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Abstract — “Church’s thesis” is the notion that any
“reasonable physical system” may be “simulated” by
a Turing machine (TM). The “strong” Church’s the-
sis adds “...with at most polynomial slowdown.” The
(new) “intermediate” Church’s thesis instead says
“...with at most polynomial amplification of memory-
space requirements.” (All the terms in quotes need
to be defined.) With any particular set of physical
laws: is Church’s thesis true?

Church’s theses are central issues for both physics
and computer science. With the precise specification
of some set of laws of physics, and a precise defi-
nition of “simulation” and “polynomial,” Church’s
theses become susceptible to mathematical proof or
disproof. A previous report essentially settled the
question for classical mechanics. Recent theoretical
investigations of “quantum computers” make it look
likely that the strong Church thesis is false in linear
quantum mechanics, and indeed even in some models
of open quantum systems.

In the present paper, I show (at least, if one
adopts my assumptions and definitions – and there
are a large number of them) that the weak Church’s
thesis is true for nonrelativistic quantum mechan-
ics with well-enough behaved interparticle potentials,
e.g. Coulombic. I.e., quantum mechanics is simulable.

We give a simulation algorithm. If the simulation
is performed by a quantum computer rather than a
conventional one, then the slowdown is only poly-
nomial. In other words, even Church’s strong the-
sis becomes true if “TM” is replaced by “quantum
TM.” With a conventional TM, we then automati-
cally get the intermediate thesis; and if the initial
quantum state is represented non-sparsely, (i.e. in a
format in which exponentially many complex ampli-
tudes are specified) then the simulation of quantum
time evolution actually runs in quasipolynomial time
with respect to that input length. On the other hand,
QM is not algorithmic, nor even self-consistent, in the
presence of point magnetic dipoles.

The proof strategy involves (1) defining what “sim-
ulation” and “reasonable physical system” should be.
(2) showing that “regularizing” the potential intro-
duces acceptably small error. (For Coulomb poten-
tials, the most natural regularization procedure is to
replace “point” charges by uniform distributions of
charge within small balls centered at the point.) (3)
Showing how a quantum computer can approximately
evaluate Feynman path integrals with phase factor in-
tegrands corresponding to regularized potentials. (4)

Obtaining effectively computable error bounds for
this approximation. (5) Finally, the quantum com-
puter is simulated by a conventional computer.

A different method, based on Rayleigh-Ritz
approximate eigenfunctions, also seems to yield
Church’s intermediate thesis. (Treated in an ap-
pendix.) Although this method is conceptually sim-
pler, it apparently does not lead to efficient algo-
rithms for a quantum computer. But it does yield
a proof that the spectral energies of quantum bound
systems form a computable real sequence.
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glyph meaning §
⊗ Wrong choice; impatient readers may skip 1.1
♣ Defn of nearby term is in appendix A 1
X∗ complex conj. or Hermitian adjoint of X
v overbar denotes expectation value
C energy cutoff 6.1
d #dimensions (degrees of freedom) 3
EK kinetic energy 2
EP potential energy 6
E total energy E = EK = EP 6
g 2g =#gridlines in each direction 1.2
H sidelength of containing box 1.2
m particle mass(es); often the maximum 1.2
n #timestepping stages 1.2
N #particles 1.2
NQ #qubits in description of initial state
P #decimal places of accuracy 2.5
t timespan system is simulated for 1.2
R run # (in rerun sequence of simulations) 1.2
V potential energy function 1.2
V reg regularized potential energy function 6.1
‖f‖p Lp norms; if no p then p = 2 implied A

Table 1: Important symbols used in this paper and where
they are defined/discussed. Also c, α, me, e, h, h̄, G, ǫ0,
µe, kB, λC denote standard physical constants following
[19].
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1 Introduction

Algorithmicity is the most important concept in com-
puter science. Quantum mechanics is the most impor-
tant branch of physics. So the question of whether the
two can be married is important. The purpose of this
paper is to show that the answer is “yes”: quantum me-
chanical systems are algorithmically simulable (at least,
using the simplest versions of quantum mechanics). In
contrast, a previous report [83] showed that classical n-
body systems under Newton’s laws are not algorithmi-
cally simulable. Thus (surprisingly) quantum mechanics
is easier than classical mechanics.

The precise statement of our theorem is necessarily
complicated, and even the task of formulating the right
conjecture is difficult (e.g. since the notion of “simula-
tion” needs to be precisely defined, and since quantum
mechanics is not deterministic). Also, the proof is very
difficult (since rigorous quantum mechanics is difficult).

Appendix A explains some of the notation and termi-
nology used in this paper ♣1.

For discussion of the history of Church’s thesis and
the motivation for working on it, see [86]. Several topics
which are not essential for the simplest version of the
proof, but which probably will lead to improvements (e.g.
in running time) are delegated to appendices.

1.1 Outline of the proof

Here is a quick overview of our results and techniques,
and a sketch of the remainder of the paper. The main
result is stated in §11. The proof argument involves 7
steps.

1. Quantum mechanics is written in Feynman’s path-
integral formulation [29] (§7).

2. The potential functions are “regularized” (using
“high energy cutoffs”). In other words, we solve
a different, and nicer, quantum mechanics problem,
than the one we were given. If the form and height
of the cutoff are chosen correctly, we show (in §6),
partly with the aid of Lieb & Thirring’s reformu-
lation of the “uncertainty principle” as an integral
“Sobolev inequality,” and partly with the aid of flux
bounds) that the error introduced by this step may
be bounded and is sufficiently small for our pur-
poses. (Since the phrase “may... purposes” at the
end of the previous sentence arises often, we abbre-
viate it by “isn’t too large.”)

3. The path integral is approximated by finite dimen-
sional integrals (§7,§4). For regularized potentials
and if enough dimensions are used, we show (with
the aid of operator identities of H.Suzuki; see §5)
that the error introduced by this step also isn’t too
large.

1The symbol ♣ will serve as a reminder that the reader may
want to consult appendix A for the definition of a nearby notation
or word.

4. We use an optimal tradeoff to select the cutoff in
step 2. If the cutoff is made too high, then the error
bounds in step 3 become weak, forcing the simula-
tion to consume too much time. On the other hand
if the cutoff is made too low, the regularization itself
introduces too much error. The best choice equalizes
the two kinds of error bounds.

5. The finite dimensional integral is approximated by a
Riemann sum. Using standard techniques (§3), the
error introduced by this step also isn’t too large.

6. The sum above may be computed by a “quantum
algorithm2” suffering only “polynomial slowdown”
(§8). Steps 3 and 5 thus constitute a quantum
algorithm for certain kinds of Feynman path inte-
grals. We demonstrate (§9.5) that the error intro-
duced by the use of finite precision arithmetic in
this algorithm isn’t too large. This demonstrates
(our form of) Church’s strong thesis if the simulator
is a “quantum computer.”

7. Finally, by simulating the quantum computer with
an ordinary computer (trivially accomplished if one
is willing to suffer an exponential slowdown; §10) we
demonstrate Church’s weak thesis. (Also, we could
just evaluate the Riemann sums directly instead of
simulating a quantum computer doing it.) This also
shows that the space usage needs only to be polyno-
mially ♣ large, despite the exponential ♣ slowdown
in time consumption. That demonstrates the inter-
mediate Church thesis.

Please keep this master plan in mind as you read the
various sections, which by themselves might not seem
to be moving clearly toward the overall goal. Otherwise
reading this paper might become a depressing experience
of pawing through 20 pages unrelated-seeming mathe-
matics and annoying argumentation (verging on philos-
ophy and often concerning the wrong choices of methods
or definitions). The best way to avoid that depression is
to realize that getting the right quantum formulation of
Church’s thesis is a very tricky task all by itself, requir-
ing considering numerous options, most of them wrong.
For the reader’s convenience we employ the symbol ⊗
to mark choices I consider wrong. The impatient reader
will then be able to skip the wrong choices and the argu-
mentation about them and proceed directly to the right
choices. Once the formulation (§2) is over, we then con-
sume a large number of pages for the task of gradually
building up the tools needed for the proof from different
areas, in preparation for the final crescendo in §11.

1.1.1 Remarks on the proof outline

A. Our argument remains valid regardless of whether
anybody will ever be able to build a “quantum com-
puter.”

2I.e., an algorithm running on a “quantum computer” [81] ♣.
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B. The validity of several of the proof steps depends
on the potentials being well-enough behaved (at least,
after regularization – which means potential singulari-
ties were not too nasty before regularization; see rule 5
in §1.2) and the assumption of bounded energy for the
initial state (and hence by conservation of energy, also
at all times, §6.2) being simulated, and the assumption
that the simulator’s runtime, for “fairness,” is allowed to
depend polynomially ♣ upon this energy.

C. The proof sketch above can be simplified greatly
(by omitting some steps entirely) if the reader is willing
to grant various extra assumptions:

• First, if the interparticle potentials are bounded,
then there is no need for any regularization step.
And indeed appendix §B gives an argument sug-
gesting that negative-infinite Coulomb 1/r, r → 0
singularities really do not exist, or are best treated
as though they do not.

• Second, if time and space are discrete not continu-
ous, for example with “grain size” being the Planck
length and Planck time (§9.2, §9.3), then various in-
tegrals, say, are really sums and we do not have to
worry about approximating integrals by sums, since
we always had sums.

But I disparage these approaches, especially the second,
as cop-outs, for several reasons. First, the Planck length
1.6×10−35 meter and Planck time 5.4×10−44 second are
so small that the computer science view of them as “con-
stant factors” is dubious. Similarly, the anti-Coulomb ar-
guments of §B also only apply at very small length scales.
If we are going to view such numbers as mere “constant
factors,” we might as well take the view that the uni-
verse is just a finite state machine (with some very large
“constant” number of states) and hence Church’s thesis
is a triviality. That view totally misses the point of why
quantum computers might be interesting and trivializes
the whole topic of simulating physics.

My attitude is that our mission is to stay within one
particular mathematical model of physics and see what
are the computational consequences of that. For us, that
theory will be the simplest kind of quantum mechanics,
i.e. Schrödinger’s multiparticle equation, no quantum
fields, scalar potentials only, no relativity, no decoher-
ence. If you argue that this theory of physics is not the
theory of physics (e.g. it is invalid below the Planck
scale or at relativistic energies) and therefore quit try-
ing to simulate it, and quit trying to see what it says in
the regimes where it is supposedly invalid, then you have
abandoned your mission! It is not within the purview of
the simulator to make such judgements – the simulator
is merely in the employ of those who can try to make
those judgements later after seeing the simulator’s out-
put. Really, if you were going to argue against me, then
your only self-consistent stance would be to abandon us-
ing Schrödinger’s equation entirely and indeed abandon
doing all physics until such time as a “final theory” ar-
rives. Why? Because there are small length scales ev-

erywhere. Everything is ǫ away from everything else.
Quantum gravity happens. How can you prove that this
does not somehow lead to effects which destroy the va-
lidity of Schrödinger’s equation even in situations that
look innocent? What does “look innocent” mean ex-
actly? How can you prove that discretizing spacetime
at the Planck scales only introduces error comparable
to the errors you get by ignoring the (unknown) laws of
quantum gravity that hold at those scales? How can you
precisely draw the boundary between when Schrödinger’s
equation is valid and when it is not, if that boundary de-
pends on some unknown physical theory? You cannot!
So, you’d have to view everything as suspect. A much
more productive point of view is to demand that we sim-
ulate Schrödinger’s equation regardless of its supposed
physical validity (not copping out) and see what hap-
pens.

This is not to express complete disapproval of the
Planck scale arguments in §9.2, §9.3 or the anti-
singularity arguments in appendix §B. Nevertheless,
even if one supports those arguments, one still must ad-
mit that it is very comforting that we can simulate quan-
tum mechanics without relying on them. Then, we still
have the option open to us of employing such assump-
tions later – if we later can achieve confidence that their
use is justified in certain situations – to get speedups.

D. Actually, although the tradeoff view in step 4
works, it is simpler for the algorithm designer to view the
situation differently: Given an accuracy target, one de-
termines the minimum height the cutoff has to be raised
to, using theorem 14. One then determines the minimum
number n of timesteps needed in the simulation by using
EQ 30.

E. I have not examined the question of whether all
this can be carried through also in the presence of vector
potentials (e.g. magnetic fields; see §11.1) and for rela-
tivistic quantum mechanics. Probably it can, but it will
be more difficult. The reason I make these speculations
is that my methods are spiritually related to the methods
previously used by E.Lieb and collaborators to prove the
“stability of matter” [63]. Eventually those workers were
able to handle arbitrary static magnetic fields of bounded
energy and a caricature3 of relativity, but it was consid-
erably more difficult. Indeed, they showed that matter
is only relativistically stable due to numerical luck, i.e.
the fact that the “fine structure constant” is ≈ 1/137. If
this value had instead been, say, 6, then matter would
be unstable, and quantum mechanics would have been
extremely different, perhaps not even well posed.

Also, Kato [47] had proved the self-adjointness of ex-
tensions of the Schrödinger operators (and hence, es-
sentially, the existence and uniqueness of solutions to
Schrödinger’s equation) corresponding to L2 +L∞ scalar
potentials. Kato [49] was later able to extend this result

3 Quote from Lieb-Yau 1988 [Phys.Rev.Lett. 61 p.1696;
reprinted in [63]]: “We are not aware of the existence of any
truly relativistic formulation of many-body quantum mechanics
and among the many possible caricatures of such a theory we have
adopted the simplest possible one...”
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to allow a large class of magnetic fields. See [75] vol. 2
(e.g. theorem X.22 and example 4 in X.3) for more such
results. This history again suggests that it ought to be
possible to extend our results to allow magnetic fields.

F. The question of exactly how efficiently we can
simulate is now an important question for the future,
and some ideas relevant to answering it are discussed
in appendices. In the main body of the present pa-
per, however, we will not pay much attention to get-
ting precise performance bounds; merely distinguishing
between polynomial ♣ and super-polynomial will be pre-
cise enough for us.

G. The algorithms we propose in this paper are
very unlikely to be of practical interest for simulating
even moderately large quantum systems, unless quan-
tum computers are constructed.

1.2 More detailed sketch; and list of “the rules”

Section 2 discusses the subtle issues involved in defin-
ing just what it should mean to “simulate” a quantum
system, and just what it should mean to say that that
system is “physically reasonable.”

Among other things, we conclude that
The rules:

1. The simulator should have a random bit generator4.

2. The goal of the simulation should be to provide
Monte Carlo samples from probability distributions
arising from (the approximate) quantum wave func-
tions of the simulated system. Before sampling, we
may demand that the wavefunctions be re-expressed
in any (perhaps unusual) basis; this basis trans-
formation should be “quantum computable.” (In
particular, the eigenbases of the operators corre-
sponding to any polynomial combination of position
and momentum operators, e.g. angular momentum
about some axis, are allowed.)

3. The accuracy (number of decimal places) of the sim-
ulation should be an input parameter P (see §2.5).
Simulations accurate enough so that the samples
they output are statistically indistinguishable (see
rule 7 and §2.3) from the true behavior of the sys-
tem, are regarded as valid.

4. Assuming a quantum computer performs the simu-
lation, then the initial state of the simulated system
has to be specified as a description consisting of a
finite number NQ of qubits (see §2.6, §2.7 for dis-
cussion).

5. “Reasonable” physical systems have a finite num-
ber N of particles5, a simply described Hamiltonian,

4If the simulator is a “quantum computer” with “45◦ rotation”
and “measurement” qubit primitives, then it automatically has
access to random classical bits.

5 Do not confuse N (or NQ) with n. The latter is employed in
§5.3, §8, §9, §11 to denote the number of timestepping stages in an
algorithm.

a finite expectation value E for the energy6, a fi-
nite maximum particle mass m, a finite maximum
charge, and are contained in a finite size box.

6. The interparticle potentials have to be “nice” ones.
Any potential V obeying these conditions will do7:

(a) V and its first 2 derivatives are efficiently
computable8,

(b) V is bounded above −C1r
−1.19
min and below

C2r
−1.99
min (for some positive constants C1, C2;

rmin is the minimal interparticle separation)

(c) if rmin is bounded below, then ‖V ‖∞ and

‖~∇V ‖∞ and ‖∇2V ‖5 ♣ become bounded,

(d) The locus of locations for one particle, (when
the others are held fixed) in which |V | > C,
when C → ∞, tend to infinitesimal ball-like
shapes (of effectively ♣ bounded isoperimetric
ratio),

Note, all these norm bounds have to be known (i.e.
provided as part of the input) or efficiently com-
putable; the same is true of balls approximating the
ball-like regions9.

7. Claims of “polynomial slowdown” should mean
polynomial in the input description length (number
of bits and of qubits), the number of decimals P of
precision, the energy E (more precisely10 an upper
bound on E), the sidelength H of the enclosing box,
the number N of particles, the maximum particle
mass m, the duration t of time the physical system
is to be in operation, and the norm bounds and all
the other parameters in rules 5 and 6.

The runtime should also be polynomial in R, the
run number (R is an integer: 1 on the first simula-
tion run, 2 on the second, and so on) in a sequence
of rerun simulations designed to give L2 error pro-
portional to R−1.1 on the Rth run. (This 1.1-power
error decrease law suffices to make the simulation
statistically indistinguishable from the real thing; cf.
rule 3 and §2.3.)

Sections 7 and 8 show how to sample from approxi-
mate Feynman path integrals with a quantum computer.
Specifically:

6I had once thought the stronger assumption that some expo-
nentially growing function CE of the energy E, had finite expecta-
tion value, was going to be required. For discussion of this highly
interesting assumption, see appendix §E.

7Alternative assumptions are possible in which, e.g. the deriva-
tives of V need not be computable, provided V is nice in some
other ways. It is also possible to handle “finite square well” po-
tentials and “rigid inpenetrable balls.” See §6.1 (and §7 for hard
balls) for a discussion.

8“Polynomial time computable real→real functions” in the
sense of Ko [58] ♣.

9See §6.1. For the most important case in practice – Coulomb
potentials – this mare’s nest of restrictions is trivially satisfied.

10This bound, and the norm bounds, are assumed to be available
as part of the simulator’s input.
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In time polynomial in n, g, P , and log H , a “quantum
computer” can sample from a probability distribution
corresponding to a function F of an approximation to
a Feynman path integral with n-gonal paths whose ver-
tices lie on a hypercubic grid, with 2g gridlines in each
direction, in a d-dimensional hypercube of side H , and in
which the approximate path integral is computed accu-
rate to P decimal places. A wide class of path integrals
may be handled (we need not restrict ourselves to ones
which arise quantum mechanically), provided the inte-
grand is a phase factor eif with angle f computable to P
decimals in polynomial time, and ‖~∇fdisc‖1 (where fdisc

is a version of the functional f “discretized” to become
a function) is bounded. A wide class of functions F may
be sampled (we need not restrict ourselves to familiar
quantum observables, nor is it necessary for F to depend
only on the endpoints of the path; it could depend on
the entire path). Certainly the transformation to any
eigenbasis corresponding to any operator whose classical
version is some computable function of particle positions
and momenta (as in rule 2 above), is useable to play the
role of F . We argue (§9.5) that the error in the approxi-
mation to the true path integral caused by the finiteness
of g, and P should be exponentially negligible in prac-
tice. Under reasonable assumptions about the integrand
(which are forced if our potentials are “regularized”) we
can make this rigorous.

This path integration quantum algorithm is of inde-
pendent interest. Previously, two (to my knowledge
and/or in my opinion) interesting kinds of algorithms had
been invented strongly suggesting that a quantum com-
puter is capable of performing some algorithmic tasks
asymptotically far more rapidly than any “classical com-
puter:”

1. Shor [81] showed that a quantum computer could
(with high probability of success) find the prime fac-
torization of an N -digit integer in a number of steps
polynomial in N .

2. Grover [38] [15] showed how to square-root the ex-
pected number of steps taken by naive searching al-
gorithms, by use of a quantum computer.

These results both appeared more relevant after the de-
velopment of “quantum fault tolerance” techniques [74].

Shor’s result was of tremendous theoretical importance
since it strongly suggested that “Church’s (strong) the-
sis” (that any reasonable physical system should be sim-
ulable by a computer with only polynomial slowdown)
is false and therefore that quantum mechanics is in-
tractably hard to do – at least for those of us with clas-
sical systems as brains. Looked at another way, it sug-
gested the possible tremendous importance of trying to
build a quantum computer.

So ours is the third such algorithm, and it evaluates
numerical approximations to “Feynman path integrals.”
The algorithmic idea is perhaps even simpler than [81]
[15]. Since a large amount of human and computer
time [52] [53] [61] [26] is currently spent trying to solve

Schrödinger’s equation or approximations to it and/or
to evaluate path integrals, whereas comparatively little
time (I would hope) is spent trying to factor integers,
this algorithm seems of more inherent usefulness (if a
quantum computer ever is constructed) than [81].

For our purposes, of course, the point of the path in-
tegration algorithm is that Feynman [28] (and others
[80][71], see §7) had reformulated Schrödinger’s equa-
tion (and related equations) as path integration prob-
lems. This allows us to simulate any particular quantum
physical system with a quantum computer with “poly-
nomial slowdown.”

However, we have to worry about how accurate this
simulation is.

In sections 9 and 5, we consider how much error is
caused by the finiteness of n, i.e. the discreteness of sim-
ulation time. The analysis considers “exponential split-
ting” formulas related to the famous “Trotter product
formula.” If the matrices in these formulas are finite
dimensional, then such analysis is straightforward. We
show that the analysis is also tractable for operators, as-
suming the potentials have been “regularized” and pro-
vided we assume the physical “reasonableness” of the
wavefunctions being simulated, in particular bounded-
ness of energy.

