for a proof, that the stochastic assumption is valid.

• With the speed of leading and trailing bits, we can demonstrate the non-existence of trajectories not
leading to 1

4 Mathematical Foundation for Analysis

4.1 Notation

Let {ci} denote the sequence starting with c0 ∈ N and repeated application of the Collatz steps.

Let O denote the set of all odd numbers in N, i.e., n ∈ N such that nmod 2 ≡ 1.

To facilitate our analysis, it is helpful to consider the binary representation of a number n ∈ N as n =
∑k

i=0 bi2
i =

bkbk−1 · · · b0, where bi ∈ {0, 1} for each 0 ≤ i < k and bk = 1.

4.2 Bit value: bit (n, i)

Based on the binary representation of n, the function bit (n, i) simply derives the value of bi. Mathematical
definition:

bit (n, i) =
⌊
n/2i

⌋
mod 2 (2)

4.3 Trailing bit position: t(n)

We define the function t(n) for each n ∈ N to be the lowest index min{i} such that bi = 1. This function is
referred to as the trailing bit function. Mathematically, t(n) can be defined as:

nmod 2t(n) ≡ 0 and
n

2t(n)
mod 2 ≡ 1 (3)

4.4 Mantissa: m(n)

Next, we define the function m(n) for each n ∈ N to be the mantissa of n. The mathematical definition of m(n)
is:

m(n) =
n

2t(n)
(4)

It is important to note that the result of m(n) always yields an element of O.

Furthermore, we have the following properties:

• Invariance against multiplication of any arbitrary exponent of 2:

m(n) ≡ m(n · 2i) for any i ∈ N (5)

• m(n) is a homogeneous function in any degree of k, but only for elements o ∈ O:

ok ·m(n) ≡ m(ok · n) for any o ∈ O and k ∈ N0 (6)

• m(n) is an idempotent function:

m(m(n)) ≡ m(n) (7)
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4.5 Leading bit position: l(n)

We define a function l(n) that maps each natural number n ∈ N to its leading bit. The mathematical represen-
tation of this function is given by:

l(n) = ⌊log2 n⌋ (8)

It can be verified that this definition implies the following inequality:

2l(n) ≤ n < 2l(n)+1 (9)

4.6 Bit distance: d(n)

Finally, we define a distance function d(n) as:

d(n) = l(n)− t(n) (10)

It is worth noting:

• d(2i) ≡ 0 for any i ∈ N0

• d(n) = d(m(n)) for any n ∈ N.

4.7 Relation inbetween bit functions

Using these functions, any number n can be expressed as:

n = m(n) · 2t(n) (11)

For the relation between mantissa and distance:

m(n) =
n

2t(n)
(12)

l(m(n)) = l(
n

2t(n)
) = l(n)− t(n) = d(n) (13)

With the inequality 9, this yields:

2d(n) ≤ m(n) < 2d(n)+1 (14)

4.8 Example for m(n), l(n), t(n), d(n)

To illustrate the usage of these functions, consider the following example:

Bit 6 5 4 3 2 1 0
n = 42 = 101010b as binary= 0 1 0 1 0 1 0
m(n) = 21 = 10101b 1 0 1 0 1
l(n) = 5 5
t(n) = 1 1
d(n) = 4 = 5 - 1

Table 1: Illustration for m(n), l(n), t(n) and d(n)

4.9 Number classes

Beyond our preceding definitions, we introduce the notion of number classes. For each element o ∈ O, we define
its associated number class as the infinite set:

{o · 2i : i ∈ N0} (15)

This definition establishes a bijective mapping between elements of O and number classes, where each class
comprises an infinite sequence of powers of 2 scaled by the factor o.
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Every natural number n ∈ N is a member of precisely one number class, which is uniquely identified by its
corresponding element o ∈ O. The function m(n) assigns to each natural number n its respective number class
o, thereby facilitating the classification of all natural numbers into distinct classes based on their association
with elements of O.

More formally, we can derive the number class of n directly by o = m(n) for any n ∈ N.

4.10 Powers of 3

Lemma 1. The sequence of all exponents of 3 denoted as {ei = 3i : i ∈ N} will start with:

e0 = 1,

and recursively for all i ≥ 0,

ei+1 = 3ei (16)

will have these properties:

• ei ≡ 001b mod 23 for even i,

• ei ≡ 011b mod 23 for odd i,

Proof. Analyzing the individual cases:

• The starting element e0 = 1 is 001b with i = 0 being even. All further even indizes can be calculated as:

ei+2 = 3 ∗ ei+1 = 3 ∗ 3 ∗ ei = 9ei = 23ei + ei

Consequently, ei+2 ≡ (23ei + ei) mod 23 ≡ ei mod 23, thus ei+2 is 001b for i even.

• The element e1 = 3e0 = 3 is 011b with i = 1 being odd. All further odd indizes can be similarly calculated
as:

ei+2 = 3 ∗ ei+1 = 3 ∗ 3 ∗ ei = 9ei = 23ei + ei

Consequently, ei+2 ≡ (23ei + ei) mod 23 ≡ ei mod 23, thus ei+2 is 011b for i odd.

This gives reason for a different definition of {ei}:

ei =

{
1 + 8 ∗

⌊
3i/8

⌋
for i ≡ 0 mod 2

3 + 8 ∗
⌊
3i/8

⌋
for i ≡ 1 mod 2

(17)

Introducing hi = 8 ∗
⌊
3i/8

⌋
:

ei =

{
1 + 8 ∗ hi for i ≡ 0 mod 2

3 + 8 ∗ hi for i ≡ 1 mod 2
(18)

Lemma 2. Consider the sequence defined by hi =
⌊
3i

8

⌋
mod 2k for i = 0, 1, 2, . . ., where k ≥ 1 is a positive

integer. We prove that in every 2 · 2k consecutive terms, all integers n such that 0 ≤ n < 2k appear exactly
twice.