Provided such definitions of “reasonableness” are ac-
cepted, this constitutes a Quantum version of Church’s
strong thesis – any quantum physical system may be sim-
ulated by a quantum computer, to accuracy as good as
could be obtained by measuring the system itself, with
only polynomial slowdown.

Finally, in section 10 we show how a conventional com-
puter can simulate a quantum computer with exponen-
tial slowdown but only polynomial amplification of mem-
ory space needs (this is almost trivial). This completes
the proof of our preferred version of Church’s thesis.

Section 11 ties everything together, providing an ap-
proximate statement of the simulation algorithm and the
main result, and telling which lemmas are used in what
ways to get the proof.

Section 12 concludes, and discusses recent improve-
ments to our main results and possible future improve-
ments.

2 Quantum Church’s thesis definitions

Thesis 1 Church’s weak thesis is the notion that if
any “computer” C (read: “physical system”) performs a
“computation,” then that same computation could have
been performed by a Turing machine.

Thesis 2 Church’s strong thesis adds to the weak
thesis the qualification that the time consumed by the
Turing machine computation is bounded by a polynomial
♣ of the time and “resources” consumed by C, the de-
scription length of C, and the length of its input.

Thesis 3 Our new “intermediate Church thesis”
adds to the weak thesis the qualification that the memory
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space consumed by the Turing machine computation is
bounded by such a polynomial.

Church’s theses were intentionally vaguely phrased. It
becomes possible to try to prove or disprove them if we
specialize to some particular set of laws of physics and if
precise meanings are assigned to all the words in quota-
tion marks. For example, see [83] for proofs and disproofs
of Church’s thesis in classical mechanics.

If we want to allow the laws of physics to include quan-
tum mechanics, then additional complications arise in
the problem definition. We’ll now discuss these, one per
subsection.

2.1 Nondeterminism

Quantum mechanics is not deterministic. Therefore,
certainly any simulator necessarily would need to be
equipped with a random bit generator.

2.2 Meaning of Computation

What “computation” is performed by a quantum sys-
tem? One’s first reaction might be: a quantum system
computes the wavefunction Ψ which solves Schrödinger’s
(multiparticle) equation. (Or if we are relativistic, a dif-
ferent equation; this distinction is not significant for our
present purposes.) But in fact, that is not the case be-
cause it is impossible to measure the wavefunction. The
wavefunction constitutes really an infinite number of bits
of information, almost all of which are inaccessible during
a single measurement (which destroys the wavefunction).

Actually, all we can hope to do is the following: We
can choose a set of commuting Hermitian operators
F̂1, F̂2, . . . corresponding to “compatible physical ob-
servables.” If we knew the full expansion

Ψ =
∑

j

cjΦj (1)

of Ψ as a complex linear combination of the common
complete orthonormalized eigenfunctions Φj of these op-
erators, then we would know Ψ. But upon performing
the measurements of those observables, all we get is a
probabilistic sample from the probability distribution in
which j occurs with probability |cj |2. So, to be fair11,
the Turing machine (or whatever is performing the sim-
ulation) should really only be required to produce one
such probabilistic sample, and should not be required to
output the entire wavefunction (which might require an
enormous amount of paper to write down).

11“Fairness”: The physical system and the simulator are re-
garded as competitors, and we want neither side to have an “unfair
advantage.” If the physical system is only required to output one
random variable (the result of some measurement) but the simula-
tor were required to produce far more (e.g. the entire wavefunction)
that would “unfair.” See §2.9.

2.3 Accuracy

Of course by running the Turing machine many times to
perform many different simulations of the quantum sys-
tem, we could extract more information about the wave-
function because we would get many such probabilistic
samples – corresponding to the fact that we would need
to run the real quantum experiment many times to get
this same information.

I’m going to imagine that one in fact does plan to rerun
the simulator many times. But the simulator necessarily
will not (on any given run) compute the exactly correct
wavefunction, and hence will sample from some incor-
rect probability distribution. If all simulation runs ran
the same algorithm with the same input each time, we
would eventually be able, by collecting enough samples
from the simulator and from the real quantum system, to
become confident of the fact that they were two different
distributions, i.e. that the simulation was wrong.

To avoid this sad fate, we shall demand that the sim-
ulator actually tries harder on the run R + 1 than on
run R, in such a way that a statistician examining the
outputs in an infinite sequence of repeated runs, cannot
build up unboundedly high confidence that the simula-
tion and real experiment were sampling from different
distributions.

Now let us analyse this idea more precisely.
The amount of information we get about the |cj |2, i.e.

about the wavefunction, from a single probabilistic sam-
ple is roughly

∑
j |cj |2| log2(|cj |−2)| bits. (This is just

to clarify the point that a measurement will only yield a
finite amount of information about the infinite amount
of information specifying the wavefunction.) To estimate
the true probability p of some event, one must perform
n experiments (or simulations) to obtain constant confi-
dence that we have p accurate to ±n−1/2

√
(1 − p)p.

Suppose the true probability (in the real quantum sys-
tem) of some event is p, whereas the probability of that
event in our simulation, is p′. Both p and p′ are un-
known. How many experiments n and simulation runs
n′ are required to get some threshhold (say 75%) of con-
fidence that p 6= p′? We claim it is impossible to reach a
confidence threshhold that p 6= p′ if

|p − p′| (n + n′) ≪
√

(1 − p)pn + (1 − p′)p′n′. (2)

This leads to the conclusion that if n = n′ and |p− p′| =
o(n−1/2

√
(1 − p)p + (1 − p′)p′) (where now p′ depends

on n), then we cannot gain arbitrarily high confidence
that p 6= p′, no matter how many experiments n we per-
form.

Now let us consider two normalized wavevectors Ψ1

and Ψ2 (say in some countably-infinite dimensional
space) which differ by a small angle θ. It is plain that
the best12 way to distinguish between them is to rotate
them both to a configuration in which they are both zero
in all coordinates except for two (we assume optimisti-
cally – which is OK since we are seeking an upper bound

12In the sense of requiring the fewest measurement operations to
reach some confidence threshhold.
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on the best we can possibly do – that we somehow know
such a rotation and can accomplish it13), and in that 2-
space they differ by the angle θ. We’ve now reduced the
problem to a single “qubit” ♣. Now we can perform a
measurement on this qubit, and we can redo this exper-
iment as many times n as we please, assuming we have
some way of reproducibly regenerating Ψ1 and Ψ2. But
we’ve just analysed the single-bit measurement problem
in the previous paragraph. That analysis re-applies here,
once you see that |p − p′| ≤ θ.

But now, if we consider a sequence of simulations
which, in run number R, have L2 error O(R−1.1), we
conclude that

Claim 4 If the simulated wavefunction Ψ from the Rth
simulation run, in the usual L2 distance metric14, is
O(R−1.1) ♣ away from the true wavefunction, then, no
matter what measurements one performs, one will be un-
able to become arbitrarily confident that the simulation is
in error.

So to be fair, quantum formulations of Church’s thesis
should not require more simulation accuracy than this.

2.4 Choice of error metrics

Note that using the L2 metric was essential in the above
reasoning. The L2 metric is the natural one in quantum
mechanics because

1. If the L2 distance (i.e. angle θ) between two wave-

functions is small, then a large number (i.e.
>∼ θ−2)

of measurements are required to gain confidence
they are different,

2. It is preserved by basis changes.

The second property is very false for, e.g. the L1 met-
ric. A small perturbation by a d-vector (

√
d, 0, 0, . . . , 0)ǫ

could be transformed by a unitary time-evolution or basis
change to (1, 1, . . . , 1)ǫ, i.e. amplifying this small pertur-
bation (assuming ǫ is small), by an unboundedly large
factor (

√
d) in L1. Such amplification is impossible in

L2. Consequently the first property is also false in other
metrics – in the sense that it is impossible to bound n
purely in terms of θ without knowledge of d.

2.5 Precision

A different accuracy conundrum (which also arises when
considering simulating classical systems) arises because
of the fact that times, positions and momenta are real
numbers, i.e. an infinite number of bits. One may handle
this either

13An ingenious “quantum circuit” with O(N) “quantum gates
and wires,” invented by John Watrous, in fact enables essentially
the same quantum state distinguishing power to be gotten (for
states made of N “qubits”), as the method I am proposing, also
via a single qubit measurement, but without need to know, or to
use, this optimum rotation. This circuit is described in [17].

14I.e. 2 sin θ
2

= distA,B = (
∫

|ΨA − ΨB |2dx)1/2. Note: this
metric is the same for any complete orthonormal basis defined by
the eigenstates of any quantum observable.

1. ⊗ By assuming a computational model such as a
“real RAM” in which real number I/O and arith-
metic operations may be performed in one time step;

2. Or by assuming an input oracle which can provide
more bits of accuracy upon request, and only requir-
ing the output to be accurate to P decimal places
where P is an input parameter, and where any poly-
nomial time or space simulation slowdown guaran-
tees are also allowed to depend polynomially upon P
and the number of bits transmitted to and received
from oracles.

We prefer choice #215. However, because

1. Time evolution in quantum mechanics is unitary,
causing “chaos” (exponential sensitivity of the final
state to infinitesimal changes in initial conditions) to
be impossible (very unlike classical mechanics) and

2. because we do not need to compute the final state to
high accuracy anyway (as we just discussed16; also
unlike classical mechanics)

high precision, fortunately, is not an important issue.
Although actually it is not necessary to specify P

(since it is deducible from other parameters), as a matter
of programming and mental convenience it is desirable to
demand that the simulator accept P (which will be the
number of decimals to which all arithmetic is supposed
to be accurate to, essentially) as another input parame-
ter. Too large P will cause wasteful computation to too
many digits of significance (it is pointless to compute an
approximate answer to 100 decimal places when we know
our approximation is only accurate to 5 places) but this
will not matter. We agree to disregard requests for too
small P (which could cause misleading answers).

2.6 Input representation

The input has to describe the laws of dynamics, i.e., the
Hamiltonian operator, for the simulated quantum sys-
tem. We shall assume that the classical version of this
operator corresponds to a known polynomial-time com-
putable function of the particle canonical position and
momentum coordinates – polynomial in the number of
decimals in all these coordinates and in the number of
decimal places to which we want the answer, that is.

The problem of representing the initial quantum state
is more serious. If we start a quantum system off from
some state, just describing that state may require an
enormous number of bits of information, which anyhow
we don’t know. It seems hardly fair to require the simu-
lator to input an infinite number of bits we don’t know
before it can even start. There are several ways to define
ourselves out of this quandary.

15Incidentally, we also assume that the values of physical con-
stants such as h̄ and ǫ0 ♣ are available from an oracle to arbitrarily
high accuracy – in practice a polynomial number of decimal places
will suffice.

16That is, accuracy O(R−1.1) suffices on run #R, which is a far
less stringent demand than exponential accuracy.
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1. ⊗ We can only allow initial quantum states which
are eigenfunctions of some observable – these are
concisely describable and also correspond to the
maximally precisely specified quantum states which
(according to the Copenhagen interpretation) can
be prepared. But then, there is the sticky problem
of just which observables to allow17; more on this
below.

2. ⊗ We could assume the input was available in the
form of some sort of “oracle.” The simulator could
ask the oracle questions about the wavefunction and
get answers. But then we are confronted with the
sticky problem of just what questions to allow. If we
were only to allow questions of the form “give me the
nth decimal digit of the complex amplitude cj of Φj

in the initial state (of form (EQ 1))” then it could
take unboundedly long to find the j which has the
biggest |cj |2, and why should we restrict ourselves to
one particular allowed set of the Φj anyway – maybe
the simulator might prefer to use another. But on
the other hand, if we allow more powerful questions
such as arbitrary Φj and asking for the kth biggest
cj , then we run the risk of offloading the bulk of the
computation to the oracle. It is difficult to quantify
that risk.

3. If our simulator is actually a “quantum Turing ma-
chine” capable of containing quantum information,
we could simply assume that an appropriate internal
representation (§2.7) of the initial state information
is available in its quantum memory at the start of
the computation.

In the present paper, we are going to consider simulat-
ing arbitrary quantum systems by quantum computers,
and we are therefore going to choose the final one of the
above three options. When we consider simulations with
a classical computer, we take (a restricted version of) the
first option. The strategy we will employ – classical sim-
ulation of a quantum computer simulating a quantum
system – then provides a natural answer to the ques-
tion of which operators to allow, or more precisely, which
quantum initial states to allow. Namely – the ones we
can get our quantum computer to describe in quantum
polynomial time after classical initialization with pure-0
or pure-1 bits.

In some sense this restriction is circularly self-
justifying: it leads to final states which are in the same
class as the permitted initial states. (Hence, one can then
feed these into more simulations.) The same kind of cir-
cular self-justification applies to the assumption (§2.9)
that all states have bounded expectation value for en-
ergy (since this value is conserved by Schrödinger time-
evolution). This is not a priori necessary since, e.g.
a probability density proportional to 1/(x1.1 + 1) for

17Nor is there any a priori guarantee that the eigenfunctions of
some specified operator even are computable functions [73]; but
see appendix §D.

x ≥ 0 has no expectation value of x; but it neverthe-
less seems very plausible that it is true for physically
reasonable wavefunctions. The circularity behind these
assumptions, or restrictions, does not bother me person-
ally. But it could be argued that really the only possible
justification for these properties is the ultimate assump-
tion – that the initial state of the universe obeyed these
properties!18

There is a different and also valid interpretation of
all this, which many people will prefer. It is that any
initial state of bounded expected energy is permissible,
whether or not it is easily prepared by a quantum com-
puter. In other words, assuming some all-powerful being
were somehow to prepare our quantum computer with
some of its qubit registers representing (in our format
– see §2.7) any initial quantum state, I will claim the
quantum computer could then proceed to simulate its
time evolution with polynomially bounded slowdown.

Furthermore, a conventional computer could also per-
form the simulation with exponentially bounded slow-
down. Note that in this case, the description of the
initial quantum state which it inputs at the beginning
of the simulation, would be exponentially many classical
bits long.

2.7 Internal representation of wavefunctions

Related to the previous issue of how to represent the
initial state, or initial wavefunction, is the larger issue of
how to represent any wavefunction inside our computer.

We are going to use Fourier modes (more precisely,
the solutions of the free particle Schrödinger equation)
in a box. We assume, or proclaim, that the system being
simulated lives inside a cubical box of sidelength H . The
wavefunction is a linear combination of Fourier modes.
We cut off the mode sum at some frequency upper limit.
We can switch from this mode-sum representation (which
is, essentially but not precisely, the momentum basis) to
a position basis by using a discrete Fourier transform. In
that case, the mode cutoff turns into the fact that we are
discretizing continuous space onto a finite grid.

Now to represent a quantum state, i.e. a complex-
amplitude weighted superposition of Fourier modes, we
can use a single quantum register [81] ♣ inside our quan-
tum computer (which is performing the simulation).
Specifically, representing a superposition of 2g Fourier
modes requires a single g-qubit register. The complex
amplitude weights are not represented explicitly any-
where – they just are the 2g weights for each of the 2g

possible logical states of the quantum register. If the
“quantum Fourier transform” [81] of this register is per-
formed, we get, essentially, that the resulting g-qubit reg-
ister has value 1 if the particle it represents is at grid
point 1, value 2 if the particle it represents is at grid
point 2, and so on up to gridpoint 2g. We thus can rep-
resent the entire wavefunction of N particles in a 3D box
on a 2g × 2g × 2g grid inside 3N quantum registers, each

18Well – did it? Can any cosmologist tell us?
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g qubits wide.

The only issue that remains is the question of how
much accuracy we have lost by ignoring the high fre-
quency modes (of wavelength < 2−gH). Well, if cj is the
complex amplitude of mode j, then the kinetic energy
EK of our wavefunction is

EK = h̄
∑

j

|cj |2 ωj (3)

where ωj is the frequency of mode j. If we ignore all the
modes with ω > ωcutoff , then we see that we have altered
the wavefunction, in the L2 distance metric, by




∑

j, ωj>ωcutoff

|cj|2



1/2

(4)

which is ≤
√

EK/(h̄ωcutoff). We shall see in §6 that EK is
bounded. Hence our L2 wavefunction error is arbitrarily
exponentially small if we make ωcutoff , i.e. the number
of gridlines 2g, exponentially large.

Hence, the error introduced by the mode cutoff is neg-
ligible compared with the errors we are allowing ourselves
(§2.3).

2.8 Interparticle potentials

We argue in appendix §B that intercharge potentials in
quantum mechanics are best modeled as noncoulombic
and without attractive singularities. This is important
since less-singular potentials lead to faster simulations
with better error bounds.

Indeed, our simulation algorithms fail entirely in the
presence of attractive interparticle potentials that behave
like −r−γ with γ > 2 as r → 0. But it is known that
γ > 2 is impossible in quantum theory since such poten-
tials lead to Hamiltonians without self-adjoint extensions
[47][69] – physically, the particles get “sucked in” to each
others’s singularity.

But fortunately, we do not need to rely on the anti-
Coulomb arguments in appendix §B (which is the reason
they are in an appendix). That is because our simulation
algorithm can handle any γ < 6/5; see rule 6 of §1.2 for
a more precise description of the allowed potentials19.
(Also, any γ < 2 seems handleable using the alterna-
tive approach sketched in appendix §D20 – but not in
quantum-computer polynomial time.)

Rule 6 places numerous other restrictions on the poten-
tial (not all of which, perhaps, are really necessary and
hence might be subject to elimination by later authors).
I did that for technical reasons arising in the proof. For
Coulomb (1/r) potentials these restrictions are all easily
seen to be satisfied. We can also easily handle some other
commonly used potential functions such as H.Yukawa’s

19If you’re wondering how the magic value 6/5 arose, see lemma
13 and (EQ 42-45). Coulomb’s law, of course, involves γ = 1.

20And see §12.5.

“screened Coulomb” potential VYukawa = qe−kr/(4πǫ0r)
and E.A.Uehling’s potential

VUehling =
q

4πǫ0r

[
1 +

2α

3π

∫ ∞

1

(1 +
1

2u2
)

√
u2 − 1

u2
e−2ru/λC du

]

(5)
(both expressed as voltages arising from a source charge
q). It is also possible (although it goes outside the main
stream of our methods and requires some extra tricks)
to handle “finite square well” potentials and even “hard
balls” (in which the potential is infinite if two particles
are separated by < 1 “hard ball diameter”) [42].

But there are some other commonly used potentials
which we cannot handle. These include the Lennard-
Jones semiempirical potential (often used to model inter-
atomic forces)

VLennardJones = Ar−12 − Br−6 (6)

where A and B are positive constants, and the potential
between a point charge and a point dipole (∝ −r−3). The

repulsive singularity in (EQ 6) is too severe (|~∇V | 6∈ L1)
for the methods of §3 and §9.5 to handle. The dipole-
charge −r−3 attractive singularity is too severe for quan-
tum mechanics itself to handle (see footnote 35) which
is corroborated by the fact that no point particles with
electric dipole moments are known. This same remark
(assuming that electrons are point particles with a mag-
netic dipole moment) makes it impossible for point mag-
netic monopoles to exist in quantum mechanics (which I
point out here, since nobody has pointed it out before).

Indeed, quantum mechanics has, so far, only been
shown to be well posed for, potentials in, e.g., the Roll-
nick ♣21 class. The Lennard-Jones potential is well out-
side of such classes. Hence, so far as is currently known,
it is quite possible that the Lennard-Jones potential is ac-
tually inadmissible in quantum mechanics22. The same
is true for its modification (which includes an angular
dependency) the “Stockmayer potential.” However, as
Lennard & Jones surely would agree, the true asymp-
totic form as r → 0 of the singularity for the potential
between two argon atoms whose nuclei are separated by
r, certainly is not ∝ r−12, but instead behaves coulom-
bically (or even less singularly than that, once the nu-
clei start to overlap). Most users of the Lennard-Jones
potential would argue that the wrong behavior at the
singularity “does not matter” because in the energy and
r ranges of interest, r−12 does describe the truth fairly
well. But that argument is totally invalid if the allegedly
irrelevant part near r ≈ 0 actually destroys quantum
mechanics or your simulation algorithm.

A dozen empirical potentials of this sort are surveyed
in chapter 1.3 of [42].

My personal intuition agrees with the physicists I just
disparaged (see §6.1.4) – I suspect even very severe po-
tential singularities ought to be permitted, provided they

21See theorem X.19 of vol. 2 of [75].
22A fact which the authors of ≈ 100 papers on the Lennard-Jones

potential, appear to be blissfully unaware of.
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are repulsive – but currently no analysis is strong enough
to prove such a conclusion.

2.9 Resources

The “resources” in a physical system being simulated are:
its23 energy E, the maximum mass m of any particle,
the number N of particles, the24 maximum charge on
any particle, the duration t of the time-evolution being
simulated, and the size of the box it is contained in.

If we view Church’s strong thesis as saying you can’t
build a physical system that can superpolynomially out-
perform a classical computer, then it would clearly be
“unfair” to the simulator if the physical system it were
“competing” against were allowed exponentially enor-
mous masses or exponentially many particles25. It also
would be unfair if the physical system were unbuildable
or inaccessible because it was too huge to fit in your lab-
oratory, i.e. didn’t fit in a box of polynomially bounded
edge lengths26.

3 Approximation of integrals by sums

Here is a simple bound on the error ǫ that arises when
approximating an integral by the “trapezoidal rule.”

Lemma 5

f(0)
2 + f( 1

n ) + f( 2
n ) + . . . + f(1 − 1

n ) + f(1)
2

n
=

∫ 1

0

f(x)dx + ǫ (7)

where

|ǫ| ≤ 1

2n

∫ 1

0

|f ′(x)|dx =
1

2n
‖f ′‖1 ≤ 1

2n
‖f ′‖2 (8)

This is easy to prove directly (the final inequality in
(EQ 8) works only for the interval [0, 1] of unit length),
but also arises as the simplest special case of the Euler-
Maclaurin summation formula with error term (discussed
in section 9.5 of [36], and other textbooks).

Corollary 6 If f is real valued,
(

eif(0)

2
+ eif(1/n) + eif(2/n) + . . . + eif(1−1/n) +

eif(1)

2

)
/n

23More precisely, the expectation value of the energy, or some
upper bound on it. This quantity is assumed to be provided as
part of the input.

24Charges in real life appear to be integer multiples of the elec-
tron charge e (or e/3 if one allows “quarks”) and in appendix §B, es-
pecially footnote 65, we explain why that integer is always bounded

by an absolute constant. But our simulation algorithm allows a su-
perset of real-life scenarios, including the possibility of non-integer
charges.

25Allowing an experimenter to play with 10100 grams of mass,
or to run an experiment for 10100 years, for a cost of only $100,
seems unfair!

26Incidentally, my “disproof” of Church’s thesis in classical New-
tonian mechanics [83] had relied upon having an infinitely large,
or at least nonrecursively large, containing box. That is one basis
for attacking the physical relevance of that result.

=

∫ 1

0

eif(x)dx + ǫ (9)

where ǫ obeys (EQ 8).

For the corresponding d-dimensional integrals over
[0, 1]d approximated by sums on cubical grids of (n+1)d

points, and where f(~x) of course now takes a d-vector
argument, the error ǫ obeys

|ǫ| ≤ 1

2n
‖

d∑

j=1

| ∂f

∂xj
| ‖1 (10)

as may be proved by induction on d.

4 Splitting formulae for exponentials of

finite dimensional matrices

As will become apparent in this and the next section,
Feynman’s definition of his “path integral” (§7) arose
from the “Trotter product formula” for operators.

We’ll now discuss this and related higher order product
formulae. But for now (for simplicity) we’ll only discuss
these formulae in the context of finite dimensional matri-
ces. That way, this section may be read independently.

It turns out that we will only actually use the 2-term
and 3-term formulae in the Church’s thesis proof, so we’ll
only discuss them here. But the higher order formulae
may be relevant to future improvements of complexity
bounds, as well as being of independent interest. They
presumably may be used to get better approximate path
integrals. Hence we include a survey of them (including
new results) in appendix §C.

4.1 Product formulas

Let A and B be two noncommuting general real (or com-
plex) square finite dimensional matrices. Let t be a small
real (or complex) number; we are interested in t → 0+.

4.1.1 2-term product formula

e(A+B)t = eAteBt[1 + O(t2)]. (11)

This result is immediate from the Campbell-Baker-
Haussdorf-Dynkin formula (found by Campbell in 1897
and refined by Baker, Haussdorf, and Dynkin in succes-
sion over the next 50 years [98])

eXeY = eX+Y +[X,Y ]/2+([[X,Y ],Y −X])/12+[[[X,Y ],X],Y ]/24+order5+

(12)
(We use “commutator” notation: [X, Y ] ≡ XY − Y X .)
Expressions yielding the nth order term (which is a ho-
mogenous antisymmetric polynomial of degree n in X
and Y ) in the series are in [98] and [88]. Indeed [88]
proves that the series converges if ‖X‖+‖Y ‖ < (ln 2)/2.
An even better proof uses the (less well known) Zassen-
haus formula

eX+Y = eX eY e[Y,X]/2 e[[Y,X],X+2Y ]/6 · · · . (13)
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Suzuki [88] also gives the general term of this product
(the nth term is the exp of a homogenous polynomial
of degree n − 1 in X and Y ) and proves convergence if
‖X‖, ‖Y ‖ < ln(2/

√
e).

4.1.2 3-term product formula

e(A+B)t = eAt/2eBteAt/2 [1 + O(t3)]. (14)

This also arises from the C-B-H-D formula (EQ 12) via
a rewriting as

eXeY eX = e2X+Y +([Y,[Y,X]]−[X,[X,Y ]])/6+order5+....
(15)

5 Error bounds for splitting formulae for

operator exponentials

If A and B have commutators which are small in some
sense (for example, of bounded norm) then error bounds
for the 2-term and 3-term product formulae (EQ 11, 14)
may be obtained from Suzuki’s [89] “identity 1”

etAetB − e(A+B)t = (16)
∫ t

0

∫ v

0

evAe(v−u)B[A, B]euBe(t−v)(A+B) dsdt

and “identity 6”

e(A+B)t − etA/2etBetA/2 = (17)

1

2

∫ t

0

∫ v

0

evA/2evBG(u)evA/2e(t−v)(A+B) dudv

where G(u) =

∫ u

0

(
1

2
ewA/2[A, [A, B]]e−wA/2 + e−wB[B, [A, B]]ewB

)
dw.

(18)
respectively. The obvious27 bounds that result are, re-
spectively, as follows.

Lemma 7 (Error bounds for exponential split-
ting) Let Ψ be normalized (i.e. have unit L2 norm).
Let ‖ · ‖ denote L2 norm for either operators or Hilbert
vectors. Let t be real. Let A and B be Hermitian so that
eitA and eitB are unitary. Then

‖(eitAeitB − e(A+B)it)Ψ‖ ≤ t2

2
‖[A, B]‖ (19)

and

‖(e(A+B)it − eitA/2eitBeitA/2)Ψ‖ ≤ (20)

t3

12

(
1

2
‖[A, [A, B]]‖ + ‖[B, [A, B]]‖

)
.

These bounds sometimes are useful, but sometimes are
useless.

27They arise by using the facts that eiA is unitary if A is
Hermitian, and unitary operators have unit L2 norm, and the
sub-multiplicativity and sub-additivity properties of L2 operator
norms.

5.1 Example of uselessness of the error bound for expo-
nential splitting: the hydrogen atom

In particular, consider the case where A is the poten-
tial energy operator (i.e. AΨ causes multiplication of Ψ
by a potential function V ) and B is the kinetic energy
operator, i.e.

B =
−h̄2

2m
∇2. (21)

More precisely, in the N particle case,

B =

N∑

j=1

−h̄2

2mj
∇2

j (22)

where mj is the mass of the jth particle and ∇2
j is taken

with respect to its 3 coordinates. This is really the same
thing as (EQ 21) if one views the N particles as a sin-
gle superparticle in a 3N -dimensional space and is a bit
generous in interpreting the division by m (this could
be dealt with by appropriate scaling of the coordinates).
Hence we’ll abuse notation by continuing to use (EQ 21)
here and in §5.2 to keep expressions simpler (and anyway
N = 1 for the present purposes: the hydrogen atom with
anchored nucleus).

In that case

[V,∇2]Ψ = V ∇2Ψ−∇2(V Ψ) = −Ψ∇2V −2(~∇V ) ·(~∇Ψ).
(23)

Now if r = |~x| denotes the distance to the origin in
3-dimensional space and V = −k/r (potential for a hy-
drogenic atom; k is a positive constant) this is

[
−k

r
,∇2]Ψ = [

k

r
,−∇2]Ψ = −kΨδ3(~x)−2k

r3
~x·(~∇Ψ) (24)

where δ3 is a 3D Dirac delta function (“point mass”).
Now if Ψ is the wavefunction of the ground state of the
hydrogen atom ([78] IV.16), i.e.

Ψ(~x) = 2a−3/2e−r/a (25)

where a = h̄2/(km), then [V,∇2]Ψ is not in L2 and the
upper bound (EQ 19) is ∞. While ∞ is a valid upper
bound, it is useless! The Ψ∇2V term, which generates
the delta function, is the culprit.

5.2 The error bound for exponential splitting is useful if
the potentials are regularized and the wavefunction
has bounded energy

The way out of this quandary is: we only allow regular-
ized potential functions V , i.e. ones such that ‖∇2V ‖5

and ‖~∇V ‖∞ are both bounded. In that case, consider
the terms in (EQ 23).

• (~∇V ) · (~∇Ψ) will automatically have bounded L2

norm, because ~∇Ψ has bounded L2 norm (propor-
tional to the kinetic energy (EQ 32,34)) and apply
Hölder’s inequality (EQ 84) with p = 1, q = ∞.

DocNumber 12 . 5. 2. 0



W.D. Smith typeset 579 Jan 18, 2004 Quantum Church’s thesis

• Similarly Ψ∇2V will automatically have bounded
L2 norm because Ψ is in L10/3, due to the bound-
edness of the kinetic energy and the Lieb-Thirring
inequality (EQ 35), and apply Hölder’s inequality
(EQ 84) with p = 5/3, q = 5/2.

We conclude that the error bound (EQ 19) for the
2-term product formula (EQ 11), will always be finite
and well behaved (indeed, depending polynomially on the
L2 norm bounds) if the potential function is regularized
(Here A and B are the potential and kinetic energy parts
of the Hamiltonian and Ψ is a normalized wavefunction
of bounded energy):

Theorem 8 (Error bound for 2-term product ap-
proximation of Schrödinger time evolution) Let ‖·‖
denote the L2 norm. Let V be a potential function and
Ψ be a (normalized) wavefunction. Then the L2 norm
of the error (i.e. ‖Ψ1 − Ψ2‖) obtained by using the 2-
term product formula (EQ 11) (with A and B being the
potential and kinetic parts of the Hamiltonian operator
A + B) to approximate the Schrödinger time-evolved Ψ
after a time t, is28

≤ (‖Ψ‖10/3 ‖
∇2V

m
‖5 + 2 ‖~∇Ψ‖2 ‖

~∇V

m
‖∞)

h̄2

2

t2

2
. (26)

It is possible to proceed similarly for the 3-term prod-
uct formula (EQ 11), but using (EQ 20) instead of (EQ
19). But in this case we need also to make assumptions
about the L∞-boundedness of higher derivatives of the
potential function V . Specifically, we need to assume
that |~∇V |2 is in L5, (∇2)2V is in L∞, and

∑

k

∂3V

∂x3
k

∂Ψ

∂xk
(27)

is in L∞ ♣, as well as (as we did before) ∇2V ∈
L∞. Unlike before, we now also need to as-
sume that (∇2V )(∇2Ψ) is in L2, or at least that∫
(∇2V )(∇2Ψ)Ψ∗d3~x is bounded. If ∇2V is in L∞, then

this assumption is again justified if Ψ has bounded ki-
netic energy (which it will, see §6). The other assump-
tions may be justified by forcibly regularizing V . The er-
ror term then behaves proportionally to t3 times a poly-
nomial function of all the norm bounds.

Presumably the 4-term, 5-term, etc. product formu-
lae (see the appendix §C) also cause bounded L2 errors,
with enough assumptions about Ψ and V and their (suf-
ficiently high) derivatives, but this has not been proven.

5.3 The convergence of the “Trotter product formula”
and its ilk

The Schrödinger time evolution operator is exp(−it
h̄ Ĥ)

where Ĥ is the Hermitian Hamiltonian operator.
We are going to use the Trotter product formula

[71][50] for the operator exponential of i times the sum of

28See the remark on abuse of notation near the beginning of §5.1.

two Hermitian29 operators. In our case, the Hamiltonian
is the sum of the potential and kinetic energy operators
ĤP and ĤK . This formula states that

Theorem 9 (Trotter product formula)

exp(
−it

h̄
Ĥ) = slim

n→∞
(Rn)n, (28)

Rn = exp(
−it

h̄n
ĤP ) exp(

−it

h̄n
ĤK).

Here “slim” denotes the “strong limit” of an operator in
the L2 metric, i.e. a sequence A1, A2, ... is said to tend
to a strong limit if ∀ǫ > 0 ∃N such that if n, m > N then

‖(An − Am)Ψ‖ < ǫ for all Ψ ∈ L2(Rd). (29)

In short, the Trotter product formula, specialized to
the case of quantum mechanical time-evolution, views
time-evolution caused by the total Hamiltonian (which
is a sum of a potential and kinetic energy part) as being
due to a rapid alternation in time in which the Hamilto-
nian “switches” between being pure potential and pure
kinetic30. The theorem is that as the rapidity of the al-
ternation tends to infinity, the right answer is obtained.

This formula may be thought of as the justification of
(and/or the interpretation of) Feynman’s path-integral
formulation of quantum mechanics (see §7).

This formula is useful algorithmically because there
are easy exact solutions for time evolution for the pure-
kinetic (free particle) and pure-potential (complex phase
rotation at position-dependent rates) Hamiltonians. But
in order to be useful for our purposes, it is not suffi-
cient that Trotter converges. We need rigorous and com-
putable error bounds saying how quickly it converges.

For that, we use theorem 8. The idea is that Trotter
product formula is really just an n-time repeated use of
the 2-term product formula (EQ 11). Hence we can just
take the nth power of the error bound (converted to a
relative error bound by adding 1) in theorem 8; and as
we’ve seen, those error bounds are useful if the potentials
are “nice enough,” e.g. “regularized.”

The result is

Lemma 10 (Trotter product relative error
bound)
The error factor in the final wave function (after time t
has elapsed) arising from chopping the t-long time inter-
val into n equal subintervals and using the Trotter prod-
uct formula, is

≤
[
1 + (

t

n
)2B̃

]n

(30)

where B̃ is a factor arising from norm bounds as in the-
orem 8, i.e. the cofactor of t2 in (EQ 26).

29Also valid more generally for operators whose spectrum lies in
the closed lower complex z-halfplane Imz ≤ 0.

30Actually, the total time spent in each half is t, not t/2, so this
mental alternation picture is not precisely correct; there is also a
factor-2 time dilation.
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Note, if t, and an upper bound on the kinetic energy,
and the cutoff height for the potential regularization are
fixed, then as n → ∞ our error goes to zero (i.e. the
error factor goes to 1), indeed, is asymptotic to t2B/n.

Note that if B is only polynomially large, then it suf-
fices to take n (proportional to the amount of computa-
tional work) only polynomially large to assure an error
proportional to R−1.1 (or smaller) on the Rth simulation
run. This is, in fact, exactly what we are going to do.

5.3.1 An Alternative

Instead of the original Trotter formula based on the 2-
term product formula (EQ 11), we could use something
else based on repeated use of the 3-term product formula
(EQ 14). This could yield better error bounds, but extra
assumptions about the niceness of the potential would
be needed.

6 The Lieb-Thirring form of the uncertainty

principle and its uses

For a single particle of mass m and wavefunction Ψ
in 3-dimensional space, Lieb and Thirring’s formulation
[65][63] of the uncertainty principle31 states that

(∫
ρ3d3~x

)1/3

≤ (
4

π2
)2/3 2m

3h̄2 EK . (31)

where ρ = |Ψ|2 is the probability density corresponding
to the wavefunction Ψ(~x) and EK is the32 kinetic energy

EK =
h̄2

2m

∫
|~∇Ψ(~x)|2 d3~x. (32)

There are also Lieb-Thirring inequalities valid if we
have N ≥ 1 particles. For example, let ρ be the proba-
bility density function for finding a particle at ~x:

ρ(~x) =

N∑

k=1

∫
∣∣∣∣∣∣∣
Ψ (~x1, . . . , ~xN )︸ ︷︷ ︸

~xk replaced by ~x

∣∣∣∣∣∣∣

2

d3~x1 . . . d3~xN︸ ︷︷ ︸
every ~xj except j=k

(33)

and
∫

ρ(~x)d3~x = N . The kinetic energy is

EK =

∫
· · ·
∫ N∑

j=1

−h̄2

2mj
∇2

jΨ d3~x1 · · ·d3~xN . (34)

Then

Theorem 11 (Lieb-Thirring multiparticle kinetic
energy bound) If all N of the particles are fermions

31As Lieb and Thirring pointed out, this is really just a special
case of a “Sobolev inequality” [93].

32More precisely, EK is the expectation value of the kinetic en-
ergy. We often abuse notation throughout this paper by saying “en-
ergy” when we more precisely mean “expectation value of energy.”

each with at most33 s spin states and each of mass ≤ m,
then the kinetic energy EK obeys

EK ≥ 3

2
(
3π

2s
)2/3 h̄2

2m

∫
ρ(~x)5/3d3~x. (35)

If some of the N particles may be bosons, then this
same inequality remains valid if bosons are regarded as
fermions with s = N spin states34.

Lieb and Thirring’s inequalities, together with our as-
sumptions about the form of the potential function, im-
ply that the wavefunction cannot be “too concentrated”
anywhere, i.e. only a small amount of its probability
can lie in a small region. Too much concentration would
force a huge kinetic energy, which could not possibly be
compensated by the potential energy (which depends less
severely on the probability density because 1 < 5/3), and
hence would force a huge total energy. But that is for-
bidden if we assume the total energy is bounded.

More precisely: From (EQ 31) and the concave-∪ na-
ture of the function x3 for x > 0, it follows that the
amount M of probability (0 ≤ M ≤ 1) lying in a ball of
radius r obeys

M ≤ 211/3m

35/3π2/3h̄2 EK r2 (36)

if we have only one free particle. If we have N particles,
then (EQ 35) as r → 0 and the concave-∪ nature of the
function x5/3 for x > 0 shows that

Lemma 12 If M is the (integrated total) amount of par-
ticle probability density (0 < M < N) that a particle lies
inside a ball of radius r, then

31/39h̄2

16s2/3m

M5/3

r2
≤ EK (37)

or equivalently

M ≤ (
163s2m3

37h̄6 )1/5E
3/5
K r6/5 (38)

where EK is the kinetic energy, N is the total number
of particles, m is the maximum particle mass, and s is a
constant for Fermions (e.g. 2 for electrons) but s = N
for bosons.

Suppose the interparticle potentials can have attrac-
tive singularities at worst like −r−γ for r → 0, for some
γ, 0 < γ < 2. (In the usual Coulombic case, γ = 1.)
Then Lieb’s bounds also imply that the potential energy
EP cannot be very large if the total energy E is bounded.
Because: that would imply huge probability density con-
centration, which would force EK to grow at least as fast

as E
2/γ
P , i.e. faster than EP , leading to a contradiction

33Actually, really (EQ 33) was stated only for s = 1. Sums over
spin states, and additional Ψ dependence on those spin states, have
to be put in to EQ 33 if we want s > 1 [65][63].

34I.e. so that the Pauli exclusion principle has no effect.
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with the demand that the total energy E = EK +EP be
bounded.

Lieb’s bound also implies that the kinetic energy EK

cannot be very large if the total energy E is bounded,
because that would force very large potential energy due
to E = EK + EP , which we just said was impossible.

More precisely: First, consider 1 particle in a spheri-
cally symmetric potential −Cr−γ . Assume the probabil-
ity density function ρ is spherically symmetric (we will
see later that this assumption may be dispensed with).
Then the potential energy EP =

∫
ρV d3~x obeys

−EP = C

∫ ∞

0

r−γρ(r)4πr2dr (39)

and the lower bound (EQ 31) on the kinetic energy is

E3
K ≥ (

π2

4
)2(

3h̄2

2m
)3
∫ ∞

0

ρ(r)34πr2dr (40)

Now the requirement that the total energy E = EK +EP

be bounded prevents either EK or |EP | from being too
large. For example if we maximize −EP by choice of ρ
subject to

1. an upper bound on {our lower bound on EK}

2. the normalization constraint 4π
∫∞
0 ρr2dr = 1,

3. ρ(r) ≥ 0,

then we find by the method of Lagrange multipliers that
the severest ρ(r) obeys

ρ = A
√

(r−γ − B)+ where x+ ≡
{

x if x > 0
0 otherwise

(41)
for some positive constants A and B chosen to force the
constraints to be satisfied. Then the integral (EQ 39)
defining EP is bounded if γ < 2. Hence35 for one par-
ticle, EP is bounded by some function depending poly-
nomially ♣ at worst on EK , h̄, the particle masses m,
and the number N of particles. (Actually, the depen-
dence on EK must be linear for large EK with E fixed,
of course.) The assumption of spherical symmetry of ρ
may be dispensed with by using the concave-∪ nature of
x3 for x > 0 to argue that the spherical average of rota-
tions of any alleged non-symmetric maximizing ρ, would
in fact be at least as good36. Also, more generally, for
any potential V bounded above −Cr−1.99 for some pos-
itive constant C, one can easily see that this argument
still goes through.

35 The Schrödinger Hamiltonian corresponding to the −k/r2 po-
tential (where r is the distance to an attracting singularity) in R3

is not self-adjoint if k is any sufficiently large constant [71] [69]
[[60], §35 “fall of a particle to the centre”]. Thus, physical sys-
tems involving such potentials are not “reasonable,” according to
our definition of the term. Quantum mechanics is essentially un-
useable if such Hamiltonians are admitted [47]. It is interesting
that this fundamental breakdown of quantum mechanics happens
at exactly the same place as the breakdown of our energy-bounding
lemma in the single particle case.

36An alternative proof would involve “Steiner symmetrization”
[21] of ρ about a hyperplane. This decreases EP for any potential
monotone in r, but leaves the lower bound (EQ 31) unaffected.