Proof. Define ri = 3i mod 2k+3. Since 8 = 23 and 2k+3 = 8 · 2k, write 3i = q · 2k+3 + ri, where q ≥ 0 and
0 ≤ ri < 2k+3. Then,⌊

3i

8

⌋
=

⌊
q · 2k+3 + ri

8

⌋
=
⌊
q · 2k +

ri
8

⌋
= q · 2k +

⌊ri
8

⌋
,

since ri
8 < 2k. Thus,

hi =

⌊
3i

8

⌋
mod 2k = (q · 2k +

⌊ri
8

⌋
) mod 2k =

⌊ri
8

⌋
,
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because q · 2k ≡ 0 mod 2k and 0 ≤
⌊
ri
8

⌋
< 2k.

We now examine the periodicity of the sequence hi =
⌊
3i

8

⌋
mod 2k, which depends on ri = 3i mod 2k+3. To

understand this, we need the concept of the order of 3 modulo 2k+3, which is the smallest positive integer m
such that 3m ≡ 1 mod 2k+3. This means 3m − 1 is divisible by 2k+3, or equivalently, raising 3 to the power m
brings us back to 1 when divided by 2k+3 and taking the remainder.

For k ≥ 1 (so k = 1, 2, 3, . . .), the exponent k + 3 is at least 4, since 1 + 3 = 4, and increases with k (e.g., k = 2
gives 2 + 3 = 5). Thus, we are working with moduli like 24 = 16, 25 = 32, and so on. The order of 3 modulo
2k+3 turns out to be 2k+1. Let’s verify this with examples:

• If k = 1, then 2k+3 = 24 = 16 and 2k+1 = 21+1 = 22 = 4. Compute powers: 31 = 3, 32 = 9, 33 = 27 ≡ 11
mod 16 (since 27−16 = 11), 34 = 81 ≡ 1 mod 16 (since 81−5 ·16 = 81−80 = 1). The smallest m where
3m ≡ 1 mod 16 is 4, matching 2k+1.

• If k = 2, then 2k+3 = 25 = 32 and 2k+1 = 22+1 = 23 = 8. Check: 34 = 81 ≡ 17 mod 32 (since
81−2 ·32 = 81−64 = 17), 38 = 6561 ≡ 1 mod 32 (since 6561−205 ·32 = 6561−6560 = 1). The smallest
m is 8, again matching 2k+1.

This pattern holds: the order of 3 modulo 2k+3 is 2k+1, meaning 32
k+1 ≡ 1 mod 2k+3, and no smaller positive

exponent works.

Now, since ri = 3i mod 2k+3, it repeats when the exponent increases by the order: 3i+2k+1

= 3i · 32k+1 ≡
3i · 1 ≡ 3i mod 2k+3. Thus, ri+2k+1 = ri, and the period of ri is exactly 2k+1 (e.g., 4 for k = 1, 8 for k = 2),
as it’s the smallest m making 3m ≡ 1.

Finally, hi =
⌊
3i

8

⌋
mod 2k depends on 3i, and since 3i = q ·2k+3+ri, we have

⌊
3i

8

⌋
= q ·2k+

⌊
ri
8

⌋
, so hi =

⌊
ri
8

⌋
modulo 2k. When i increases by 2k+1, ri+2k+1 = ri, so hi+2k+1 = hi. Hence, hi also has period 2k+1, which is
2 · 2k (e.g., 2 · 21 = 4, 2 · 22 = 8).

For i = 0, 1, . . . , 2k+1 − 1, the values ri = 3i mod 2k+3 are distinct, forming a cyclic subgroup of (Z/2k+3Z)∗
of order 2k+1, with ϕ(2k+3) = 2k+2. Since 3 is odd, ri is odd. Compute ri mod 8: if i is even, 3i ≡ 1 mod 8;
if i is odd, 3i ≡ 3 mod 8. Among 2k+1 indices, there are 2k even and 2k odd i, so 2k values of ri ≡ 1 mod 8
and 2k values ri ≡ 3 mod 8.

For each n where 0 ≤ n < 2k, let r = 8n+1 and r = 8n+3, both less than 2k+3 since 8(2k−1)+3 = 2k+3−5 <
2k+3. The subgroup includes all such r, with 2k residues ≡ 1 mod 8 and 2k ≡ 3 mod 8. If ri = 8n + 1, then
hi =

⌊
8n+1

8

⌋
= n; if ri = 8n+3, then hi =

⌊
8n+3

8

⌋
= n. Each 8n+1 and 8n+3 appears once in the 2k+1 terms,

so each n appears exactly twice.

Thus, in every 2 · 2k terms, each n from 0 to 2k − 1 appears exactly twice, ensuring all such n appear at least
once.

Lemma 3. Consider the sequence defined by h′
i =

⌊
o3i

8

⌋
mod 2k for i = 0, 1, 2, . . ., where k ≥ 1 is a positive

integer and o ∈ O. We prove that in every 2 · 2k consecutive terms, all integers n such that 0 ≤ n < 2k appear
exactly twice.