We’ll now redo this argument but with N particles
instead of 1. Assume they are each in spherically sym-
metric potentials −Cr−γ . Again assume the probability
density function ρ is (multiply) spherically symmetric.
Then the potential energy (assuming maximally conser-
vatively that this same scenario is repeated N times, once
for each of N particles, and each of the particles sees an
N -times larger potential well) is

−EP ≤ N2C

∫ ∞

0

r−γρ(r)4πr2dr (42)

and the lower bound (EQ 35) on the total kinetic energy
is

EK ≥ N
3

2
(
3π

2s
)2/3 h̄2

2m

∫ ∞

0

ρ(r)5/34πr2dr (43)

Now the requirement that the total energy E = EK +EP

be bounded prevents either EK or |EP | from being too
large. For example if we maximize our upper bound on
|EP | by choice of ρ subject to the same 3 constraints as
before, then we find by the method of Lagrange multi-
pliers that the severest ρ(r) obeys

ρ = A(r−γ−B)
3/2
+ where x+ ≡

{
x if x > 0
0 otherwise

(44)

for some positive constants A and B chosen to force the
constraints to be satisfied. Then the integral (EQ 42)
defining EP is bounded if γ < 6/5. Hence

EP = O(E) if γ <
6

5
, (45)

where the constants in the “O” depend polynomially at
worst on h̄, the particle masses m, and the number N of
particles. Again the assumption of spherical symmetry of
ρ may be dispensed with by using the concave-∪ nature
of x5/3 for x > 0 to argue that the spherical average
of rotations of any alleged non-symmetric maximizing ρ,
would be at least as good. Also, more generally, for any
potential V bounded above −Cr−1.19

min for some positive
constant C, one can easily see that this argument still
goes through37. So:

37Note that as far as this section is concerned, only negative-

infinite (attractive) potential singularities need to be excluded.
Repulsive singularities cause no problems. This is because kinetic
energy is positive. Hence the only thing we need to worry about
here is large negative potential energies combined with large pos-
itive kinetic energies. But later, in §9.5, we shall also need to
forbid repulsive potential singularities ∝ r−γ with γ ≥ 2, in order
to get good bounds when approximating integrals by sums using
the bounds in §3 applied to integrands which are complex expo-
nentials of “classical actions” (EQ 62). (Also, the condition γ < 2
suffices to force the interparticle potentials to be Rollnick ♣, which
by theorem X.19 of vol. 2 of [75] forces the Schrödinger operator
to have a self-adjoint extension so that quantum mechanics is well
posed.) Note that we permit more severe repulsive singularities
(our requirement is γ < 2) than attractive ones (γ < 6/5). Nev-
ertheless we must still exclude the Lennard-Jones potential (EQ
6) because of its repulsive r−12 singularity. Perhaps there is some
way to further strengthen our later analysis so that more severe
repulsive singularities are permissible. However in most scenarios
such a strengthening wouldn’t make much difference because re-
pulsive singularities are attractive for opposite charges and hence
would need to be regularized anyway.
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Lemma 13 (Energies are bounded) Both the kinetic
energy EK and and the potential energy EP have absolute
values bounded by a polynomial function of the number
N of particles, the maximum particle mass m, and the
total energy E, if the interparticle potentials are bounded
above −Cr−γ

min for some γ < 6/5.

Hence for the purposes of looking at Church’s thesis
(even the strong variant), from now on we can just regard
EK and EP as bounded in all our analysis.

6.1 Regularizing potentials

These bounds are going to be key for allowing us to reg-
ularize the potential function V . The idea is to cut V
off at some energy cutoff. The cut should not be a flat
plateau, since that would cause “corners;” we actually
want to “round off the corners” in order to keep ‖V ‖∞,

‖~∇V ‖∞ and ‖∇2V ‖5 all bounded.

Unfortunately, the quantum system with regularized
potentials and the original quantum system will evolve
differently. We need to prove the difference will not be
very large in the L2 norm.

The proof of that is

1. By lemma 12, there cannot be very much probability
M in the (necessarily small volume) “bad” region in
which the regularized and original potentials differ.

2. Regard probability density as a conserved38 “fluid.”

3. Even if all the fluid in the bad region for the regu-
larized potential becomes totally orthogonalized (or,
even worse, antiparallel39) to the true wavefunction
and stays that way forever (this is a worst case as-
sumption), still the most the two wavefunctions will
be able to differ in the L2 norm, will be bounded
by the total fraction F of fluid that ever enters the
bad region during the entire duration of the experi-
ment/simulation.

4. Starting with mass 1 of fluid, then in order for a frac-
tion F of it to enter a bad ball of radius r (and which
always contains at most a small amount M < F of
fluid mass inside it; and the same for the concen-
tric ball of radius 2r) during a timespan t, the fluid

38Since Schr̈odinger time evolution conserves it [78] both locally
and globally.

39This argument about the “fluid” might seem to be merely
heuristic. But it may be justified by using the linearity of
Schrödinger time evolution, i.e. Green’s functions (also called
“propagators”). The wavefunction t later is a superposition of
Green’s functions weighted according to the wavefunction now. If
all the Green’s functions for points in the “bad” region are ar-
bitrarily scrambled up by some unitary transformation, but the
others are unaffected, then if the bad region has small amount of
probability we can conclude (in view of L2 norm conservation for
Green’s function – or any other – time evolution) fully rigorously
that the wavefunction time t later really does get altered by a small
amount in the L2 metric.

must have, at some moment, large total kinetic en-
ergy EK . Specifically, EK ≥ mv2/2, where

v ≥ F − M

4πr2t

4πr3

3M
=

(F − M)r

3Mt
. (46)

This inequality was derived by realizing that it
would be an equality if the fluid flowed into the
ball, of surface area 4πr2, at a rate uniform every-
where on the ball’s surface and not varying with
time. The flow velocity would then be the flux
(F − M)/(4πr2t) into the surface divided by the
fluid density ρ = 3M/(4πr3), which we also take to
be uniform. (Actually, the fluid must also manage
to get out of the ball, a fact we may and shall ignore
since its consideration would only make our inequal-
ity more true. We instead for simplicity imagine
that once the fluid enters the ball it vanishes into
some other dimension.) The point is that if a fixed
amount F − M of probability-fluid of uniform den-
sity ρ manages to move into a ball of small radius
r in a small time t, it must have moved fast. Now
to allow for the fact that the flux and density might
actually not be uniform:

(a) We used the concave-∪ character of the func-
tion v2; the mean-square speed of a fluid
particle always is at least the square of the
mean speed, so that distributing the fluid flux
nonuniformly in space or time would only make
our inequality more true.

(b) Due to the concave-∪ character of 1/ρ (or
1/ρ2), the same remark applies for distributing
the probability density nonuniformly in space
or time.

Now by using lemma 12 to bound M

v8 ≥ 37h̄6

163s2
(
F − M

3mt
)5 r−1. (47)

5. But the kinetic energy EK is bounded by assump-
tion (and see lemma 13).

6. Hence, regularizing the potential will introduce
boundable L2 errors into the computation; in (EQ
47), if EK is bounded, F is also.

We conclude

Theorem 14 (Relation between regularization
energy cutoff and wavefunction error) If the poten-
tial energy function is altered when one or more particles
lie within a ball of radius r ( any alteration is permissi-
ble provided the Schrödinger operator remains essentially
self adjoint and the difference between the altered and un-
altered potentials has gradient in L1 and singular behav-
ior bounded above −Cr−γ for some γ < 6/5 and C > 0),
then the total L2 perturbation in the wavefunction after
time-evolution for a time t will be

≤ (
164s2

37h̄6 (
EK

m
)4)1/53tr1/5 + (

163s2

37h̄6 )1/5(
2EK

m
)3/10r6/5.

(48)
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6.1.1 Regularizing Coulomb potentials

For Coulomb potentials, the bad regions will be balls of
radius r centered at the point charges. We regularize
the potentials by replacing each point charge by a uni-
form distribution of charge within that ball. In that case,
consider the potential V between two charges q1 and q2

separated by distance s:

V reg
12 =

q1q2

4πǫ0
·
{

s−1 if s ≥ r
2r−1 − s2r−3 if s < r

. (49)

Actually we have given the formula under the assump-
tion that q1 is a radius-r ball but q2 is still a point. How-
ever, this is still a perfectly good method of regulariza-
tion (provided we use V reg = 1

2

∑
j 6=k V reg

jk to average the
j-ball & k-point and j-point & k-ball potentials) and it
is simpler than the true ball-ball potential would have
been. Then

‖V reg
12 ‖∞ ≤ q1q2

4πǫ0
r−1, (50)

‖~∇V reg
12 ‖∞ ≤ q1q2

4πǫ0
r−2 (51)

and for any p with 0 < p ≤ ∞,

‖∇2V reg
12 ‖p ≤ 3q1q2

4πǫ0
(
4π

3
)1/p r3/p−3. (52)

(Actually, these bounds are equalities if only the first
charge is regularized and the second remains a point.)

Of course if we have N charges then these bounds could
increase by a factor at most N .

6.1.2 General 2-body distance-dependent potentials

If the potential is a sum of 2-body potentials, each of
which depends only on interparticle pair separations sjk,
then regularization is easily accomplished in exactly the
same manner as before; we cut off the interparticle po-
tentials Vjk below some critical value r of s, and replace
them in the region s < r with an appropriate “Harmonic
oscillator” potential (that is, a quadratic function of s)
chosen to match Vjk(s) and V ′

jk(s) at s = r.

6.1.3 Finite square wells

“Square well” potentials, such as

V =
{

A if a < r < b
B otherwise

(53)

(a, b, A, B (A < B, 0 < a < b are constants) can be
handled by using a regularization method which “rounds
off the corners.” In this case, the “bad” regions are not
balls, but rather spherical shells of small thickness and
radii ≈ a and ≈ b. However, it is possible to modify the
statement and proof of theorem 14 to handle this, with
the result that the reciprocal of the shell thickness needs
only to be polynomially large to make the error caused
by regularization suffciently small.

6.1.4 Infinitely high walls

For particles which are “rigid impenetrable balls” (such
as in the “Sutherland empirical potential” [42]) the po-
tential is +∞ below some radius. Surprisingly, it even
seem possible to handle these, but in a different manner.
We do not do any regularization, but instead forbid the
region with V = +∞ via a boundary condition. See §7.

6.1.5 Regularizing more general potentials

It is trickier to regularize more general potentials which
may not just be sums of 2-body potentials each of which
have spherical symmetry.

The method we employ must simultaneously satisfy
the constraints that

1. ‖V ‖∞ and ‖~∇V ‖∞ and ‖∇2V ‖5 are bounded after
regularization.

2. The regularized and original versions of V differ only
in at most a polynomial number of regions of small
diameter.

3. V is computable efficiently.

One method which often works is as follows. Consider
the 2-time differentiable function

squish(x) =





−2 + exp(1 + x) if x ≤ −1
x if |x| ≤ 1
2 − exp(1 − x) if x ≥ 1.

(54)

Replace V by V reg = Csquish(V/C) where C is an ap-
propriately chosen energy cutoff. The resulting poten-
tial will agree with the original one wherever its absolute
value was ≤ C, but will obey

‖V reg‖∞ ≤ 2C. (55)

If V happened to have the property that its gradient
and/or Laplacian only became unbounded where V itself
did, and then only as a power law (or sufficiently slow-
growing exponential) in V , then this regularization also

will suffice to keep ‖~∇V reg‖∞ and ‖∇2V reg‖∞ bounded.
However this particular “squish” method fails for po-

tentials such as V (x) = 5 +
√

x and V (x) = ln(x)2 as
x → 0+. In those cases, though, alternative squishing
functions do work.

6.1.6 General purpose regularization method

The following method works in all cases in which ~∇V
and ∇2V are differentiable and efficiently computable40.
If |V | > C then41 replace V by

V reg = (signV ) × (56)[
2C − C exp

(
1 − |V |

C
− [|V | − C]4[|~∇V |4 + |∇2V |4]

)]
.

40E.g. polynomial time computable in the sense of Ko [58] ♣.
41Actually, it may not be efficiently decidable whether |V | > C

(or, for that matter, whether a > b for any two computable reals
a, b) [58]. However, these issues do not matter in this situation;
the overall function V reg is easily seen to be efficiently computable
if V is.
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The idea is that functions like exp(−1/x) are ex-
tremely well behaved as x → 0+.

It is essential in all of these regularization techniques
(in order for step 4 of the proof of theorem 14 to work)
that the potential be “bad” in a ball-like region, i.e. with
surface area proportional to volume2/3 in the limit of
small volume, and this notion has to be an effective ♣
one. (Actually this requirement may be relaxed, e.g. see
§6.1.3, but we’ll restrain the urge for maximal generality.)

6.2 Energy conservation

If we use the Trotter product formula (§5.3) to simulate
Schrödinger time evolution in a regularized potential,
then the true wavefunction’s evolution in that potential
both conserves L2 norm and conserves energy. The simu-
lated wavefunction’s evolution also conserves L2 norm (at
least, up to roundoff error; because the Trotter product
formula is unitary) but it does not necessarily conserve
energy. It thus remains conceivable at this point that the
simulated wavefunction could acquire some huge energy,
at which point all our arguments (e.g. lemmas 12,13)
based on boundedness of energy would lose their force.

Fortunately, this possibility can be ruled out. The idea
is that in the “alternation in time” view of the Trotter
product formula (§5.3), we alternate between two phases,
one of which multiplies the wavefunction by a position-
dependent phase factor and hence exactly conserves po-
tential energy EP , and the other of which is free particle
propagation and hence exactly conserves kinetic energy
EK . Now the EP -conserving phase will, in a potential
V with bounded ‖~∇V ‖2 (call this norm bound B), in a
span of time ∆t, cause kinetic energy to increase from
EK to at most (∆tB/h̄ +

√
EK)2. This42 is easily seen

to follow from (EQ 32) and (EQ 34).

Thus, the kinetic energy cannot become superpolyno-
mially large. Hence, the lower bounds (EQ 31, 35) on
EK cannot get large either, which in turn prevents EP

(for either the regularized or original potentials) from be-
coming large by the same argument as we used before in
the proof of lemma 13. We conclude that EK , EP and
the total energy, while not exactly conserved, neverthe-
less are incapable of becoming huge. That suffices. More
precisely, any bound depending at worst polynomially on
B and EK and t, suffices for our purposes43 because we
can just agree to use our bound on Emaximal

K rather than
Einitial

K everywhere.

6.2.1 An aside

I must comment that my argument here looks appallingly
weak. Really, at least in most practical scenarios, I would
expect energy to be approximately conserved by the sim-

42Note if ∆t = t/n then [(∆tB/h̄ +
√

EK)2/EK ]n grows only
polynomially with n → ∞.

43These purposes are: (1) bounding error due to regularization
of the potential, and (2) bounding error in approximating integrals
by sums.

ulation. Indeed I would hope44 that nonconservation
could be shown to be arbitrarily small as n → ∞ (where
n is the number of timesteps performed by the simula-
tion) like some negative power of n. However, perhaps
due to some mental weakness, I have not proven that.

More generally, it is an interesting point that our sim-
ulations could be perfectly good, in the sense of §2.3 of
being statistically indistinguishable from the real thing,
despite featuring expectation values of certain quantities
which differ hugely from the real thing. This is because
it is impossible to measure an expectation value (for ex-
ample E)! Although it is of course possible to estimate
expectation values indirectly from the results of other re-
peated measurements, our usual arguments then suffice
to show indistinguishability.

7 Feynman’s path integrals: definitions and

reformulation of quantum mechanics

Consider a continuous “path” ~x(u) where u lies in some
real time interval [0, t] and ~x is a d-dimensional moving
point. It is possible to consider real valued function-
als f of paths. The functional (EQ 57) arising in Feyn-
man’s path integral treatment of quantum mechanics is
the “classical action” functional (measured in units of h̄)

f [~x(u)] =
1

h̄

∫ t

0

[m
2
|~̇x(w)|2 − V (~x(w))

]
dw (57)

where V is the potential energy function and more gen-
erally the term m

2 |~̇x|2 should be replaced by a kinetic
energy, and a different action formula is needed in the
presence of vector potentials, e.g. for charged particles
in magnetic fields. (The right hand side is the “classi-
cal action” measured in units of h̄.) However, we will
allow a much more general class of functionals than this.
Anything computable for piecewise constant velocity mo-
tions along polygonal paths to P decimals of accuracy in
polynomial (in P and the number of sides of the poly-
gon) time, will do (and even this is vastly generalizable,
see the end of this section).

Then Feynman [28] defined a notion

∫ t

0

eif [~x(u)]D~x(u) (58)

of a “path integral.” (It is also possible to consider inte-
grands which are not necessarily complex phase factors.
However, in this paper, we will restrict our attention
to phase factor integrands, since they lead to propaga-
tors which are unitary transformations.) What might be

44I can show this under certain unproved hypotheses that seem
plausible in most practical scenarios. However, [97] showed that it
is impossible for any simulation of a quantum “non-integrable” sys-
tem by a quantum computer to conserve energy exactly, while at
the same time featuring exactly unitary evolution. This is a quan-
tum analogue of the “Ge-Marsden theorem” [33] that no exactly
“symplectic” integrator can exactly conserve energy (for simulating
classical non-integrable Hamiltonian systems of a certain type).
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called the (n, g, P, H)-approximation to this path inte-
gral is the sum ∑

f [~x(u)] (59)

where we sum over the f -values corresponding to polyg-
onal paths with n line segments, in which the vertices
of the line segments are nodes of a 2g × 2g × · · · × 2g

hypercubic d-dimensional grid lying inside a hypercube
of side H , and in which the velocity ~̇x is a piecewise con-
stant function of u, with n pieces, i.e. the curve ~x(u)
is an n-gonal path, chosen so that the n + 1 vertices are
arrived at at n moments equally spaced in the time inter-
val [0, t] (with the first and last vertices being at 0 and
t respectively). Finally, to explain P , we assume that
the computation of this sum, is only done to P places
of decimals. This could be accomplished by evaluating
each summand eif to P+ = P +O(gd) decimal places, i.e.
by carrying O(gd) “guard digits.” Feynman essentially
defined his path integral (EQ 58) as

lim
n→∞

lim
H→∞

lim
g→∞

lim
P→∞

[
H2−gQ(n)

∑
f [~x(t)]

]
(60)

where Q(n) is a specific “normalizing factor,” which
in Feynman’s treatment of quantum mechanics was
[mn/(iht)]n/2. If we take the inner three limits this is

lim
n→∞

Q(n)

∫ ∫
. . .

∫
exp [ifdisc(~x0, ~x1, ~x2, ..., ~xn)]

dd~x1d
d~x2 . . .dd~xn (61)

where with Feynman’s f from (EQ 57),

fdisc(~x0, ~x1, ~x2, ..., ~xn) =

n∑

j=1

mn

2t
|~xj − ~xj−1|2 −

t

n
V (~xj),

(62)
and more generally fdisc stands for the functional for the
n-sided polygonal path with vertices ~x0, ~x1, ~x2, ..., ~xn.

If only paths starting from a specific point are allowed,
the path integral is a function of that starting point. If
starting and ending points are both prescribed, the path
integral becomes a “propagator;” and (at least, after as-
suming enough convergence and uniqueness) Feynman
demonstrated the identity of this propagator with the
Green’s function (i.e. the kernel of the time evolution op-
erator) for Schrödinger’s equation of the quantum system
with the given classical action function. By starting at
a complex superposition of starting points (i.e. a wave-
function) the path integral gives (as a function of the
path’s endpoint) the time-evolved wave function.

Although Feynman’s argument [28] had indicated that
his path integral would obey the correct Schrödinger time
evolution equation, there is still the matter of bound-
ary conditions. These are easily dealt with. If we are
dealing with a quantum system confined to some spa-
tial region, then simply define the potential energy to
be infinite outside that region. (Equivalently: all paths
passing through the forbidden region have their phase
angles completely randomized.) Of course multiparti-
cle systems are viewed as a single “superparticle” in a

higher dimensional space. Fermionic symmetry may be
dealt with by regarding it as a boundary condition too
(that is, if there are two identical fermions in the same
location, the “potential” is infinite; indeed we may re-
quire identical fermions to be in sorted order according
to any ordering notion we desire, and define the poten-
tial to be infinite otherwise, thus implementing the Pauli
exclusion principle as a boundary condition).

“Hard balls” may also be regarded as such a bound-
ary condition, i.e. for paths involving interpenetrating
balls at some point, the phase angle is totally random-
ized. (The later discussion in §9.5 makes it seem that by
using exponentially fine grids and exponential numeri-
cal accuracy, such randomization will, with very high
probability, yield the desired effect...) But this is fun-
damentally different in the sense that Fermion boundary
conditions and the condition that all particles must lie in
a convex box, both represent a convex set of allowed con-
figurations, i.e., it is easy when considering paths made
of line segments, to never consider a forbidden path. For
hard balls, we actually do consider forbidden paths, but
hope to make their contributions approximately cancel
out (to exponentially good precision) with intentional
phase-angle randomization.

Thus, time evolution in quantum mechanics is just a
path integration problem, and the problem of simulating
quantum mechanics in the sense of §2 is just a problem of
sampling values from the distribution of a function F of
a path integral – precisely the problem we will consider
in §845.

7.1 Feynman’s path integral is an instance of the Trot-
ter product formula

Clearly the combination of (EQ 61) and (EQ 62) may be
interpreted as involving an n-term product of matrices
with continuous indices, i.e. operators.

More generally that is true if fdisc is a sum with n
terms as in (EQ 62), where the jth term is a fixed func-
tion of xj and xj−1.