Proof. The periodicity of
⌊
3i

8

⌋
of lemma 2 has already been proven. The additional multiplication with o will

just spread out the sequence without changing its coverage. More precisely, there are two cases:

• o is a multiple of 3: o ≡ 0 mod 3

• o is not a multiple of 3: omod 3 ̸= 0

In the first case we can rewrite with o = 3jo′:⌊
o3i

8

⌋
=

⌊
o′3i+j

8

⌋
(19)

This translates the first case just in the second case. And for that second case, we can claim, that o, 2 and 3
all do not share a common divisor. Consequently the periodicity of 2 · 2k is still applicable.
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5 Collatz Conjecture and Number Classes

In this section, we will transform the sequence {ci} generated by Collatz-steps into a sequence of number classes
{oj}. This helps to avoid the trivial part of the Collatz-sequence.

Any Collatz-Step can be broken down into two fundamental operations: a straightforward division by 2 and a
more complex transformation involving multiplication by 3 and addition of 1. For any even number, the trivial
operation is iteratively applied until an odd result is obtained. This means, the trivial operation maps any
even number into its number class o. This can be directly achieved by applying o = m(n). In contrast, the
non-trivial step induces a change in the number class, with the exception of n = 2i with i ∈ N0.

The successor oi+1 for oi = m(ci) can be found by application of a Collatz step:

oi+1 = m(ci+1) =

{
m
(ci
2

)
= m(ci) = oi if ci ≡ 0 (mod 2),

m(3ci + 1) = m(3oi + 1) if ci ≡ 1 (mod 2),
(20)

It is obvious, that the trivial step translates into an identity function. This means that e.g. ci, ci+1, ci+2 all
may translate to the same oi = oi+1 = oi+2. In contrary to this the non-trivial step yields ci+1 ̸= ci for all
m(ci) ̸= 1.

The identity function may yield repeated, duplicate values of oi. If we drop the one-to-one relation from ci to
oi and only use the deduplicated sequence {oj} then oj+1 can be derived by:

oj+1 = m(3oj + 1) (21)

Corollary 1. For any n ∈ N, the sequence of odd numbers defined by:

o0 = m(n),

and recursively for all i ≥ 0,

oi+1 = m(3oi + 1) (22)

will eventually reach the number 1, which is equivalent to the validity of the Collatz Conjecture

Example for illustration with Collatz-sequence versus sequence as per corollary:

i ci m(ci) j oj oj+1

0 26 13 0 13 5
1 13 13
2 40 5 1 5 1
3 20 5
4 10 5
5 5 5
6 16 1 2 1 1
7 8 1
8 4 1
9 2 1
10 1 1 3 1 1
11 4 1 4 1 1
12 2 1 5 1 1
13 1 1 6 1 1

Table 2: Example for sequence ci versus oj

6 Reformulation of the Collatz Conjecture

Corollary 2. Our reformulation states that for any positive integer n, the sequence defined by:

a0 = m(n),
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and recursively for all i ≥ 0,

ai+1 = 3ai + 2t(ai) (23)

will eventually reach the number class 1, which is equivalent to the validity of the Collatz Conjecture.

This means for any positive integer n, there exists k ∈ N, that the following equations hold true for any i ≥ k:

m(ai) ≡ 1 (24)

d(ai) ≡ 0 (25)

log2(ai) ∈ N0 (26)

We call the sequence {ai : i ∈ N0} the reformulated Collatz-sequence.

Proof. The evidence will be provided, that the sequence ai will map to the sequence ci and due to the Corollary
1 the three equations are valid. Any value ai can be written as ai = m(ai)2

t(ai). Consequently, the sequence
ai can be transformed into a sequence of number classes like this oi = m(ai). Especially the first element
o0 = m(a0) = m(n) matches to the definition of o0 in Corollary 1.

Let’s check for the next element oi+1:

oi+1 = m(ai+1)

= m(3ai + 2t(ai))

= m
(
3m(ai)2

t(ai) + 2t(ai)
)

= m
(
(3m(ai) + 1)2t(ai)

)
= m(3m(ai) + 1)

= m(3oi + 1)

This is exactly the definition as given in Corollary 1.

As consequence of oi eventually reaching 1 as defined in the corollary 1, the following equations hold true for
any i ≥ k:

m(ai) =m(1) = 1

d(ai) =d(m(1)) = 0

log2(ai) = log2(m(ai)2
t(ai)) = log2(1 ∗ 2t(ai)) = t(ai) ∈ N

Lemma 4. The reformulation allows to write a closed form for ak and k ∈ N:

ak = 3ka0 +

k−1∑
i=0

3k−1−i2t(ai) (27)

= 3k

(
a0 +

1

3

k−1∑
i=0

2t(ai)

3i

)
(28)

= 3k

(
a0 +

1

3

k−1∑
i=0

ai
m(ai)3i

)
(29)

Proof. Let us first check the trivial version for k = 1. Based on the reformulation:

a1 = 3a0 + 2t(a0)

The closed form yields the correct result:

ak=1 = 31a0 +

0∑
i=0

31−1−i2t(ai)

= 3a0 + 2t(a0)
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Now calculate the general step:

ak+1 = 3ak + 2t(ak)

= 3 ∗

(
3ka0 +

k−1∑
i=0

3k−1−i2t(ai)

)
+ 2t(ak)

= 3k+1a0 +

k−1∑
i=0

3(k+1)−1−i2t(ai) + 2t(ak)

= 3k+1a0 +

k−1∑
i=0

3(k+1)−1−i2t(ai) + 3(k+1)−1−k2t(ak)

= 3k+1a0 +

k−1∑
i=0

3(k+1)−1−i2t(ai) +

(k+1)−1∑
i=k

3(k+1)−1−i2t(ai)

= 3k+1a0 +

(k+1)−1∑
i=0

3(k+1)−1−i2t(ai)

This is exactly the closed form for ak+1.

7 Collatz Conjecture: Actually a Race

In the following, we are investigating into some practical aspects of this sequence. It is well known, that the
number 27 needs 111 Collatz-Steps to reach 1. Based on our reformulation, this translates into 41 steps, which
are the non-trivial Collatz-steps. The sequence can be shown like this:

i ai ai in binary l(ai) t(ai) ∆t
0 27 11011 4 0 0
1 82 1010010 6 1 1
2 248 11111000 7 3 2
3 752 1011110000 9 4 1
4 2272 100011100000 11 5 1
5 6848 1101011000000 12 6 1
6 20608 101000010000000 14 7 1
7 61952 1111001000000000 15 9 2
8 186368 101101100000000000 17 11 2
9 561152 10001001000000000000 19 12 1
10 1687552 110011100000000000000 20 14 2
11 5079040 10011011000000000000000 22 15 1
12 15269888 111010010000000000000000 23 16 1
13 45875200 10101111000000000000000000 25 18 2
14 137887744 1000001110000000000000000000 27 19 1
15 414187520 11000101100000000000000000000 28 20 1
16 1243611136 1001010001000000000000000000000 30 21 1
17 3732930560 11011110100000000000000000000000 31 23 2
18 11207180288 1010011100000000000000000000000000 33 26 3
19 33688649728 11111011000000000000000000000000000 34 27 1
20 101200166912 1011110010000000000000000000000000000 36 28 1
21 303868936192 100011011000000000000000000000000000000 38 30 2
22 912680550400 1101010010000000000000000000000000000000 39 31 1
23 2740189134848 100111111000000000000000000000000000000000 41 33 2
24 8229157339136 1110111110000000000000000000000000000000000 42 34 1
25 24704651886592 101100111100000000000000000000000000000000000 44 35 1
26 74148315398144 10000110111000000000000000000000000000000000000 46 36 1
27 222513665671168 110010100110000000000000000000000000000000000000 47 37 1
28 667678435966976 10010111110100000000000000000000000000000000000000 49 38 1
29 2003310185807872 111000111100000000000000000000000000000000000000000 50 41 3
30 6012129580679168 10101010111000000000000000000000000000000000000000000 52 42 1
31 18040786788548608 1000000000110000000000000000000000000000000000000000000 54 43 1
32 54131156458668032 11000000010100000000000000000000000000000000000000000000 55 44 1
33 162411061562048512 1001000001000000000000000000000000000000000000000000000000 57 48 4
34 487514659662856192 11011000100000000000000000000000000000000000000000000000000 58 50 2
35 1463669878895411200 1010001010000000000000000000000000000000000000000000000000000 60 52 2
36 4395513236313604096 11110100000000000000000000000000000000000000000000000000000000 61 56 4
37 13258597302978740224 1011100000000000000000000000000000000000000000000000000000000000 63 59 3
38 40352252661239644160 100011000000000000000000000000000000000000000000000000000000000000 65 60 1
39 122209679488325779456 1101010000000000000000000000000000000000000000000000000000000000000 66 61 1
40 368934881474191032320 101000000000000000000000000000000000000000000000000000000000000000000 68 66 5
41 1180591620717411303424 10000000000000000000000000000000000000000000000000000000000000000000000 70 70 4

Table 3: Example for reformulated Collatz-Sequence

The average change of t(ai) can be calculated to ∆t =
t(a41)− t(a0)

41
≈ 1.707. This can be generalized for any
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k, which reaches end of the sequence aka smallest k ∈ N with m(ak) = 1:

∆t =
t(ak)− t(a0)

k
(30)

=
l(ak)− (l(a0)− d(a0))

k
(31)

=
l(ak)− l(a0) + d(a0)

k
(32)

≈
⌊
log2(a03

k)
⌋
− ⌊log2(a0)⌋+ d(a0)

k
(33)

=

⌊
log2(a0) + log2(3

k)
⌋
− ⌊log2(a0)⌋+ d(a0)

k
(34)

≈⌊k log2(3)⌋+ d(a0)

k
(35)

≈ log2(3) +
d(a0)

k
(36)

The binary sequence clearly illustrates a race between the leading bit and the trailing bit, where the leading
bit begins with an initial advantage. According to the Collatz Conjecture, regardless of the starting value, the
trailing bit ultimately prevails.

The leading bit runs at a constant pace of log2(3) bits per step. While the trailing bit follows with steps drawn
from a pseudo-random process, which on average are larger than log2(3) bits per steps.

The focus of our proof is not the sequence length. The Collatz Conjecture postulates only finite length. Our
focus is that the pace of the trailing bit is statistically larger than log2(3). Due to this statistical approach, at
some point the trailing bit will always win the race.

8 Basis for Proof by Contradiction

For our proof, we are negating corollary 2 and assume there exists a sequence {ai} with a starting value a0 ∈ O,
which does not lead to m(ai) = 1. Let the set of all elements in this sequence be denoted as V. This implies
that for all ai ∈ V, there is no element for which d(ai) ≡ 0.

The Collatz Conjecture states that such sequences and consequently any V do not exist. Our proof is based on the
postulation, that V exists, which leads to a logical contradiction, which negates the postulation. Consequently
the Collatz Conjecture must be correct.