Also, in our particular case (quantum mechanics, EQ
62), we may view the Schrödinger Hamiltonian operator
as a sum of a potential energy term and the free-particle
Hamiltonian. In that case, by using the 2-term product
(EQ 11) to approximate each term of the product we
can view path integral (EQ 61) as just an instance of the
Trotter product formula (EQ 28). (And this observation
immediately proves its convergence.)

The potential energy part of the Hamiltonian is just
a multiplication by a position dependent function in the
position basis. The free-particle part is just a multiplica-
tion by a momentum dependent function in the momen-

45It would also be possible to consider, rather than a sum over
polygonal (piecewise differentiable) paths, instead a sum over paths
which were piecewise 2-time or 3-time differentiable, e.g. cubic
splines. In this case, the definition of the functional f could also
involve the second time derivative ~̈x(t). And so on: still more
derivatives could be allowed. Without dwelling on precisely how
this should be done, we claim that everything in this paper is still
applicable to any such redefinitions of path integration.
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tum (more precisely, Fourier mode) basis. Thus (with
the aid of the “quantum Fourier transform” of Shor [81]
to convert between these two bases) it is easy, algorith-
mically, to apply the operators in these products. Hence
we can algorithmically use the Trotter product formula
to time-evolve a wavefunction.

Alternatively we could stay in the position basis by
viewing (EQ 62) as a position dependent function. (Ei-
ther way works.) This idea will be the basis of §8.

In either case: because, e.g. we are only multiplying
our wavefunction by V at grid points rather than every-
where, we are only getting an approximation to applying
the V operator, essentially because we are replacing an
integral by a Riemann sum. Errors due to such approx-
imations may be bounded immediately using the tech-
niques in §3 and §2.7 and using norm bounds about V
(after regularization) and Ψ and their derivatives.

8 Quantum algorithm for approximate path

integration

We will show how to perform a “timestep.” The en-
tire path-integration algorithm consists of n timesteps,
each one of which consumes O(gd) new qubits. The
total space consumption of the n-timestep algorithm is
O(ngd+P +g+logH) qubits. These qubits are assumed
initially to be available in the all-0 state, i.e. the state
|000...000〉 with amplitude 1 and all other states with
amplitude 0.46

Step 1: “Randomize” N = gd of the qubits by per-
forming a “45◦ phase rotation” on each of them, i.e. ap-
plying (

1 1
−1 1

)
/
√

2 (63)

in the 2-state basis {|0〉, |1〉}. This causes the new state
to be: whatever it previously was on all the other qubits,
tensored with the state

1

2N/2

∑

2N bitstrings s

|s〉. (64)

Step 2: Regard s as the N = gd bits of the d coordi-
nates, in base 2, of a point in a d-dimensional hypercubic
grid with 2g gridlines in each direction47. Compute f(s)
to P+ = P + gd decimal places and store it in O(P+)
more qubits. By assumption, this may be accomplished
in a number of steps polynomial in N and P+. (Note:
we are using “quantum parallelism” here since all 2N

of the f(s) values are automatically computed “simulta-
neously.”) Incidentally, although we’ve written it that
way for concreteness, there is no requirement that f be a

46If the qubits were implemented inside a real quantum com-
puter using electron spins, then this initial “N zeroes” state could
be prepared with high probability of achieving any fixed accuracy
by, e.g. slowly cooling the electrons in a high magnetic field ~B to
a temperature T at which kBT log N ≪ µe| ~B| where kB is Boltz-
mann’s constant and µe is the magnetic moment of an electron.

47A fixed scaling factor occupying O(g + log H) classical bits
describes the sidelength of the hypercube enclosing this grid.

function of s alone. It could also depend on the s values
from previous timesteps, the fixed value H , the number
n of timesteps we intend to perform, and any number
of precomputed constant values. Really, of course, all
this information as well as an |000〉 for the blank as-yet
unused quantum registers, is also in the state descrip-
tion below, although we’ve adopted the convention of
not writing that down. We now have48 the state

1

2N/2

∑

2N bitstrings s

|s, f(s)〉. (65)

Step 3: Rotate the complex amplitude of the state
|s, f(s)〉 by multiplication by eif(s). This may be ac-
complished with the aid of O(P+) different 1-qubit quan-
tum gates which perform multiplication by exp(i2−j) for
j = 1, 2, . . .O(P+); the jth such gate is invoked if the
2−j bit in the binary representation of f(s) is a ‘1.’ We
now have the state

1

2N/2

∑

2N bitstrings s

eif(s)|s, f(s)〉. (66)

Step 4: “Uncompute” the f(s) bits (causing them to
return to all-0’s) to get the state

1

2N/2

∑

2N bitstrings s

eif(s)|s〉. (67)

Readers who prefer not to be ensnared in unnecessary
detail can view all 4 of these steps as just 1 step with the
net effect of transforming (EQ 64) to (EQ 67).

Recap: We have now performed a timestep. After n
such timesteps we have the state

1

2nN/2

∑

2nN bitstrings
s1, s2, ..., sn

(each n bits)

eif(s1)eif(s2) · · · eif(sn)|s1s2 · · · sn〉.

(68)
We now compute some function F of the bits sn de-

scribing the final state (and again, F could also depend
upon all the non-final sj) to P decimal places, and mea-
sure the O(P ) qubits describing the value of F . We are
done.

To see that any function F expressible in terms of par-
ticle position and momentum data can be handled, we
observe that we can simply store bits of the position co-
ordinates of the final state |sn〉 in some quantum register,
and we can then switch bases to a momentum basis ef-
ficiently because – it turns out – the “quantum Fourier
transform” of Shor [81] is precisely the operation needed
to convert between the momentum and position bases.
Then we can store the momentum describing bits for the
final state in some quantum register. Then, we com-
pute whatever function we want of these two (position

48This has been analogous to the way Shor [81] got from his
equation 5.1 to 5.2 on his page 498-9. We say this to make it clear
our steps are not forbidden by the “no-cloning theorem.” ♣
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and momentum) quantum registers, and store the result
in some other quantum register. Finally we classically
measure this to get our sample. For example, the usual
energy operator V (~x) +

∑
j |~pj |2/(2mj) is expressible in

terms of the momenta ~pj of the jth particle, plus the
position coordinates ~x, and hence we can get a energy
sample from a simulated physical system. Similarly for
angular momenta and so forth.

Result: we now have extracted a sample from the
probability distribution of F corresponding to the time-
evolved final state sn. We assume at the beginning that
the desired complex amplitudes corresponding to the
possible initial states |s0〉, were available in our quan-
tum memory. The algorithm is done.

9 How good are approximate path integrals?

There are three kinds of errors we have to worry about
when approximating path integrals. The first kind of er-
ror arises from our discretization of space (2g gridlines in
each direction). The second kind arises from discretizing
time (n timesteps). The third kind of error arises from
the use of finite precision arithmetic instead of exact real
arithmetic (getting a result accurate to P decimal places
at best).

Actually there is a fourth kind of error too, if we use a
finite box of sidelength H instead of H → ∞ (an infinite
universe). However, in this paper we have defined this
error to be zero by proclaiming that the physical system
being simulated lives inside a finite size box. This procla-
mation probably could have been avoided, but that task
will be left to future authors.

9.1 Discreteness of g, P and H

Because we may take n, g, P and H to ∞ along a wide
variety of 4D curves, we have a great deal of algorith-
mic flexibility in approximating path integrals. Because
we may use an exponentially fine grid (e.g. a grid size
of 10−100 meters) in an exponentially large hypercube
(say 10100 meters on a side) and exponential numeri-
cal accuracy (say carrying 1000 decimal places for ac-
curacy ±10−1000) with only polynomial computational
overhead, it seems very plausible that the error in the
approximation of a Feynman-Schrödinger path integral
caused by the finiteness of g, P , and H , will be negligi-
ble for all practical purposes.

There are two ways to justify this.

The first is to use Planck scale arguments ⊗ (§9.2,
§9.3). Although this is an “easy way out,” I do not like
it for reasons described in §9.4. The second, which I
prefer, is to use the estimates in §3 to bound the error
introduced by space discretization; and Trotter product
error bounds for regularized potentials (§5.3) to take care
of time discretization. We’ll describe that in §9.5.

9.2 Finiteness of n; Planck length argument ⊗

If we restrict our attention to the path integrals aris-
ing when simulating real physics, it is generally agreed
that the spacetime metric must be “fluctuating” and
“wavy” at length scales on the order of the Planck length
ℓp =

√
h̄G/c3 ≈ 1.6 × 10−35meters. Nobody currently

knows effective ways to treat that phenomenon, and
hence it is generally ignored. In the event that ignoring
this phenomenon was justified, presumably no apprecia-
ble error results from using a grid size of ≤ ℓp (perhaps
even better, exponentially less than ℓp). In the event that
ignoring this is not justified (S. Hawking has conjectured,
for example, that quantum gravitational effects are one
unavoidable cause of “decoherence” – a highly noticeable
effect), presumably by using a grid of size scale compa-
rable to ℓp we can approximate the truth at least as well
as the usual course of ignoring ℓp entirely.

These arguments suggest that the only error of any in-
terest (in practice) will arise from the finiteness of n, i.e.
the fact that we have approximated an infinite dimen-
sional path integral by an n-dimensional one, or equiv-
alently that we have used n finite timesteps rather than
continuous time. The other approximation, of the finite
dimensional integrals by Riemann sums on exponentially
fine grids, will introduce negligible errors.

9.3 Finiteness of n; Planck time argument ⊗

Those who like the Planck length argument should be
equally happy about the idea that using timesteps of or-
der smaller than the Planck time tp = ℓp/c ≈ 5.3 ×
10−44sec is presumably pointless. Note, for theoretical
purposes, this only introduces a “constant factor slow-
down” (admittedly, a huge one) and hence the Quantum
Strong Church’s Thesis seems justified immediately...

9.4 Anti-Planck counterarguments

I am not in favor of the Planck scale arguments of §9.2
and §9.3.

First, those arguments carry no weight if the path
integrals under consideration have nothing to do with
physics. If we want an approximate path integration al-
gorithm of more general applicability than just to physics
problems, therefore, we can’t take that way out.

Second, I believe it is the duty of the simulator to sim-
ulate Schrödinger’s equation with rigorous error bounds.
It is not to simulate some plausible-sounding heuristic
notion of what physics hopefully is like, completely in
the absence of rigorous error bounds.

Third, it is a bit embarrassing to say that simulating
t seconds of physics “only” requires 2 × 1043t timesteps,
i.e. “O(t).” It seems preferable to me to use only 2t
timesteps, where “2,” more precisely, represents some
reasonable factor which increases polynomially if you
want smaller error bounds. We realize full well that in
any feasible computation, one is never going to reach the
regime where this factor gets to be 2 × 1043.
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9.5 Error in path integration caused by finiteness of n,
g, and P

Errors in (EQ 61) caused by the finiteness of g (the log2 of
the number of grid points in each coordinate direction)
are exponentially negligible if g is made polynomially
large while ‖~∇V ‖1 is bounded49, by the results of §3.
Hence, this error is readily made effectively ♣ negligible
compared with the errors we are allowing ourselves (in
claim 4 of §2.3) anyway.

The same is true for the errors caused by using P -
decimal arithmetic; by making P polynomially large we
get exponential precision. Since essentially the only
arithmetic operation under consideration here is summa-
tion of 2gd summands in fixed point arithmetic, it suffices
to use P+ = P + O(gd) decimals internally, i.e. O(gd)
“guard digits.”

Finally, we’ve already discussed n in §5, e.g. lemma 10,
with the conclusion that for regularized potentials, the
L2 error would be a reciprocal polynomial ♣ function of
n.

In a more general setting, in which we allow path in-
tegrals not necessarily arising from physics, we can also
get error bounds just like in lemma 10 provided we for
some reason know that the unitary operators correspond-
ing to individual integrals in (EQ 61) induce L2 errors in
the wavevector they operate on (versus the value of the
true path integral over their t/n timespan) of order n−2

as a function of n as n → ∞. Unfortunately, we don’t
know precisely what class of path integrals are permit-
ted by this criterion, but clearly it is a large class and we
know from the Trotter product re-interpretation that it
includes quantum mechanics.

Theorem 15 (The path integration algorithm
works)
In cases (in particular, quantum mechanics!) in which
the finite-dimensional integral may be viewed as a Trotter
product, our operator error bounds of lemma 10 will apply
to produce bounds showing that it approximates the Feyn-
man path integral with error bound proportional to 1/n,
and the further approximation by a Riemann sum (on
a grid of exponential fineness in the hypercubic domain,
and carrying a polynomial number of decimal places in
the arithmetic) introduces exponentially ♣ small error.

10 The final layer: simulation of a quantum

computer by a classical one

It is well known that

Lemma 16 BQP⊆PSPACE. I.e., less precisely, poly-
nomial time algorithms on a quantum computer may
be simulated by a conventional computer in polynomial
memory space.

Proof. In PSPACE, one simply follows all possible com-
putational paths to either a ‘1’ answer or a ‘0’ answer and

49This will happen, e.g., if all potential singularities ∝ r−γ have
γ bounded below 2.

adds up the complex probability amplitudes for each one
to get a net amplitude for getting a ‘1’ or ‘0’ as the final
outcome of the computation.

If we are considering computations allowed to out-
put arbitrary bitstrings instead of just yes-no answers,
then one could also have an outer loop over all possi-
ble outputs, computing – but not storing – the prob-
ability amplitude for each one. One needs to produce
a sample from the probability distribution, but that is
easy. (To produce output n with probability pn, we sim-
ply scan thru the possible outputs, halting at m with
probability pm/

∑
n≥m pn. We may use the fact that∑

n≥m pn = 1 −
∑

n<m pn to compute this probability
“on the fly.”) One also needs to make sure that comput-
ing the probability amplitudes in finite precision arith-
metic does not cause large error – but that is also easy.
Indeed, simulating the amplitudes of individual “quan-
tum gates” accurately to ±t−O(1) (i.e. carrying O(log t)
bits of precision) suffices [10]; this is not at all onerous
considering we can afford to carry tO(1) bits while still
staying in PSPACE. ✷

Indeed, stronger results are known50.

Theorem 17 (Complexity class inclusions)

BPP ⊆ BQP ⊆ PP ⊆ P#P ⊆ PSPACE, (69)

PPBQP = PP, (70)

NP ∪ coNP ⊆ PP. (71)

Proof. The first claim was shown by Adleman et al. [2],
and the second by Fortnow and Rogers [32]. The third
is well known [44]. ✷

For guidance about the acronyms of complexity class
theorists, see [44]. The particular classes mentioned here
are (roughly): “BQP” is the set of yes-no problems sol-
uble by a quantum computer in polynomial time with
error probability < 1/3 for the answers it produces.
(Of course “1/3” may be made exponentially small by
a polynomial number of repeated runs). “PP” is the set
of yes-no problems soluble by a conventional computer
(equipped with a random number generator) in polyno-
mial time with errors allowed, but for which the probabil-
ity of getting the right answer always exceeds 1/2. “P” is
polynomial (deterministic, worst case) time. “PSPACE”
is the class of problems soluble with a polynomial num-
ber of bits of memory. “#P” is the class of problems
soluble in polynomial time on a “counting Turing ma-
chine.” “P#P” means “P with access to a unit-time
oracle for solving #P-complete problems on demand.”
“NP” is the class of problems soluble in polynomial time
on a “nondeterministic” Turing machine which always
“guesses right;” another characterization is it is the class
of yes/no problems whose yes answers come with proofs
which may be checked in polynomial time.

50Actually theorem 17 leads to a stronger kind of Church thesis
than we’ve claimed in the introduction to this paper. Not only
do we get the “intermediate” Church thesis, involving a PSPACE
simulation, in fact we get PP and P#P simulations.
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10.1 Alternative view #1

It is also possible to avoid simulating a quantum com-
puter by a classical one by never using a quantum com-
puter in the first place. We simply evaluate all the
Riemann sums over exponentially large sets directly in
PSPACE. Similarly such operations as discrete Fourier
transforms on exponentially large vectors and sampling
from approximate path integrals are readily seen to be
in PSPACE directly.

10.2 Alternative view #2

The initial state of a N qubits inside a quantum com-
puter may be thought of as being described by 2N com-
plex numbers. Thus, one could argue that the input
for any classical simulator, would have to be at least
2N bits long. In that case, a quantum computer al-
gorithm involving G quantum gate operations, where
G ≤polynomial(N), could be simulated in time of or-
der roughly 2G+N by a classical simulator, which is
quasipolynomial ♣ in the classical input length.

The moral of this viewpoint seems to be that the only
reason that quantum computers are (apparently) more
powerful than conventional computers, is that their input
is available in a “sparse format.”

11 Putting it all together – Main Result

The simulation algorithm is roughly as follows.

1. Inputs include (in addition to the initial state, de-
scribed by NQ qubits, for which see §2.6, §2.7) a
bound on the kinetic energy EK , the side length H
of the enclosing box, the number N of particles, a
description of the potential function V , the maxi-
mum particle mass m, the duration t of time being
simulated, and the (positive integer) run number R.

2. Regularize the potential V (using a cutoff radius se-
lected according to theorem 14 to be small enough
to get the desired L2 error bound) as discussed in

§6.1. Compute bounds on ‖V reg‖∞, ‖~∇V reg‖∞,
‖∇2V reg‖5.

3. Use lemma 10 to find the number of timesteps n we
need, based on R (the run number, see rule 7 of §1.2
and §2.3), our bound on the kinetic energy EK , m,
and the norm bounds, in order to assure L2 error
bound < R−1.1.

4. Similarly find suitable P (number of decimals we
will need to keep our arithmetic accurate to) and g
(for a 2g gridline grid in each direction) values.

5. Do the Trotter product formula n-step loop (as
in (EQ 28) and §7.1) method for simulating the
Feynman path integral that accomplishes the time-
evolution. Each step of this loop involves a free-
particle time evolution for time t/n (i.e. multiply-
ing each Fourier mode of energy Em by a phase

factor e−itEm/h̄) and a pure-potential time evolu-
tion for time t/n (i.e., multiplying the wavefunction
by a position dependent phase factor e−itV reg/h̄). It
seems mentally simpler to use this method from §7.1,
rather than the general purpose path integration al-
gorithm described in §8, to time-evolve the wave-
function.

6. Sample from the final wavefunction as discussed at
the ends of §8 and §1.2.

The main claim of this paper:
A. The final wavefunction will have L2 error (versus the
true wavefunction) that is ≤ R−1.1 on the Rth simulation
run. This satisfies the accuracy goal of rule 7 of §1.2 (see
also §2.3) and assures that the probability distributions
output by the simulator and the genuine quantum system
will be statistically indistinguishable over any unbound-
edly long sequence of rerun simulations and experiments.

B. The entire simulation algorithm will run on a quan-
tum computer in time bounded by

polynomial( (72)

H, N, m, E, ‖V reg‖∞, ‖~∇V reg‖∞, ‖∇2V reg‖5, t, NQ, R, P ).

The number of calls to “oracles” for providing more deci-
mals of fundamental physical constants, will also be poly-
nomial. If the simulation is running on a conventional
computer (i.e. Turing machine equipped with a random
bit generator) it will occupy a number of bits of memory
bounded by (EQ 72) and hence will run in a number of
steps bounded by 2 raised to this power. As pointed out
in §10.2, the runtime will also be bounded by51

quasipolynomial( (73)

H, N, m, E, ‖V reg‖∞, ‖~∇V reg‖∞, ‖∇2V reg‖5, t, 2
NQ , R, P ).

In these bounds, NQ, P , and the norm bounds are special
because they are really bounded by functions of the other
arguments of the polynomial (EQ 72). Specifically, NQ =

O(N log H
√

mE
h̄ ) and P is polynomially bounded.

C. The potentials have to be “nice enough” – in
the sense discussed precisely in §6.1 and §9.5. Let us
merely say here that all the potentials physicists usu-
ally write down which involve attractive singularities
bounded above −C1r

−1.19 and repulsive singularities
bounded below C2r

+1.99, where C1 and C2 are known
positive constants, will do. Specifically it will suffice if V ,
~∇V , and ∇2V are polynomial time computable real func-
tions in the sense of Ko [58] everywhere except possibly
when the minimal separation rmin between two particles
is small, and then the dependence on rmin must obey the
preceding two bounds and the dependence of the run-
time to compute V accurate to ±2−x must be bounded
by a polynomial of x and 1/rmin. It is also possible to

51Warning: in my opinion (EQ 73) should not be regarded as a
quasipolynomial Church thesis (i.e. nearly as strong as the strong,
i.e. polynomial, Church thesis) because although it achieves run-
time quasipolynomial in the length of its input, I certainly do not
regard it as having achieved only quasipolynomial slowdown.
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drop any requirement that ~∇V and ∇2V be computable,
if V is nice enough in other ways (see §6.1). If these re-
quirements are satisfied, then the norm bounds ‖V reg‖∞,

‖~∇V reg‖∞, ‖∇2V reg‖5 will be bounded by polynomials
of all the non-special arguments of (EQ 72).

D. All the rules in §1.2 and desiderata in §2 are satis-
fied.

11.1 What about magnetic fields?

Unfortunately (and I have not seen this easy fact pointed
out before) magnetism destroys nonrelativistic quantum
mechanics. Specifically, the classical energy of a point
magnetic dipole ~µ in a magnetic field ~B is −~µ · ~B, and
the magnetic field of (another) point magnetic dipole µ
(located at the origin of x, y, z-space and pointing in the
z direction) is

~B =
µµ0

2π

(−3xz,−3yz, x2 + y2 − 2z2)

(x2 + y2 + z2)2.5
. (74)

In other words, the potential energy function, for a mag-
netic dipole in the presence of another, stationary, mag-
netic dipole52 goes infinite, proportionally to ±r−3 where
r is the distance between raised them (and the sign of
the infinity depends on the direction of approach and the
dipole’s orientation; both signs happen).

Thus I claim that a point electron and point nu-
cleus (both of which are magnetic dipoles), obeying the
Schrödinger equation or Pauli equation, would collapse
(even for uncharged electrons and nuclei), because col-
lapsing is what two particles obeying a power-law poten-
tial going to −∞ more rapidly than −r−2 do [60][69].

But what about the theorem by Lieb, Loss, and Solovej
[66] “proving the stability of nonrelativistic matter” in
the presence of magnetism? Answer: it is highly mis-
leading in this respect. That theorem depends on in-
cluding magnetic field energy

∫
~B2d~x in the Hamiltonian

and then proves a finite lower bound on the ground state
energy. However, the self-energy of the ~B-field in EQ
74 is +∞, so the Lieb-Loss-Solovej theorem in no way
prevents the collapse of matter to zero radius, since at ar-
bitrarily close approach the “energy” would still be +∞,
– certainly obeying the (finite) LL&S lower bound.

So the reader may well now ask: why, in reality, don’t
hydrogen atoms collapse? Probably for the following rea-
son. It is true it would be arbitrarily energetically favor-
able to bring the electron very close to the point nucleus
(assuming it is brought toward the North pole of the nu-
cleus while the South pole of the electron points South);
indeed (to do some dimensional analysis) at electron-
proton separation of order

r ≈ µeµpµ0me

h̄2 ≈ 1.3 × 10−17 meter, (75)

or below, the magnetic attractive energy would be
enough to overcompensate for the Fermi energy required
to compress the electron into that small a volume – and

52Electrons are often regarded as point dipoles.

so our H atom will collapse. But, this separation is about
100 times smaller than the radius of the proton (in reality
not a point), about 105 times smaller than the Compton
wavelength of the electron, and about 107 times smaller
than the Bohr radius of the H atom.

Therefore relativistic effects, and/or the fact that the
nucleus is not a point, will have significant effects, in-
validating the application of the Pauli and Schrödinger
equations in this region and replacing it presumably with
some other equation – which presumably does not col-
lapse.

The usual Schrödinger electron wavefunction for the
H ground state has very small overlap with the tiny vol-
ume in which this magnetic effect matters much. Hence,
the Pauli equation would have predicted a slow rate of
“tunneling” or “leakage” of the electron down into that
region, at which point collapse would occur (so H atoms
would be unstable, but with a fairly long half-life). But
the true equation presumably predicts that this tunnel-
ing/leaking will not be an energy win, hence the H atom
in fact will have infinite half-life and will be stable, and
hence the usual Schrödinger approximation (that there
are no magnetic effects) will be quite accurate.

So I claim the true explanation for the stability of mat-
ter with magnetism is not the Lieb-Loss-Solovej proof
about point nuclei and nonrelativistic dynamics (that
theorem misleads us) but instead must be due to finite
size nuclei and/or relativistic effects.

Magnetic dipoles cannot be included in nonrelativistic
quantum mechanics per se without destroying it.

But if a uniformly bounded externally imposed mag-
netic field corresponding to a uniformly bounded vec-
tor potential, is added to our picture, but the particles
remain point charges regarded as having zero magnetic
moments and regarded as not generating – but only re-
sponding to – magnetism, then let me claim (without full
proof) that the methods of this paper go through with
only minor alterations to show QM remains algorithmic.

12 Conclusion and open problems

12.1 Why is quantum mechanics easier than classical
mechanics?

At first it seems incredible that quantum mechanics
could possibly be easier to simulate than classical me-
chanics, but comparing the present paper with the ear-
lier [83] shows that there is a sense in which that is the
case. Specifically, [83] had shown that unsimulable ini-
tial configurations of N point masses existed – i.e. the
masses, following Newton’s laws of gravity and motion,
and starting from a certain compact ball in the space of
possible initial configurations, would describe one of un-
countably infinitely many possible topologically distinct
trajectories in 1 minute. But (as we now see) the equiva-
lent quantum mechanical N -body problem is always sim-
ulable.

There are several reasons for this surprising conclusion.
First, quantum mechanics is “fuzzy,” i.e. after running a
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quantum experiment, you only get a probabilistic sam-
ple out. This means the simulator has the easier task
of only simulating a sample (§2.3). We can ignore small
amplitude effects and still get an acceptably good sim-
ulation. Classically, in contrast, huge precision can be
required. Another aspect of the same thing is that classi-
cal mechanics is generically “chaotic” (or at least, is gen-
erally conjectured to be), i.e. exponentially sensitive to
infinitesimal changes in initial conditions. Quantum me-
chanics in contrast is incapable of chaos [39] since time-
evolution is unitary and hence preserves L2 distances.

Second, uncertainty principles, Fermi gas pressure,
bounded wave function norms, and bounded kinetic en-
ergy if total energy bounded (all aspects of same thing
– see §6) prevent the probability amplitudes from being
large for very small interparticle separations, i.e prevent
“huge speeds” and “huge energies” from being probable.
Those were precisely the features of Newtonian mechan-
ics used to get unsimulatable dynamics in [83].

Both the classical and quantum N -body problems are
simulable for regularized potentials [83]. However, only
in the quantum problem is it true that regularizing the
potential (to remove singularities) has provably small ef-
fect on all answers.

A short discussion from a different point of view about
how and why quantum mechanics is easier than classical
is in [75] vol II, section X.14. They draw attention to
the question (which has also been worked on by other
people; and was also highlit in [83])

Conjecture 18 (Measure zero set evolves to sin-
gularity?) The set of initial conditions leading to a sin-
gularity of the motion for the classical Newtonian N -body
problem, is of measure zero in any ball in momentum-
position phase space.

Open problem #1: What happens to the methods of
the present paper in the “classical limit” h̄ → 0? In
particular: will that will provide a proof of conjecture
18?53

12.2 How the proof was developed

Many proofs are presented as fait accompli with all trace
of the processes used to find that proof, carefully hidden.
But in the present case, I think it’s desirable to explain
some of my thinking,

53Here is intuition about my idea of trying to use the classical
limit of QM to prove the open conjecture that a 0-measure set
evolves to signularity for the classical N-body problem. Feynman
(path integrals) has a mental picture that in the classical limit h̄ →
0, all paths cancel out except for those “near” the classical paths. I
do not know how to make that rigorous. But, suppose it could be
managed somehow, even in some very weak limiting/asymptotic
bounding sense. Now if a nonzero fraction of classical initial states
became singular (acquired infinite kinetic energy EK) then maybe
one could show the quantum expectation value of EK approached
infinity in some limit involving h̄ → 0 and time increasing (I am
being vague about precisely what limit that is). But via Lieb’s
uncertainty principle we can (and have) shown EK cannot ever
get very large in QM (for any fixed h̄ > 0). This hopefully will
yield a contradiction.

1. to allow the reader to avoid some tempting “wrong
turns,”

2. so I can present some interesting problems arising in
the investigation of methods which ultimately were
unused in the proof,

3. to elucidate some of the weaknesses in present day
mathematics relevant to future investigations of
Church’s thesis.

4. Because the proof is so complicated, this may aid
understanding it.

12.3 Initial thinking

Since quantum mechanics is governed by partial differ-
ential equations (PDEs) the approach initially seems ob-
vious – use numerical methods for approximately solving
PDEs! However, in general this approach does not work
because essentially nothing is currently known about rig-
orous error bounds on numerical solutions of PDEs. For
example, consider the Einstein-Maxwell PDEs govern-
ing General Relativity, or the Navier-Stokes equations of
fluid mechanics. In neither case is existence and unique-
ness of a solution known. The best that has been proven
is that, given certain reasonable constraints on the initial
state, a solution will exist for some nonzero amount of
time. If we cannot even prove existence, then we cannot
hope to get rigorous algorithmic results.

12.4 The proofs

Fortunately, the PDEs of quantum mechanics are nicer
than the Navier-Stokes and General Relativity PDEs in
at least three ways:

1. Quantum mechanics is linear.

2. Quantum mechanics features uncertainty principles.

3. A solution may be explicitly written down, if one is
willing to use Feynman “path integrals.”

Idea 1 allows the use of the heavy machinery of linear op-
erator analysis. Using this machinery, Kato [47] was able
to show existence and uniqueness for Schrödinger’s equa-
tion with L2+L∞ interparticle potential functions in R3.
Also54, the unitary nature of time evolution, and the fact

54The reader may wonder how it can be that Kato’s condition
(L2 + L∞) can nowhere say anything about derivatives. After all,
the Schrödinger equation explicitly involves derivatives, so surely
the correct setting in which to study it, is, e.g., a Sobolev space
– in which explicit norm constraints are imposed on derivatives?
Without such constraints, the Schrödinger equation is surely inap-
plicable? However, that view is wrong.

Suppose the Schrödinger operator has a complete orthonormal
set of eigenfunctions on some space “S.” Then QM is defined for
any wavefunction in S whose expansion as a linear combination
of the eigenfunctions, converges absolutely in norm(S). Because,
there is a natural, unique way to time-evolve it (namely to multiply
each eigenfunction by eitE/h̄ where E is its energy), and that way
will take over the role of “the Schrödinger equation.” In this view
there is nothing special about the particular formulation of the

DocNumber 25 . 12. 4. 0



W.D. Smith typeset 579 Jan 18, 2004 Quantum Church’s thesis

that (for the purposes of Church’s thesis) quite large er-
rors in the simulated wavefunction are permissible (§2.3),
and Lieb’s reformulation [63] of the uncertainty principle
as a powerful tool (§6), are all extremely helpful in get-
ting error bounds. The most direct outgrowth of these
facts is the Rayleigh-Ritz approach sketched in §D.

Idea 3 initially seems insane because path integrals
seem to be extremely poor choices for any algorithmic
purpose. It turns out, however, that they are naturally
implemented on a “quantum computer” (§8). This in-
sight caught my imagination because it leads to a quan-
tum computer version of Church’s strong thesis.

The key question then became: how to get rigorous er-
ror bounds for approximate path integration algorithms?
The rigorous convergence proof for Feynman path inte-
grals, by viewing them as an instance of the “Trotter
product formula” [71] seemed the obvious place to start
looking for the answer, but it alone does not suffice to
obtain any sort of error bound. Eventually I realized
that combining Suzuki’s operator identities (EQ 16,17)
Lieb’s uncertainty principle inequalities (§6), probability
flux bounds (§6.1), and a strategy involving optimally-
sliding cutoffs on potential singularities (§6.1), would in
total generate enough power to get the job done.

At that point (1998) I wrote this paper and it duly
appeared as NECI technical report dated 26 Feb. 1999
and available via my web site. It then was submitted
to J.Math’l Physics, which ignored it for several years.
During those years, I received various comments from
readers, and also I thought of several ways to extend my
results. In 2002 I revised the paper to at least mention
these in §12.5 (although without making any attempt to
use them at their maximum strength). The main im-
provement is to use more powerful formulations of the
uncertainty principle than the one (E.Lieb’s) I was using.
These should allow producing a stronger version of the
algorithmicity theorem, in which potential singularities
as strong as −r−1.99 are permitted (rather than merely
−r−1.19), and/or in which my assumption that the ini-
tial expectation-value of energy, E, is bounded, may be
weakened to merely assuming that Ep is bounded, for
any fixed p > 0. Appendix E argues that the ultimate
goal probably should be to try to weaken this still fur-
ther, to merely assuming ln exp(cE) is bounded, for some
constant c > 0.

Schrödinger equation as a PDE in position-time space (indeed per-
haps that formulation should even be deprecated) and it is almost
irrelevant whether the wavefunction is differentiable. Who cares if
there is a “Schrödinger equation” that “looks like it usually looks?”
The only thing that matters is, something plays its role as a time-
evolver. In that case there is something we can call “quantum
mechanics,” and it features unique time evolution, which exists. It
was precisely in this sense that T.Kato proved the existence and
uniqueness of solutions in quantum mechanics – he showed that
with interparticle potentials in L2 +L∞, the Schrödinger operator
had a complete set of orthonormal eigenfunctions. I view Kato
as a great hero in this subject, though sadly a hero whom most
physicists have never heard of.

12.5 Our assumptions about energy and potential sin-
gularities can be weakened by using more powerful
uncertainty principles

The present paper contents itself with proving a (quan-
tum) polynomial time bound for QM-simulation for the
most basic variety of quantum mechanics. I wrote it in
1998. We now discuss several ways to go further, in-
vented during 1998-2002.

There are two slight, but annoying, weaknesses about
our main result (§11).

First, to get algorithmicity, we had to assume that the
initial conditions were such that the expectation value
of energy was55 finite (and indeed the QTM runtime
bounds are expressed in terms of E). This was subject to
the criticism that probability densities exist which do not
have expectation values – e.g. the density proportional
to 1/(1 + |x|1.1).

Second, we had to assume that the interparticle poten-
tials had attractive singularities behaving, at worst, like
−r1.19 (more precisely, any exponent below 6/5 = 1.2
will do). Nut the methods of proof permitted repulsive
singularities as bad as r1.99 (any exponent below 2 will
do). Furthermore, the existence and uniqueness proof by
Kato [47] had allowed both attractive and repulsive singu-
larities behaving like ±r1.99 (since these are in L1+L∞),
while there is nonexistence in the presence of −r−2 at-
tractive potentials. So it seemed plausible56 that the
limit 1.2 was merely an artifact due to a weakness in the
proof technique; really it ought to be increasable to 2,
which would be tight.

Revisiting this (in 2002), it now appears that both of
these annoyances can be obliterated. The key is to em-
ploy more powerful forms of the “uncertainty principle.”
The original 1998 version had realized that the usual
(product of momentum and position variances) form of
the uncertainty principle was not powerful enough, hence
instead employed Lieb’s form (§6). But there are still
more powerful forms! We now discuss them and their
consequences.

55 If it was finite at the beginning of the universe, then it still
is. However, was it? Most physicists are perfectly happy with the
E-finiteness demand (and indeed see Appendix E for the sugges-
tion that it might be legitimate, or interesting, to strengthen our

E-boundedness assumption to require that, further, ln exp(cE) be
bounded, for some constant c > 0), but mathematicians might be
interested in the true mathematical limitations on the algorith-
micity of QM. It may be of interest that the ground state of the
hydrogen atom (EQ 25) is essentially of form Ψ(~x) = exp(−r),
whose 3D Fourier transform is Ψ̃(~w) = 8π(w2 + 1)−2. (This may
be shown by using the Hankel transform theorem, theorem 1.12
p.19 of [16].) Note this behaves (for large w) like w−4. Therefore
if we take the square of the fourier transform multiplied by w2p to
get the expectation of (kinetic energy)p , then we get an integrand
that acts near infinity like w2p−8, so that this integral diverges
when p ≥ 2.5. Also, the expectation of CE is also divergent, for
any C > 1.

56Again, most physicists do not care about this issue, since all
the particle-potentials so far proposed by physicists have singular-
ities behaving no worse than ±r1.01. But again, QM seems suffi-
ciently important that it is worth trying to pinpoint its ultimate
mathematical limitations.
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First: The following theorem was discovered in 1983-
1984 by 5 different authors [9] [41] [46] [68]. (I have at-
tempted to compress their results into one unified state-
ment.)

Theorem 19 (Ultimate-strength
uncertainty principle?) Let 1 ≤ p ≤ q < ∞ and
let (1/p) + (1/p′) = 1 so 1 < p′ ≤ ∞. Let a(r) and b(r)
be fixed nonnegative-valued functions of r ≥ 0 with a(r)
non-decreasing and b(r) non-increasing. The following
inequality holds for all suitable57 complex-valued func-
tions f(~x) defined on Rd, such that f and f̃ are Fourier
transform pairs

[∫

Rd

|f(~x)|qb(|~x|)d~x

] 1
q

≤ Cpqabd·
[∫

Rd

|f̃(~y)|pa(|~y|)d~y

] 1
p

,

(76)
(for some constant C > 0 depending on p, q, a, b, d but
not on f , f̃) if and only if the weight functions a and b
satisfy

sup
s>0

[∫ 1/s

0

b(t1/d)dt

]1/q [∫ s

0

a(t1/d)1−p′

dt

]1/p′

< ∞.

(77)

The freedom to choose the weight functions a, b gives
the user of theorem 19 tremendous control and makes it
a very powerful tool. The specialization of theorem 19
to the case of power-law weight functions is

Corollary 20 (A power-law uncertainty princi-
ple) Let 1 ≤ p ≤ q < ∞, b ≤ 0 ≤ a, and let
(1/p) + (1/p′) = 1 so 1 < p′ ≤ ∞.

The following inequality holds for all suitable complex-
valued functions f(~x) defined on Rd, such that f and f̃
are Fourier transform pairs

[∫

Rd

|f(~x)|q|~x|bd~x

]1/q

≤ Cpqabd·
[∫

Rd

|f̃(~y)|p|~y|ad~y

]1/p

,

(78)
(for some constant C > 0 depending on p, q, a, b, d, but
not on f , f̃) if and only if a and b satisfy

[(1 − p′)a + d]q = [b + d]p′. (79)

Lieb’s uncertainty principle (§6) arises from the special
case d = 3, p′ = p = a = 2, q = 6, b = 0 of corollary
20 and provides a lower bound on the expected kinetic
energy, EK , of a particle. If we still demand p′ = p = 2
and b = 0 but instead now allow any a with 0 < a < d
[then q = 2d/(d−a)], then we instead get a more powerful

thing – a lower bound on (EK)a/2:

Theorem 21 (More general uncertainty princi-
ple) Let d be the dimensionality of space. Let p be a
constant with 0 < 2p < d. Then the expectation of the

57That is, all f such that both f and f̃ may be defined and such
that all the integrals that need to converge, do.

(kinetic energy)p of a particle with wavefunction Ψ(~x)
obeys

Expect
(
(Ek)p

)
≥ constp,d

(∫
ρ(~x)qd~x

)1/q

(80)

where ρ = |Ψ|2 and q = 2d/(d − 2p).

Consequence: Theorem 21 should enable improving all
the results of the present paper to hold under merely
the assumption that (EK)p is bounded (and the QTM
algorithm run times should be expressible in terms of
this bound), for any fixed p > 0 (e.g. p = 0.001) instead
of p = 1.

Second: Lieb himself, in [64] (his eq. 17a and sur-
rounding several pages of discussion), realized that his
multi-particle uncertainty principle (our EQ 35) may be
strengthened to a form in which the right hand side is
proportional to (

∫
ρ3)1/3.

Consequence: That should enable improving all the
results of the present paper to hold for potentials with
attractive singularities −r−γ for any γ < 2 (see the ar-
gument near EQ 39-41), as opposed to the present re-
striction γ < 6/5.
Open problem #2: The restriction for repulsive singu-
larities already was of the form r−γ for any γ < 2 – and
remains unchanged. But can it be weakened? The fact
that “hard balls” seem permissible [§7] makes it plausi-
ble that QM is well defined, and algorithmic, even in the
presence of repulsive singularities far worse than r−2.

However, the proofs of existence and uniqueness of QM
by Kato and his successors have, so far, been unable to
handle such singularities, so, until that is done, there is
no hope to prove algorithmicity in their presence.

Finally, I also mention the appealing-looking, but ap-
parently less useful, “uncertainty principles” that are
“logarithmic Sobolev inequalities.” Perhaps they will
have some future use in quantum mechanics, although
right now I know of none. These (extracted from papers
by W.Beckner [7] [8]) are obeyed by f with ‖f‖2 = 1:

∫

Rn

|f(~x)|2 ln |f(~x)|d~x ≤ n

4
ln

[
2

πen

∫

Rn

|~∇f |2d~x

]

(81)
and
∫

Rn

|f(~x)|2 ln |f(~x)|d~x+

∫

Rn

|f̃(~ω)|2 ln |f̃(~ω)|d~ω ≤ n

2
ln

2

e
.

(82)

12.6 More open problems

58

Open problem #3: Higher order product formulas
(§4.1) may be useful in getting algorithmic speedups (as
opposed to the simplest – 2-term and 3-term – prod-
uct formulas, which were all we employed). Work that
out. More generally, try to prove better algorithm perfor-
mance bounds and make the algorithms more practical.

58Open problems #1 and #2 were in §12.1 and §12.5 respectively.
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Stronger assumptions about Nature (§E, §B, §9.2,
§9.3) may also be useful for getting speedups.

Open problem #4: Alternatively it might be pos-
sible to preserve our results under weaker assumptions.
(See also §12.5.) For example, our assumption of a poly-
nomial bound on the size of the box containing our quan-
tum system probably may be weakened.

Our assumption that the potential is bounded above
−Cr−γ

min could probably be replaced with a weaker look-
ing norm condition, such as in Kato’s theorem [47] where
it sufficed to have “L2 + L∞ interparticle potentials.”
(See also [75] theorem X.19.)

Open problem #5: The techniques used by Lieb
and collaborators [63] to extend their proofs of the “sta-
bility of matter” to more kinds of quantum mechanics,
may also be useful in the quest for generalizing our al-
gorithmic techniques to work in more kinds of quan-
tum mechanics, e.g. allowing vector potentials (magnetic
fields; Pauli equation instead of Schrödinger) and/or car-
icatures of relativity. I believe this should be relatively
straightforward, but I have not done it.