Assuming there exists at least one V, we select one element from V as a0 with the following property:

d(a) ≥ d(a0) for each a ∈ V (37)

We denote this minimum value d(a0) as d0.

In course of this paper, d0 is used to derive a reasonable upper limit for the elements {ak}. Our proof relies on
violation of the inequality 37. This means, the sequence {d(ai)} will eventually produce values smaller than d0.
This will prove the non-existence of V.

Lemma 5. Any starting value a0 chosen by equation 37 fulfills:

a0 mod 3 ̸= 1 (38)

Proof. If a0 would be of the form 1 + 3n, then n would be a predecessor of a0 in the sequence {ai} and
d(n) < d(a0). This violates inequality 37 and as such the lemma is correct.

9 Upper Bound for l(ai)

In the following we are deriving bounds for ak as a function of k with the assumption of equation 37.

a1 = 3a0 + 2t(a0) = 3a0 +
2l(a0)

2d(a0)
= 3a0 +

2l(a0)

2d0
≤ 3a0 +

a0
2d0

= a0(3 +
1

2d0
) (39)
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Based on equation 37, we can limit d(ai) ≥ d0 for all i > 0:

ai+1 = 3ai + 2t(ai) = 3ai +
2l(ai)

2d(ai)
≤ 3ai +

2l(ai)

2d0
≤ 3ai +

ai
2d0

= ai(3 +
1

2d0
) (40)

Closed form:

ai ≤ a0

(
3 +

1

2d0

)i

(41)

An obvious lower limit is:

ai > a03
i (42)

Based on the two equations, the function l(ai) can be limited to:

⌊log2(a0) + i log2(3)⌋ < l(ai) ≤
⌊
log2(a0) + i log2

(
3 +

1

2d0

)⌋
(43)

Slightly rewritten:

⌊log2(a0) + i log2(3)⌋ < l(ai) ≤
⌊
log2(a0) + i log2(3) + i log2

(
1 +

1

3 ∗ 2d0

)⌋
(44)

This indicates that l(ai) is monotonically increasing in average on each step with
∆

∆i
l(ai) ≈ log2(3) ≈ 1.59. 1

Remark for the case d(ai) = 0: In this case l(ai) will grow exactly by 2 on each step.

10 Estimation for t(ai)

In order to work on an estimation for the upper limit for the trailing bit of ai, a practical calculation with the
least five bits of ai will be provided. Hereby we ignore the bit shift 2t(ai).

ai mod 32 ai+1 mod 32 ∆ti→i+1 ai+2 mod 32 ∆ti→i+2 ai+3 mod 32 ∆ti→i+3 pace

1 = 00001b 4 = 00100b 2 16 = 10000b 4 0 = 00000b ≥ 5 faster
3 = 00011b 10 = 01010b 1 0 = 00000b ≥ 5 faster
5 = 00101b 16 = 10000b 4 0 = 00000b ≥ 5 faster
7 = 00111b 22 = 10110b 1 4 = 00100b 2 16 = 10000b 4 slower
9 = 01001b 28 = 11100b 2 24 = 11000b 3 16 = 10000b 4 slower

11 = 01011b 2 = 00010b 1 8 = 01000b 3 0 = 00000b ≥ 5 faster
13 = 01101b 8 = 00100b 2 16 = 10000b 4 0 = 00000b ≥ 5 faster
15 = 01111b 14 = 01110b 1 12 = 01100b 2 8 = 01000b 3 slower
17 = 10001b 20 = 10100b 2 0 = 00000b ≥ 5 faster
19 = 10011b 26 = 11010b 1 16 = 10000b 4 0 = 00000b ≥ 5 faster
21 = 10101b 0 = 00000b ≥ 5 faster
23 = 10111b 6 = 00110b 1 20 = 10100b 2 0 = 00000b ≥ 5 faster
25 = 11001b 12 = 01100b 2 8 = 01000b 3 0 = 00000b ≥ 5 faster
27 = 11011b 18 = 10010b 1 24 = 11000b 3 16 = 10000b 4 slower
29 = 11101b 24 = 11000b 3 16 = 10000b 4 0 = 00000b ≥ 5 faster
31 = 11111b 30 = 11110b 1 28 = 11100b 2 24 = 11000b 3 slower

Table 4: Trailing bit change for least five bits of oi

Five of the entries are slower and the others are faster than the leading bit, which runs with log2(3) ≈ 1.585
per step.

If all entries are occurring with same rate, then the average ∆t per step is faster than the leading bit:

∆t ≈
5
3 + 5

2 + 5
2 + 4

3 + 4
3 + 5

3 + 5
3 + 3

3 + 5
2 + 5

3 + 5
1 + 5

3 + 5
3 + 4

3 + 5
3 + 3

3

16
=

53
3 + 15

2 + 5

16
≈ 1.885

1Based on literature, it has been proven that all numbers n ≤ 268 are fulfilling the Collatz Conjecture. Consequently, there

cannot be any element n ∈ V with d(n) = d0 = 67. This means: log2

(
3 + 1

2d0

)
− log2(3) < 3.259 ∗ 10−21
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The average after one step (∆ti→i+1) is still faster than the leading bit:

∆t ≥ 2 + 1 + 4 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 5 + 1 + 2 + 1 + 3 + 1

16
=

30

16
= 1.875

The average of the slower steps are:

∆tslower =
4
3 + 4

3 + 3
3 + 4

3 + 3
3

5
=

6

5
= 1.2

and the faster:

∆tƒaster ≥
5
3 + 5

2 + 5
2 + 5

3 + 5
3 + 5

2 + 5
3 + 5

1 + 5
3 + 5

3 + 5
3

11
=

35
3 + 15

2 + 5

11
≈ 2.197

This observation gives reason for the following lemma:

Lemma 6. If the bits inbetween leading and trailing bits of ai are 1 with a probability of 0.5 and else 0 - e.g.
due to a pseudo-random process - then the following shall be true:

lim
i→∞

t(ai)− t(a0)

i
→ 2 (45)

Proof. Let’s consider oi = m(ai) instead of ai, which can be written in a binary representation:

oi =

l(oi)∑
j=0

bj2
j with b0 = bl(oi) = 1 (46)

Based on the corollary 2 the next element can be calculated as:

ai+1 = 3ai + 2t(ai) (47)

So we are calculating

ai+1 = 3oi + 1 (48)

oi is per definition odd, the resulting ai+1 is even. This means the trailing bit of oi aka t(oi) = 0 has been
increased by a minimum of 1 aka t(ai+1) ≥ t(oi) + 1 = 1.

In the following we are focussing on bit position p:

b′p = bit (3oi + 1, p) = bit

1 + 3

l(oi)∑
j=0

bj2
j , p

 (49)

It is obvious, that all elements with i > p have no influence on bit b′p. So we can rewrite:

b′p = bit (3oi + 1, p) = bit

1 + 3

p∑
j=0

bj2
j , p

 (50)

Now we isolate the actual bit bp from the sum:

b′p = bit (3oi + 1, p) = bit

1 + 3bp2
p + 3

p−1∑
j=0

bj2
j , p

 (51)

Due to the fact that 3 ∗ 2p yields bit p and p+ 1, while only p is relevant, it can be simplified to:

b′p = bit (3oi + 1, p) = bit

1 + bp2
p + 3

p−1∑
j=0

bj2
j , p

 (52)
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bit(1 + 3
∑

) bp b′p
0 0 → 0
1 0 → 1
0 1 → 1
1 1 → 0

Table 5: Bit transitions bp to b′p

With the algebraic rules for bit (i, p), we can rewrite to:

b′p = bit (3oi + 1, p) =

bit

1 + 3

p−1∑
j=0

bj2
j , p

+ bit (bp2
p, p)

mod 2 (53)

=

bit

1 + 3

p−1∑
j=0

bj2
j , p

+ bp

mod 2 (54)

The consequence of this equation is quite significant. Let’s have a short overview of the outcomes: This means
in logical terms bp is exor’ed with the original result. Consequently, independent from all bi with i < p, the bit
bp can always force the state of b′p to any value {0, 1}.
In order to assess an estimate for t(a′i+1) we need to count the 0s starting with i = 0 until the first 1 bit is met.
Based on the assumption, that the occurence rate of 0 is 0.5, the estimate for t(a′i+1) is:

X (t(ai+1)− t(ai)) ≈ 1 +

l(oi)∑
i=1

(0.5)i = 1.11111 · · ·b ≈ 2 (55)

Based on the law of large numbers the following is valid:

lim
i→∞

t(ai)− t(a0)

i
= lim

i→∞

∑i−1
j=0 t(aj+1)− t(aj)

i
≈ lim

i→∞

i ∗X (t(ai+1)− t(ai))

i
→ 2 (56)

11 Equidistribution

In the following subsections we are focussing on any five consecutive bits (25 = 32) defined as:

fi,j =
⌊ai
2j

⌋
mod 32 with j ∈ N (57)

Our choice on five bits is just arbitrarily for better illustration and explanation.

In case j is chosen, that j ≤ l(a0), then f0,i will equal the respective bits of a0 as starting value. Otherwise f0,j
is 0. For illustration in mathematical terms:

f0,j =

{⌊
a0

2j

⌋
mod 32 if j ≤ l(a0)

0 if j > l(a0)
(58)

Moreover we are splitting the reformulated sequence at the chosen j. For illustration in table 6, we are using
the same starting number a0 = 27 and select j = 4 as split point.

This table already displays two more sequences {ri,j} and {vi,j}. r is the remainder of the division of ai by 2j .
In other words the bits of ai on position 0 . . . < j. The sequence {vi} collects all overflows from the remainder
ri,j into fi,j .

Mathematical definition:

ri,j = ai mod 2j with j ∈ N (59)

vi,j =

⌊
3ri,j + 2t(ai)

2j

⌋
(60)

It is important to note, that 0 ≤ vi,j ≤ 2.
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i ai ai in binary
vi,4 =

⌊
3ri,4+2t(ai)

24

⌋
fi,4 ri,4

0 27 00001 1011 1
1 82 00101 0010 0
2 248 01111 1000 1
3 752 1 01111 0000 0
4 2272 100 01110 0000 0
5 6848 1101 01100 0000 0

Table 6: Example for fi,j , ri,j and vi,j

11.1 Transition of 5-Bit Values

Given the previous definitions, we analyze the transitions between the 32 possible values of the 5-bit represen-
tation. The following table details the transformation of each 5-bit value fi based on the value of vi, resulting
in the next 5-bit value fi+1.