Open problem #6: Another important question,
indeed perhaps the important question as far as the real-
izability of quantum computers are concerned, is the effi-
ciency of algorithms for simulating decohering quantum
mechanics [30], e.g. with “master equations” [101][94]
instead of Schrödinger’s. Although such equations cer-
tainly look more complicated, I would presume (or guess)
that they are actually easier to simulate [85].

Open problem #7: Finally, there is the matter of
trying to determine the algorithmicity status of more ad-
vanced quantum theories such as QED (quantum electro-
dynamics) EWT (electroweak theory), and QCD (quan-
tum chromodynamics), together comprising the “stan-
dard model” thought to describe all nongravitational
physics. Unfortunately rigorous mathematical underpin-
nings (analogues of Kato’s work on ordinary QM) are
presently nonexistent for these theories, so a necessary
first step would be to create them.

A Appendix on notation used in this paper

Our uses of c, α, me, e, h, h̄, G, ǫ0, µe, kB, λC to denote
certain physical constants follows [19]. i =

√
−1.

✷ denotes the end of a proof. We number all lem-
mas, claims, assumptions, theorems, etc in the same
integer sequence: Claim 1, Lemma 2, Corollary 3, etc.
Be warned I have a habit of writing some analysis and
discussion and then summarizing it as a “theorem” or
“lemma,” as opposed to the more formal method of stat-
ing the theorem then proving it in a clearly delineated
“proof.”

“Effective” (as in “effective bound”) means that an
algorithm is available for computing that bound. An
“algorithm” is a computer program guaranteed to ter-
minate. We have on occasion used Ko’s [58] notions of
“polynomial time computable real numbers” and “poly-
nomial time computable functions f : R → R.” Roughly

speaking (for more precise definitions see chapter 2 of
[58]):

1. A real number x is “computable” if there exists an
algorithm which, given a positive integer n as input,
will output a rational approximation xn to x such
that |x − xn| < 2−n.

2. If the algorithm runs in time at most polynomial(n),
then x is “polynomial time computable.”

3. If an algorithm exists which, given n and “black box
access” to the algorithm for computing some x, will
compute fn with |fn−f(x)| < 2−n, and will do so in
at most polynomial(n) steps (where each black-box
query takes 1 step plus 1 extra time unit for each
bit transmitted or received, and where the black box
by convention accepts its input in unary form) then
f(x) : [0, 1] → R is “polynomial time computable
on [0, 1].”

For algorithms for arithmetic and for approximating
functions like sin(x), see [14] [56].

All time bounds for algorithms are assuming worst case
input.

The word “polynomial,” when used in discussions of
computational complexity, means a function bounded by
AnB where A and B are positive real (not necessarily
integer) constants and n is the number of bits in the in-
put. “Quasi-polynomial” means a function bounded by

AnB(log n)C

where A, B, and C are positive real con-
stants. The word “exponential” in the same context
will mean exp(AnB). When used in discussions of phys-
ical computers, polynomial and exponential will mean
AnB1

1 nB2

2 ...nBk

k and the exp of this, respectively, where
the Ak and Bk are positive real constants and the nk

include (besides the number of bits in the input) other
physically relevant parameters such as the number of par-
ticles, the size of the enclosing box, and the total energy.
These words are very convenient because by using them
we can (purposely) obscure a vast number of difficult de-
tails irrelevant to the question of whether something is
polynomial or exponential (such as exactly what polyno-
mial it is – hence the resulting theorem statements can
look vague to the uninitiated).

See [44] (and the end of our §10) for discussion of com-
plexity classes such as “#P.”

Stars as superscripts, i.e. x∗, denote the complex con-
jugate if x is scalar, and the complex conjugate transpose
(Hermitian adjoint) if x is a matrix or operator.

The “Lp norm,” p > 0, of a wavefunction Ψ(~x) is
‖Ψ‖p = (

∫
|Ψ|pd~x)1/p. If we say ‖Ψ‖, that means ‖Ψ‖2.

The “L∞ norm” of a function is the supremum of its
absolute value. The set of functions with finite Lp norm
is called “Lp.” If p < q then Lp ⊂ Lq. A function is in
“L2 + L∞” if it may be expressed as the sum of a two
functions, one in L2 and the other in L∞. L1 ⊂ L2+L∞.
A function F (~x) : R3 → R is “Rollnick” if

∫ ∫
F (~x)F (~y)

|~x − ~y|2 d3~xd3~y < ∞. (83)
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L3/2(R3) ⊂Rollnick. The L2 norm of an operator M is
the supremum of ‖MΨ‖ over all Ψ with unit L2 norm.

“Hölder’s inequality” states that if p and q are positive
reals with p−1 + q−1 = 1, then

‖fg‖2 ≤ ‖f‖2p‖g‖2q. (84)

Our definitions of O, Ω, θ asymptotic bounding nota-
tion follow the recommendations of Knuth [57], nowadays
standard in computer science.

We use the same quantum computational model, and
the same set of “quantum gates,” as are employed by
Shor [81]; see that paper for definitions of these notions
and related terminology such as “qubit.” For a good
understanding of what “instructions” are available in a
“quantum programming language,” see [72]. For exam-
ple, “no cloning” and unitarity theorems prevent erasure
of information, which is commonplace in programming
languages for conventional computers. However, this can
be gotten around in various ways, for example making
variables in the language be “write once” and realizing,
e.g., that the time evolution |a〉 → |aa〉 is ok, whereas
|a〉 → |a〉|a〉 is forbidden (cloning). The “no-cloning the-
orem” [99] originates from the observation that

f |00〉 + g|11〉 6= (f |0〉 + g|1〉)(f |0〉 + g|1〉) =

f |00〉 + g|11〉+ fg|01〉+ gf |10〉; (85)

the left hand side is a state that can be manufactured
from f |0〉 + g|1〉, but the right hand “cloned” state can-
not.

B Appendix: Are intercharge potentials

Coulombic?

We claim that interparticle potentials in quantum me-
chanics should not be modeled as Coulombic. A better
model involves a potential free of attractive singularities.
(This is undoubtably the case for particles with nonzero
sizes such as the proton59, but we are going to argue this
even for particles such as electrons and positrons, which
appear to be points60.)

Really, of course, one should be using deeper theories
such as QED, in which “potentials” between particles
really are regarded as an obsolete notion (cf. footnote
3). But we have agreed in this paper to restrict our-
selves to the garden variety quantum mechanics of the
Schrödinger equation with potentials. In that case, it is
far from clear a priori what interparticle potential is the
best one to use.

Professional simulators of atoms [45][26] generally pro-
ceed by solving Schrödinger’s or Dirac’s equation us-
ing exact Coulomb potentials and then adding various
perturbative “correction terms.” The same result could
have been achieved without correcting anything by us-
ing a non-Coulomb potential designed to have essentially

59Nuclei with atomic number Z have radii ≈ Z1/3 × 10−15

meters.
60Electrons in QED are experimentally known to have radius

< 10−18 meters [35].

the same effect as the correction terms. So it is clear
that better answers would be obtained, when solving the
Schrödinger equation, if non-Coulombic potentials had
been used – but which?

B.1 Heuristic semiclassical analysis

In a heuristic attempt to answer this question61 we’ll now
demonstrate how to find a potential U(r) which causes
the Bohr old-style (pre-Schrödinger) atomic model to
give spectral energies E(n) for essentially any desired
smooth function E(n).

Bohr62 had envisioned an electron moving in a classi-
cal circular orbit with velocity v and radius r and hence
mv2/r = U ′(r) to balance centrifugal and attractive
forces. Hence v =

√
rU ′/m. He also imposed the de

Broglie quantization condition nh̄ = rmv. Hence

n = r
√

rmU ′/h̄. (86)

The potential plus kinetic energy is

E(n) = U + rU ′/2. (87)

If we now combine the previous two equations and re-
gard n as an arbitrary real63 rather than restricting it to
positive integer values, then

E(
r
√

rmU ′

h̄
) = U +

r

2
U ′ (88)

which is a differential equation to solve for U(r).
The differential equation (EQ 88) may be solved ex-

actly if E(n) = anp; the result is U(r) = brq where
p = 2q/(2 + q), q = 2p/(2 − p), and

a =
(2 + q)b

2
(

h̄

m2bq
)q/(q+2). (89)

In particular if

E(n) =
mc2α2Z2

2n2
(90)

(the Bohr energies) we get U(r) = −Zαh̄c/r (the
Coulomb potential). If E(n) = an + E0 (linear energies)
we get U(r) = E0 + mr2a2/(2h̄2) (a harmonic oscillator
potential).

61There seems to be no alternative to the kind of approach I
proffer. For example, if you tried to ask “what is the potential
energy in QED of two electrons held at distance r apart?” then
you would discover that forcing the two electrons to be exactly r
apart takes infinite energy due to the ∆x∆p uncertainty principle.
The question is ill-posed. One could try to define “time-averaged”
QED potentials, but these would give very wrong answers in real
problems because the true fields aren’t static.

62Despite its simplicity, Bohr’s model [13] leads to exactly the
same energy levels (EQ 90) as the exact solution of Schrödinger’s
equation.

63Such an assumption is necessary to force us to get a unique
“natural” U(r) in the end. Otherwise, we could just imagine a
potential with “grooves” cut at various places, but otherwise es-
sentially unconstrained.
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For a meatier example, consider the known formula
[24][34]

E(n) =
mec

2

√
1 + [ αZ

n−|k|+
√

k2−(αZ)2
]2

,
n, k integer,

|k| ≤ ⌈n − 1⌉.

(91)
for the exact eigenvalues of Dirac’s relativistic equa-
tion for an electron in a Coulomb potential with central
charge Ze. One may now determine the non-Coulomb
potential which would have produced the same results in
Bohr’s nonrelativistic model.

In (EQ 91) (with any k with |k| ≤ ⌈n − 1⌉, it does
not make much difference which) and |αZ| < 1, E(n)
is well approximated by the Bohr energies (plus64 mc2)
for n → ∞, but as n → 0 instead is approximated by a
linear expression an + b where

a =
mc2αZ

(
√

k2 − α2Z2 − k)3Q3
, b =

mc2

Q
, (92)

Q =

√
1 +

αZ

(
√

k2 − α2Z2 − k)2
.

Hence, U(r) as r → 0 approximates a Harmonic oscilla-
tor potential. Thus,

Claim 22 (Potentials “more Coulombic than
Coulomb”) In order to cause nonrelativistic quantum
mechanics to approximate the true relativistic behavior
(i.e. Dirac energies) of a Coulomb potential, one should
use a potential U(r) which is Coulombic for large r, but
for small r is a “Harmonic oscillator” potential (with
a certain smooth join, determined by (EQ 88,91), be-
tween).

Note, this is exactly the same kind of behavior as we
get by replacing each point charge by a uniform ball of
charge as in (EQ 49). The characteristic r length scale
at which the behavior changes over is ≈ (αZ)2 times
the “Bohr radius” r0 of the ground state, i.e. for hy-
drogen (Z = 1, r0 ≈ 5.29 × 10−11 meter) at about
r ≈ 2.82 × 10−15 meter. Amazingly enough, this is ex-
actly the “classical electron radius,” arising in classical
“Thomson scattering,” when considering the electron’s
classical self-energy, etc. (Of course the proton has a
RMS radius rp ≈ 0.8 × 10−15 meter so its potential is
non-Coulombic below that, but we are considering mys-
tical point protons here for the sake of argument.) The
Coulomb singularity has vanished!65

64We will write m instead of me in the rest of this section, to
make typography easier.

65 If Zα ≥ 1 this does not work. However, in that case Dirac’s
equation is ill posed and its “ground state” has energy −∞. So
we will assume Z ≤ 137 in this paper, which since α ≈ 1/137.036
seems to be the maximum possible number of charge quanta allow-
able on a point particle in Dirac’s relativistic quantum mechanics.
Our later discussion makes it plausible that the “Lamb shift” (aris-
ing from QED of a higher order than the Dirac equation) would
prevent collapse of an electron onto a point nucleus even when
Z ≥ 138, because the appropriate nonCoulombic potential allows a

B.1.1 Lamb shift

The next most important effect on atomic spectra (be-
yond the “fine structure,” which is handled by Dirac’s
equation) is the “Lamb shift,” which is caused by QED
effects unknown to Dirac’s equation66. The Lamb shift
causes the Dirac eigenvalue (at fixed k) to increase [18]
[26] by an additive amount

≈ mc2Z4α5

n3
F (Zα) (93)

where F (Zα) is dimensionless, approximately constant
for 1 ≤ Z ≤ 92, and independent of n. An expression of
this form gives a very good approximation to the exper-
imentally observed discrepancies between the 2s1/2 and
2p1/2 levels of all hydrogenic ions from hydrogen to ura-
nium [26].

Notice that as n → 0 (or Z → ∞ or h̄, 1/α → 0),
the (positive huge) Lamb shift eventually becomes far
larger than the (negative huge) Bohr energy value. This
leads (via (EQ 88) and its power law solution) to U(r)
behaving proportionally to r−6/5 as r → 0. (The char-
acteristic length scale at which the Coulomb potential
stops due to this effect is ≈ Z4α6 times the radius of
the Bohr ground state, i.e. 8.0×10−24 meters for hydro-
gen.) The singularity has (at least formally) reappeared,
but it now is repulsive instead of attractive! Of course,
the semiclassical reasoning underlying the Bohr model
loses its attraction if the potential is repulsive, so the ex-
istence of a repulsive singularity is subject to question.
But regardless of that it seems clear that the attractive
singularity is gone.

It is believed that at length scales below the “Planck
length” ℓPlanck =

√
h̄G/c3 ≈ 1.62×10−35 meter, gravita-

tional effects will become important and will completely
alter the picture in some unknown manner. Therefore,
arguably, it is pointless to do quantum mechanics be-
low ℓPlanck and so one might as well assume that the
Coulomb potential is cut off there. In that case, there
is no singularity at all, but the potential reaches a large
constant value before it stops!67

tiny (but nonzero) radius ground state far below Dirac’s. However
for real nuclei this effect (if it exists) would be irrelevant, because
this tiny radius would be considerably smaller than the nuclear
radius, so collapse undoubtably would occur. Furthermore, when
Z exceeds ≈ 170, it becomes energetically feasible for an electron-
positron pair to be created, with the electron being sucked into
the nucleus and the positron being emitted. These effects should
prevent any such highly charged nuclei from existing in real life.

66For 2 ≤ Z ≤ 92, i.e. the naturally occurring elements, the
Lamb shift has a much larger effect on spectral energies than the
fact that nuclear sizes are nonzero, incidentally [45].

67Computer scientists regard all the reciprocals of these ex-
tremely small lengths merely as “constants” which do not affect the
polynomiality of simulation algorithms. This point of view is, un-
fortunately, less justified here than it usually is in computer science,
because the constants in the present arguments are a lot larger than
the ones usually encountered when analysing algorithms.
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B.2 Relativistic replay

Bohr’s nonrelativistic atomic model was redone spe-
cial relativistically by A.Sommerfeld [87]68. We quickly
sketch the derivation analogous to the above but using
Sommerfeld’s model instead of Bohr’s:
Force balance: mv2/r = U ′(r)

√
1 − v2/c2.

Hence v2 = 2rU ′c2/(
√

(rU ′)2 + 4m2c4 + rU ′).

Quantization condition: nh̄ = rmv/
√

1 − v2/c2. Hence

n =
rmc

√
2rU ′

h̄

(√
(rU ′)2 + 4m2c4 + rU ′

)1/2

(94)

The potential plus kinetic energy is

E(n) = U + mc2/
√

1 − v2/c2 = (95)

U +

√
m2c4 + (rU ′)2/2 +

√
(rU ′)2 + 4m2c4 rU ′/2

Combined differential equation:

E

(
rmc

√
2rU ′

h̄

[√
(rU ′)2 + 4m2c4 + rU ′

]1/2
)

= U +
c2rU ′

v2
= (96)

U +

√
(rU ′)2 + 4m2c4 + rU ′

2

In (EQ 96), if we wish to analyse U(r) ∼ brq for r → 0,
then there are two cases. In both cases we get E(n) ∼
anp as n → 0+, but the values for p are different.

• If q > 0 (of course we remove an additive constant
from the right hand side by redefining the zero point
of our energy scale) (EQ 96) becomes

E

(
r
√

mrU ′

h̄
√

2

)
∼ U + rU ′/2 (97)

so p = 2q/(2 + q), q = 2p/(2 − p), i.e. the same
results as in the nonrelativistic case.

• If q < 0, (EQ 96) becomes

E

(
rmc

h̄
√

2

)
∼ U + rU ′. (98)

so p = q. This differs from the nonrelativistic case.

In particular, in the case p = −3 of interest for the
Lamb shift, we have q = −3 so that to make Sommer-
feld give the right (Lamb perturbed) answers we need a
repulsive singularity U(r) ∝ r−3 for r → 0. We conclude
that

Claim 23 (relativistic replay of claim 22; Inter-
particle potentials are bounded below by a con-
stant) At least as far as relativistic corrections and/or

68Despite its simplicity, Sommerfeld’s model leads to exactly
the same energy levels (EQ 91) as the exact solution of Dirac’s
equation.

the simpler QED approximations to the Lamb shift are
concerned69 in old-style Bohr atom quantum mechanics,
interparticle potentials are bounded below by a constant.
The same conclusion arises when considering the Lamb
shift from the point of view of Sommerfeld’s relativistic
Bohr atom.

B.3 Open question

An idea similar to the above, but which I have not in-
vestigated, would be to consider scattering differential
cross sections instead of energy levels and again try to
design the right potential to force the (nonrelativistic)
Schrödinger equation to give the right answers, i.e. the
Bhabha e+e− (relativistic) cross section formula [11] [43]
[5] [3].

For 1-dimensional scattering, exact solution methods
(“inverse scattering theory”) are available to reconstruct
the potential from the scattering data [27] [25]. How-
ever, I am unaware of any analogue of this theory in
≥ 2 dimensions, and indeed I conjecture the question is
ill-posed, i.e. no solution potential exists, in general70.

There is an extremely cryptic review of forward scat-
tering theory in [26].

C Appendix on higher product formulas

We continue from where §4.1 left off by discussing what
is known (including new results) about product formulas
with ≥ 4 terms. These include Suzuki’s recursive con-
struction of product formulas of arbitrarily high order
(§C.2) and his theorem that negative or complex coeffi-
cients are required in any formula of order ≥ 3. Also,
we explain (§C.1) why these formulas are useful for nu-
merical approximation of the time evolution of classical
Hamiltonian systems.

C.0.1 4-term product formula

e(A+B)t = e
[1− 1√

2
]At

e
Bt√

2 e
At√

2 e
[1− 1√

2
]Bt

[1 + O(t3)]. (99)

(Note 1/
√

2 ≈ 0.7071067810, 1− 1/
√

2 ≈ 0.2928932190.)
Note, this does not yield an accuracy-order improvement
versus the simpler 3-term product (EQ 14). But the er-
rors seemed to be about 3-4× smaller in a few experi-
ments I tried, suggesting there is a better constant term
in the error formula.

69Conceivably this conclusion would change if the Lamb shift
had been handled in very high order QED instead of second-order
QED as in (EQ 93). But at third and fourth order the corrections
(albeit available only in an incomplete form so far [26]) seem to
have the same form as (EQ 93) (just times higher powers of α and
with different F ’s), and hence would not alter this conclusion.

70The potential is a function of one veriable r. But in ≥ 2
dimensions we want to determine it from a function of two variables
(the differential scattering cross section as a function of both angle
and of energy). Hence, one would expect it, in general, to be
overdetermined.
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C.0.2 5-term product formula

There does not exist a complex number q such that

e(A+B)t = eAtqeBt/2e[1−2q]AteBt/2eAtq[1 + O(t4)]
(100)

so one might as well just choose q = 0 or q = 1/2 to get
the 3-term product, since any value of q achieves O(t3)
error and the 3-term product involves less work.

To aid discussion of formulae of this type, define a “p-
term product formula of order k” to be (as t → 0)

e(A+B)t = eAtc1eBtd1eAtc2eBtd2eAtc3 . . .︸ ︷︷ ︸
p terms

[1 + O(tk+1)].

(101)
A formula is “palindromic” if the coefficients read left to
right are the same numerical sequence as if they are read
right to left. It is “all-real” if all the cj and dj are real.

Despite the nonexistence result of (EQ 100), there is
a 5-term product of order 3 if we allow complex cj and
dj . There are exactly two solutions:

(c1, d1) = (
1

4
,

1

2
)±Ri, c2 =

1

2
, (d2, c3) = (

1

2
,

1

4
)∓Ri,

(102)
where R =

√
3/12 ≈ 0.1443375673. Note the “com-

plex conjugate palindromicity” c1 = c∗3, d1 = d∗2. This
suggests that using q = 1/4 in (EQ 100) (thus getting
the closest all-real formula to the complex formula (EQ
102)) might be a good idea for the purpose of reducing
the error constant, although not its order. Of course, this
is equivalent to using the 3-term product twice (on two
half-size time intervals), and thus it will indeed reduce
the constant – by a factor of 4.