fi vi = 0 vi = 1 vi = 2
vi+1 fi+1 vi+1 fi+1 vi+1 fi+1

00000 0 00000 0 00001 0 00010
00001 0 00011 0 00100 0 00101
00010 0 00110 0 00111 0 01000
00011 0 01001 0 01010 0 01011
00100 0 01100 0 01101 0 01110
00101 0 01111 0 10000 0 10001
00110 0 10010 0 10011 0 10100
00111 0 10101 0 10110 0 10111
01000 0 11000 0 11001 0 11010
01001 0 11011 0 11100 0 11101
01010 0 11110 0 11111 1 00000
01011 1 00001 1 00010 1 00011
01100 1 00100 1 00101 1 00110
01101 1 00111 1 01000 1 01001
01110 1 01010 1 01011 1 01100
01111 1 01101 1 01110 1 01111
10000 1 10000 1 10001 1 10010
10001 1 10011 1 10100 1 10101
10010 1 10110 1 10111 1 11000
10011 1 11001 1 11010 1 11011
10100 1 11100 1 11101 1 11110
10101 1 11111 2 00000 2 00001
10110 2 00010 2 00011 2 00100
10111 2 00101 2 00110 2 00111
11000 2 01000 2 01001 2 01010
11001 2 01011 2 01100 2 01101
11010 2 01110 2 01111 2 10000
11011 2 10001 2 10010 2 10011
11100 2 10100 2 10101 2 10110
11101 2 10111 2 11000 2 11001
11110 2 11010 2 11011 2 11100
11111 2 11101 2 11110 2 11111

Table 7: Transition table for five bits

11.2 Stochastic Modeling of fi and vi

To analyze the behavior of the sequence {fi,j}, we consider the frequency of occurrence of values within the
range 0 . . . 31. We define a probability distribution over these values, assigning a probability pi,k to the event
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fi,j = k, where k ∈ {0, 1, . . . , 31}. Since one value must occur, the probabilities must sum up to 1:

31∑
k=0

pi,k = 1 (61)

Next, we consider the values vi,j resulting from the Collatz iteration. We define the occurrence rates for
vi,j ∈ {0, 1, 2} as p0, p1, and p2, respectively, subject to the constraint p0 + p1 + p2 = 1. The probability vector
p⃗i = (pi,0, pi,1, . . . , pi,31) and the transition probabilities p0, p1, p2 determine the subsequent probability vector
p⃗i+1. This relationship can be expressed as a matrix transformation:

A(p0, p1, p2) · p⃗i = p⃗i+1

In the following we use matrix indices starting from 0.

The matrix A represents the transition probabilities between the states defined by the values of fi. Specifically,
the row indexed by k of A represents the probability of transitioning to the value k. To construct A, we
consider the transition table 7. For example, if fi = 10, the next value fi+1 can be 30, 31, or 0 depending on
vi. Therefore, the 30th, 31st, and 0th entries in the 10th column of A (or a30,10,a31,10, a0,10) are p0, p1, and p2,
respectively, with all other entries being zero.

Here is the complete matrix:



p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0
p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0
0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0
0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0
0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0
0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0
0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0
0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0
0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0
0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0
0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0
0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0
0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0
0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0
0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0
0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0
0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0
0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0
0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0
0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0
0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0
0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0
0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0
0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0
0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0
0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0
0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0
0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0
0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0
0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1
0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2



·


pi,0

pi,1

.

.

.
pi,31

 =


pi+1,0

pi+1,1

.

.

.
pi+1,31



For each step from i to i+1 this matrix multiplication occurs. This means, we can expect, that the probability
vector p⃗i converges to p⃗ for large i. With the matrix D being the diagonal matrix with all elements 1, we can
write:

A(p0, p1, p2) · p⃗ = p⃗ (62)

(A(p0, p1, p2)−D) · p⃗ = 0 (63)
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The matrix difference is:

A−D =



p0 − 1 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0
p1 −1 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0
p2 0 −1 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0
0 p0 0 −1 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0
0 p1 0 0 −1 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0
0 p2 0 0 0 −1 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0
0 0 p0 0 0 0 −1 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0
0 0 p1 0 0 0 0 −1 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0
0 0 p2 0 0 0 0 0 −1 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0
0 0 0 p0 0 0 0 0 0 −1 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0
0 0 0 p1 0 0 0 0 0 0 −1 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0
0 0 0 p2 0 0 0 0 0 0 0 −1 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0
0 0 0 0 p0 0 0 0 0 0 0 0 −1 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0
0 0 0 0 p1 0 0 0 0 0 0 0 0 −1 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0
0 0 0 0 p2 0 0 0 0 0 0 0 0 0 −1 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0
0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 − 1 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0
0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 − 1 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0
0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 −1 0 0 0 0 0 0 0 0 0 p0 0 0 0 0
0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 −1 0 0 0 0 0 0 0 0 p1 0 0 0 0
0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 −1 0 0 0 0 0 0 0 p2 0 0 0 0
0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 −1 0 0 0 0 0 0 0 p0 0 0 0
0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 −1 0 0 0 0 0 0 p1 0 0 0
0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 −1 0 0 0 0 0 p2 0 0 0
0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 −1 0 0 0 0 0 p0 0 0
0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 −1 0 0 0 0 p1 0 0
0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 −1 0 0 0 p2 0 0
0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 −1 0 0 0 p0 0
0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 −1 0 0 p1 0
0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 −1 0 p2 0
0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 −1 0 p0
0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 0 0 0 0 0 0 0 0 0 −1 p1
0 0 0 0 0 0 0 0 0 0 p1 0 0 0 0 0 0 0 0 0 0 p0 0 0 0 0 0 0 0 0 0 p2 − 1



Without diving into the complexities of solving this matrix, there is an obvious, non-trivial solution: Every row
contains once each of −1, p0, p1, p2, or a partial sum if any p0, p1, p2 coincide with −1. A multiplication with
any vector x⃗ = c ∗ 1⃗ will yield for each row: c ∗ (−1 + p0 + p1 + p2) = c ∗ 0 = 0. This means any c ̸= 0 fulfills
the equation A · x⃗ = 0⃗. The sum of all vector elements must be 1. So c = 1

32 .

Consequently, the repeated application of fi+1 = fi ∗ 3 + {0, 1, 2} will converge to an equi-distribution of the
32 values for large values of i, if the values 0, 1, 2 are themselves evenly distributed. This means, if there is no
correlation pattern between fi and vi, that means p0/p1/p2 are not linked to pi,j .

Similar calculation for the vi aka p0,p1,p2: The values 11 or 10 are results by counting the rows in table 7 with
C = 0, 1, 2 in the respective column. 11c 11c 10c

11c 10c 11c
10c 11c 11c

 ·

p0ip1i
p2i

 =

p0i+1

p1i+1

p2i+1


And for the stable situation:11c− 1 11c 10c

11c 10c− 1 11c
10c 11c 11c− 1

 ·

p0p1
p2

 =

00
0


The matrix is then:

A = c

 11− 32 11 10
11 10− 32 11
10 11 11− 32

 = c

 −21 11 10
11 −22 11
10 11 −21


Again, the trivial solution is p0 = p1 = p2 = 1

3 .

Therefore, the assertion that the bit sequence fi generated by the Collatz iteration can be treated as statistically
independent and unbiased is rigorously justified by the preceding analysis. This validation forms a crucial
foundation for our final conclusion.

12 Conclusion

We have established a bound on the growth rate of the leading bit position, l(an), as described by inequality
(44). This analysis reveals that l(ak) grows linearly with a rate of approximately log2(3) ≈ 1.59. Comparing
this to the estimated growth rate of the trailing bit position, t(ak) ≈ 2 (equation (55)), we observe a differential
growth.

15



We can approximate this differential growth aka distance d(ak) = l(ak)− t(ak) as:

∆

∆k
d(ak) =

∆

∆k
(l(ak)− t(ak)) ≈ 1.59− 2 = −0.41 < 0 (64)

This negative rate of change indicates that, for sufficiently large k, the distance d(ak) will decrease. Conse-
quently, there exists a value k∗ such that d(ak∗) < d0, where d0 is the initial minimum distance defined in our
assumptions.

More formally, this can be expressed as:

lim
i→k

d(ai) = lim
i→k

(l(ai)− t(ai)) (65)

≈ lim
i→k

(l(a0) + i log2(3)− t(ai)) (66)

= lim
i→k

(d0 + i log2(3)− t(ai)) (67)

≈ d0 + i log2(3)− 2i < d0 (68)

It is noteworthy that this analysis holds as long as m(ai) ̸= 1. When m(ai) = 1, the speed of the leading bit
jumps to 2, and the distance d(ai) remains zero. We avoid considering the limit as i → ∞ because our estimate
for the leading bit speed is predicated on the condition m(ai) ̸= 1. Given our initial assumption that the Collatz
Conjecture is false, an infinite sequence not converging to 1 cannot include the case where m(ai) = 1.

Therefore, assuming the Collatz Conjecture is false, we arrive at a contradiction. Specifically:

• We initially assume the Collatz Conjecture is invalid, implying the existence of a set V with a minimum
distance d0.

• Based on this minimum d0, we derive bounds for l(ak) for any k ∈ N0.

• We estimate t(ak) for large k based on the assumption of stochastic bit values.

• Verification confirms the validity of our stochastic assumption.

• For sufficiently large k, the value of d(ak) decreases below the initial minimum distance d0.

• This contradicts our initial assumption regarding the existence of a minimum distance d0.

• Consequently, the assumption of the existence of the set V must be incorrect.

• Therefore, the Collatz Conjecture must be valid.

13 Computational Verification

To validate our predictions regarding the differential growth rate, we perform computational experiments. We
execute the reformulated Collatz sequence for a set of odd numbers with a fixed value of d. For example, for
d = d(a0) = 3, we test all the numbers represented as 1001b, 1011b, 1101b, and 1111b. We then average the
number of steps required for each number to reach d(ai) ≡ 0.

We determined the rate of increase in the average number of steps per unit change in d using equation 64,
which provides the expected reduction of d per step k. As d increases, the average number of steps, kavg, also
increases, as more steps are needed to reduce d(ai) to 0. This relationship is approximated by:

d(akavg
) ≈ d(a0) + kavg

∆

∆k
d(ak) ≈ 0 (69)

This allows us to estimate kavg as:

kavg ≈ −d(a0)
∆d
∆k

d (70)

=
−d(a0)

log2(3)− 2
(71)

≈ 2.409 ∗ d(a0) (72)

Therefore, we predicted that the average number of steps would increase by approximately 2.409 for each unit
increase in d.
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The following table and figure present the empirical data obtained from our experiments:

d average steps
3 4.25
4 13.250
5 15.000
6 18.406
7 20.719
8 21.898
9 24.547
10 27.469
11 30.138
12 32.256
13 34.198
14 36.270
15 38.819
16 41.369
17 43.784
18 46.194
19 48.524
20 50.917
21 53.328
22 55.717
23 58.133

Table 8: Emperical data: average steps for all o with d(o) = d
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Figure 1: Plot of Average Steps against d

The experimental data confirms our analysis. The observed y-intercept of approximately 2.726 may warrant
further investigation, but its statistical insignificance does not impact the overall validity of the proof regarding
the Collatz Conjecture.
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