C.0.3 6-term product formula

There are exactly four palindromic 6-term product for-
mulae of order 3, and of these exactly two are all-real.
Let Q ≈ 0.9196615233 be one71 of the two real roots of

12x4 − 24x2 + 16x − 3. (103)

Then the formula arises from

c1 = d3 = −Q3 + 3Q/2 − 1/3 ≈ 0.2683300956,

d1 = c3 = Q ≈ 0.9196615233, (104)

c2 = d2 = Q3 − 5Q/2 + 4/3 ≈ −0.187991619.

These are the 4 palindromic special cases of a 1-
parameter family of formulae indicated by Ruth [76] [31].
(Actually, the full solution space, i.e. with no palin-
dromicity restriction, consists of exactly two 1-parameter
families. No member of either of these families achieves
order 4.) The fact that c2 is negative is the first occur-
rence of a bad trend. In fact, Suzuki [92] showed (his
“theorem 3”) that

71The other is R ≈ −1.695156345, but this is less desirable; the
two complex roots 0.3877474108 ± 0.1000711207i are presumably
even less so.

Theorem 24 (Suzuki nonexistence theorem)
There are no finite length product formulae of any order
≥ 3 in which all the coefficients are positive reals.

C.0.4 7-term product formula

The unique all-real palindromic 7-term order-4 formula
is

c1 = c4 =
R

2
≈ 0.675603596,

d1 = d3 = R = 1/(2 − 21/3) ≈ 1.351207192,

c2 = c3 =
1 − R

2
≈ −0.175603596,

d2 = 1 − 2R ≈ −1.702414384. (105)

This formula was known to previous workers, and in par-
ticular Suzuki [90] (eq. 30 and 31) claims to have found a
1-parameter family of 7-term order-4 formulae, of which
this is the palindromic special case. However, my com-
puter’s Gröbner basis (described later) indicates that the
solution space (with no palindromicity restriction, and
allowing complex cj and dj) is finite, so Suzuki’s fam-
ily must have been invalid. (This has been confirmed
both by MAPLE’s Gröbner algorithm, and also by Henry
Cejtin’s independently written code.) Indeed, there are
exactly 5 complex solutions, namely

c1 = 1/4 − Q/2, d1 = 1/2 − Q, c2 = 1/2 − Q/2, (106)

d2 = 1/2, c3 = 1/4 + Q/2, d3 = Q, c4 = Q/2

where Q = 1/4 ± i
√

15/12, and

c1 = c4 = 1/4 − C/4,

d1 = d3 = 1/2 − C/2,

c2 = c3 = 1/4 + C/4,

d2 = C (107)

where 3C3 + 3C2 − 3C + 1 = 0, i.e. C ≈ 0.3512071921±
0.2691725452i and C ≈ −1.702414384. These last 3 so-
lutions are each palindromic. None of these 5 solutions
achieves order 5. The last of these 5 solutions is the only
all-real solution and gives (EQ 105). Again (the second
example of the bad trend) the middle three terms in (EQ
105) involve negative coefficients.

C.0.5 (8-13)-term products

No palindromic product with ≤ 13 terms exists with or-
der 5. Also, no products with either 8 or 9 terms (i.e.
with no palindromicity restriction) exist of order 5. Sur-
prisingly, in view of the 7-term order 4 product (EQ 105),
there does not even exist a palindromic 8-term product
of order 4, although of course non-palindromic ones exist.

C.0.6 How I proved all this

Verifying all these formulae is straightforward but te-
dious; one simply expands the exponentials as Taylor
series out to whatever order one needs, keeping in mind
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the noncommutative nature of multiplication among A
and B.

For example, to derive (and prove) the 4-term product
formula, which I will write as

e(A+B)t = eAtc1eBtd1eAtc2eBtd2 [1 + O(t3)] (108)

we need to check agreement on terms of degree 1 (i.e. we
must have c1 + c2 = 1 so that A = A and d1 + d2 = 1
so that B = B) and on terms of degree 2. The degree-
2 terms are AB/2!, BA/2!, AA/2! and BB/2!. These
respectively correspond to

c1d1 + c1d2 + c2d2 = 1/2, (109)

d1c2 = 1/2, (110)

c1c2 + c2
1/2 + c2

2/2 = 1/2, (111)

d1d2 + d2
1/2 + d2

2/2 = 1/2. (112)

These 6 equations have a 1-parameter family of solutions

c1 = 1 − x, d1 =
1

2x
, c2 = x, d2 = 1 − 1

2x
(113)

and if we also impose the palindromic conditions c1 = d2,
c2 = d1, then there are exactly two solutions

c1 = d2 = 1 ∓ 1√
2
, c2 = d1 = ± 1√

2
. (114)

Of course, we prefer the upper signs so that all the coef-
ficients are positive.

More generally, checking that the error term is O(tk+1)
requires verifying 2k+1 − 2 equations.

The 3-7 term product formulae above (and the nonex-
istence proofs for the {5,8,9,10,11,12}-term products)
were found by a systematic computer search. All of the
error terms are tight, as was also proved by computer.
The method was simply to generate all the equations in-
volved in verifying an error term of order tk, and then
find a “Gröbner basis” [4] [22] for them. For example, the
6 polynomials arising in the previously described search
for the 4-term order-3 product, have Gröbner basis

c1 − d2, c2 + d2 − 1, d1 + d2 − 1, 1− 4d2 + 2d2
2. (115)

Once this has been done, there is a trivial algorithm to
test solvability of the polynomial system – specifically: if
the Gröbner basis consists of the single element {1}, then
the system is not solvable! A slightly more complicated
algorithm will test finiteness of the solution space, and
(assuming solubility and finiteness) will actually find all
solutions. Specifically, Gröbner bases generate the same
polynomial ideal as the original set of polynomials but
are “upper triangular” in the sense that one may solve
the last equation (which is univariate), substitute it into
the other equations, and then solve the second to last
(which is then univariate), substitute, et cetera, to solve
everything. In the present case, we solve the last equa-
tion

1 − 4d2 + 2d2
2 = 0, (116)

finding d2 = 1 ± 1/
√

2, and then the other equations
solve instantly. The commercial symbolic manipulation
system MAPLEworks, although a Gröbner package written
by Henry Cejtin runs faster72.

C.1 The connection to “symplectic integrators”

After this computer search, I found out that in the case of
the 3, 6, and 7-term products, my computer had merely
rediscovered previous work (cited above). Its other re-
sults seem new.

The previous authors were investigating these formu-
lae for a different reason: they lead to “symplectic nu-
merical integration” schemes for “classical Hamiltonian
systems” of differential equations. Here is the explana-
tion of that (patterned after [100]).

A “Hamiltonian system” is a system of ordinary dif-
ferential equations of the form

~̇q =
∂H

∂~p
, ~̇p = −∂H

∂~q
. (117)

where H(~q, ~p) (called the “Hamiltonian”) is a scalar val-
ued function and ~q(t) and ~p(t) are n-dimensional vectors.
Letting ~z be the 2n-vector whose elements are ~q(t) and
~p(t), (EQ 117) may be rewritten, with the aid [59] of the
“Poisson bracket” notation

{F, G} =

n∑

j=1

∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj
(118)

as

~̇z = {~z, H(~z)}. (119)

If any quantity I obeys {I, H} = 0 then I is an invari-
ant (preserved by time evolution)73. If we introduce the
differential operator “DG” by DGF = {F, G} then (EQ
119) may be further rewritten

~̇z = DH~z. (120)

It now becomes apparent that the solution is

~z(t) = exp(tDH)~z(0) (121)

72All results except two were obtained by both packages. These
two were (i) the nonexistence proof for the 9-term order 5 product
without palindromicity restriction, which was obtained by Cejtin’s
software only, after running 4.9 CPU days. (Arithmetic on integers
15000 digits long was required during the Gröbnerization.) Also
(ii) the nonexistence proof for the 12-term order 5 palindromic
product was shown by Cejtin’s code after 98 CPU days, and in-
volved integers 55000 digits long and the consumption of several
hundred megabytes of RAM. Cejtin and I have reason to believe
that this calculation would have been speeded up by a factor of
200 by use of faster bignum arithmetic subroutines such as the gnu
bignum package (which employs Karatsuba’s algorithm [56]). Ad-
ditional large speedup factors beyond this (I would guess a factor
of 10) should be obtainable with bignum algorithms of Schönhage-
Strassen type [56]. Further large speedups might be obtainable by
modular methods to avoid bignums entirely (perhaps especially for
nonexistence proofs).

73A theorem of Poisson is that if I and J are invariants, so is
{I, J}.
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and if DH is a sum of known operators (which happens
if H is a function of ~q plus a function of ~p) whose Hamil-
tonian flows are known, then we may apply our splitting
formulae to get approximate solutions. All of these so-
lutions will be exactly “symplectic.” That is, the time
evolution operator exp(tDH), which is the exponential of
an antisymmetric real operator (or more generally: the
exponential of i times a Hermitian operator) i.e. unitary,
will be being approximated by an exponential of another
exactly unitary operator.

C.2 Suzuki’s recursive construction of splitting formu-
las of every even order

Suzuki [90] [89] showed how to generate product formu-
lae of arbitrarily high order. We won’t discuss Suzuki’s
maximally general construction (in [91]). Specifically let
a formula be called “of kth order” if the error term is
O(tk+1). Then let

S2(t) = exp(
At

2
) exp(Bt) exp(

At

2
) (122)

be the order-2 approximant (3-term product) above.
Then a recursive construction of formulae of all even or-
ders 2m arises via

S2m(t) = S2m−2(Rmt)S2m−2([1 − 2Rm]t)S2m−2(Rmt)
(123)

where Rm is the real root of

2R2m−1
m + (1 − 2Rm)2m−1 = 0. (124)

This yields the 7-term product above as S4 (i.e. when
m = 2) with R2 = 1/(2−21/3) ≈ 1.351207192. Similarly
R3 ≈ 1.17467176, R4 ≈ 1.1161829, R5 ≈ 1.0870271,
R6 ≈ 1.0695657; and

Rm = 1 +
ln 2

2m
+ O(m−2) as m → ∞. (125)

In general when m ≥ 1 we get an expression for S2m

(of order 2m) as a (2 · 3m−1 + 1)-term product. (Each
product would have exactly 3 times as many terms as the
previous one, except that 2 pairs of terms each coalesce.)
This formula always has real coefficients, although some
of them will be negative if m ≥ 2. Fortunately, the
maximum absolute value among the coefficients is

m∏

j=2

(
1 +

ln 2

j
+ O(j−2)

)
= exp

m∑

j=2

(
ln 2

j
+ O(j−2)

)

= e(ln 2)(ln m)+O(1) = O(mln(2)) = O(m0.69315).(126)

Thus, the “oscillation” isn’t too severe, and carrying
O(mln(2)) times more decimal places in one’s calcula-
tions, than one would have normally needed, ought to
suffice to take care of the effects of roundoff error. Since
the product has 2 ·3m−1 +1 terms, this extra work factor
is in comparison not a great burden. On the other hand,
for fixed matrices A and B, it appears that the infinite

sequence of product formulas arising from the Suzuki re-
cursion will not in general converge to a limit74.

There is no reason to believe Suzuki’s recursive con-
struction is “optimal.” Indeed Yoshida [100] found75 an
order-6 formula with only 15 (beating Suzuki’s 19) terms,
but still (of course) with a negative coefficient.

It is easily seen (by considering the same sort of brute
force Taylor series expansion method as before) to be
impossible for a k-term product of the form above to
approximate better than O(tk+1). Counting degrees of
freedom suggests the conjecture that eventually for large
k, the approximation order w for the best k-term product
cannot be better than about (log2 k)±O(1), since there
are only order k coefficients to vary to try to make the
≈ 2w+1 words formed from the w letters A and B cancel.
Suzuki’s construction therefore comes within a constant
factor of the minimum possible number of terms in the
product, if this conjecture is believed.

D Appendix on Rayleigh-Ritz method

There is a conceptually simpler simulation algorithm
for quantum mechanics which seems also to work to
yield Church’s weak thesis. Indeed, it even yields
the intermediate-strength version if some clever but ex-
tremely impractical algorithmics76 are employed to save
memory in the linear algebra. This algorithm seems of
less interest than ours because it apparently does not
lead to Church’s strong thesis on a quantum computer.

On the other hand, it does show

Theorem 25 Let H be a multi-particle Hamiltonian op-
erator in a computable cubical box, arising from a Roll-
nick ♣ interparticle potentials, and computable [58] ex-
cept for in the neighborhoods of singularities over which
its integral is known77. Then the sequence of all eigen-
values of the Hamiltonian is a computable real sequence.
In other words there exists an algorithm which, given
positive integers n and m, will output a rational approx-
imation to the nth eigenvalue (for some ordering which
roughly corresponds to, but may not precisely correspond
to, increasing order78) accurate to 2−m.

74Let Em denote the relative error arising from using the
order-m formula, and find a recurrence something like Em ≈
(3Em−1/32m)1+(ln 2)/m, whose solution diverges to ∞.

75Numerically, i.e. this is not a rigorous existence proof, but is
almost certainly correct.

76MATRIX INVERSION was shown by Csanky [23] to be in the
computational complexity class “NC.” It then follows that linear
algebra operations such as matrix-vector multiplication and linear
and least squares system solving are in PSPACE even if these ma-
trices and vectors have exponentially many elements and the jk
elements of the matrices and vectors are only available through
“black box” function calls with arguments j and k. Indeed, one
may readily verify the (perhaps stronger, and definitely not weaker)
statement that all the linear algebra operations just mentioned are
in P#P.

77It will suffice if the interparticle potentials V obey |V | < Cr−γ

for some computable real constant C and some γ < 2.
78Quite possibly it is undecidable which of two eigenvalues is

greater. This issue is irrelevant if we only are interested in approx-
imate eigenvalues. We will get the ordering correct up to numerical

DocNumber 34 . 4. 0. 0



W.D. Smith typeset 579 Jan 18, 2004 Quantum Church’s thesis

This is interesting because Pour-El and Richards [73]
had shown that:

1. Each eigenvalue of an “effectively ♣ determined self-
adjoint operator” (the Schrödinger Hamiltonians of
physically realizable quantum systems qualify [47])
is a computable real number, i.e. for each eigen-
value there exists an algorithm to compute it to any
demanded accuracy.

2. But the entire sequence of spectral eigenvalues is not
necessarily computable, i.e. no finite-length algo-
rithm necessarily exists to compute any eigenvalue.
Nor is an eigenfunction corresponding to any given
eigenvalue necessarily a computable function. Op-
erators are exhibited in [73] for which both of these
things were, in fact, uncomputable.

Thus, considering point 2, we now see that physically
realizable Hamiltonian operators [47] are “nicer” than
just any old effectively determined self-adjoint operator.

Here is a sketch of the algorithm:
1. Find all the eigenvectors of the Hamiltonian below

some energy κE (where E is the energy bound on the
initial state, and κ is a number we can make arbitrar-
ily large). Due to eigenvalue counting bounds in [84] we
know the number of such eigenvectors is finite and the
process of finding them will terminate79. The eigenvec-
tors Ψ1, Ψ2,... we find will be approximate. But they
will be good approximations in the sense that

1. They will be exactly orthonormal (well, up to ex-
ponentially small roundoff error arising from finite
precision arithmetic carried to a polynomially large
number of decimal places)

2. eitHΨ will differ from eitλΨ (where λ is some approx-
imate eigenvalue) by an arbitrarily small amount in
the L2 norm (if t is bounded by the time the simu-
lation is supposed to cover)80.

The process of finding these eigenfunctions Ψj is the
“Rayleigh Ritz method” in which we express each Ψj

as a linear combination of Fourier modes for the box the
physical system is contained in (up to some high energy)
and then solve for the coefficients to minimize ‖HΨj‖
subject to the constraints of normalization and orthog-
onality to all previous eigenfunctions. This solve is a

imprecisions in calculating those eigenvalues.
79Actually, the bounds in [84] are asymptotic rather than effec-

tive ♣. This still suffices to force termination provided there is
some way to detect when we have exceeded the cutoff energy –
and there is. Anyway, effective (although worse) upper bounds for
eigenvalue counts for bound systems (i.e. every system confined
to a box) are also available [63] provided the potential is in L3N

for an N-particle 3D system (which is the case if we regularize the
potentials beforehand as in §6.1, and this is justifiable, in the sense
that the approximate eigenvalues E in our sense will be negligi-
bly perturbed by the regularization, if the bounds in that section
tell us that time-evolution for time h/E will result in negligible
perturbation of the wavefunction in L2 distance.)

80Our approximate eigenfunctions need not be close to any gen-
uine eigenfunction, but that does not matter for our purposes.

finite dimensional quadratically and linearly constrained
least squares problem [12][62]. The entries in the matrix
defining that least squares problem are each computable
reals – assuming H is nice enough, i.e. the potential
is in L1 and, except for in the neighborhoods of singu-
larities in which the integrals are known, computable
(see chapter 5 of [58]). The validity of the Rayleigh
Ritz method for physically realizable Hamiltonians (with
L2 + L∞ potentials ♣) was shown by Kato [47]81. This
was later improved (see theorem X.19 of [75] vol. 2) to
allow Rollnick+L∞(R3) interparticle potentials ♣. The
resulting Ψj are not the true eigenfunctions of H both
because they do not incorporate high-frequency Fourier
modes, and also because two eigenvalues λ could be very
close to equal, in which case the 2-space spanned by the
two corresponding eigenvectors would be effectively in-
distinguishable from an eigenspace. But since it isn’t
one, our “eigenfunction” might be anywhere in this 2-
space, perhaps even orthogonal to where it should be.
However, thanks to lemma 13 of §6 relating kinetic to
total energy, we realize that any eigenfunction of energy
E cannot have a sum of absolute squares of its Fourier
coefficients for modes above energy κ2E being more than
κ−2. By making κ large enough we can force the Ψj to
obey the two approximation properties above. Neither
two close λs, nor mode cutoffs, bother us for the purpose
of obtaining these approximation properties.

2. Express the initial state as a linear combination
of these Ψj . The coefficients may be obtained by nu-
merical integration and using orthonormality. We use
the fact [73] that the integrals of “computable continu-
ous functions” (which ours are, assuming the initial state
wavefunction is82) are computable reals. Indeed they are
computable in #P ♣ if the integrand is a “polynomial
time computable” real function [58].

Eigen-wavefunctions arising from Coulombic interpar-
ticle potentials have bounded gradient [47] [48] and are
differentiable everywhere except at the Coulomb singu-
larities, and hence in view of our algorithm for computing
them, are computable continuous functions in the sense
of [73].

3. Time-evolve the Ψj by multiplying them by the
appropriate complex exponential phase factors.

The error introduced by this algorithm will be arbi-
trarily small in norm because the expression of the initial
state as a sum of approximate eigenfunctions has arbi-
trarily small norm error, and each approximate eigen-
function’s time evolution (since time evolution, being
unitary, does not magnify error norms) can be made ar-
bitrarily more close to being given by the complex expo-
nential phase factor multiplication we recommended.

(Every time we say “very close” or “arbitrarily small”
above, we of course have an effective, i.e. computable,

81Indeed, Kato claims the eigenfunctions are bounded every-
where, continuous, and have bounded derivatives everywhere ex-
cept at the Coulomb singularities. (This need not be true for non-
eigenfunctions.)

82And this is pretty much a necessary assumption — since how
can one even “read the input,” otherwise?
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bound. Our requirement that the quantum system live
in a finite box possibly can be dispensed with by us-
ing known exponential falloff results about Schrödinger
eigenfunctions [20][82][79].)

E Appendix: The boundedness of an

exponentially growing function of the

energy

The assumption that the expected value of the energy is
bounded suffices for the purposes of this paper83. But at
first, I had thought the following much stronger assump-
tion (not as strong as “boundedness” of all operators,
but conferring nearly the same benefits) about the en-
ergy of the quantum system being simulated, was going
to be required. It may in the future allow considerably
stronger results than mine to be obtained (in circum-
stances in which the Assumption is justified), and it is
highly interesting for its own sake.

Assumption 26 (Exponential bound-
edness of reasonable physical systems) For some
fixed C > 1, assume that the expectation value of CE ,
where E is the energy of any “reasonable” physical sys-
tem (measured in some agreed-upon units) is bounded by
E.

Obviously Schrödinger time evolution preserves this
class (if the Hamiltonian operator is self-adjoint [75],
which we assume it is, for “reasonable” physical systems
[47]).

The assumption that some exponential function CE of
a system’s energy has bounded expectation value E is an
extremely powerful and useful assumption, and also (we
would like to argue) can nevertheless be a very realistic
assumption. I’ll now describe why this assumption can
drastically simplify a great deal of rigorous quantum me-
chanics, and then indicate why it may correspond84 to
physical “reasonableness.”

In books [95] [75] on rigorous quantum mechanics, the
majority of the book is generally devoted to telling us
how horrible linear operators, especially unbounded op-
erators, are, as compared to the comparatively simple
and pleasant world of finite dimensional matrices. The
whole story of the advance of rigorous quantum mechan-
ics has been the story of the accumulation of more and
more mathematical results enabling one to handle vari-
ous classes of such operators in various ways.

Here are 4 standard examples of ways in which opera-
tors are not as nice as finite dimensional matrices.

1. Matrix exponential. If M is a finite dimensional ma-
trix, then one may define the exponential function
simply by using the everywhere converging Taylor
series exp(M) = I +M +M2/2!+M3/3!+ . . .. But:

83Indeed, it appears possible to weaken this assumption and in-
stead merely assume that the expectation of Ep, for some constant
p with 0 < p < 1, is bounded. See §12.5.

84But see footnote 55.

this series need not converge if M isn’t finite dimen-
sional. A counterexample: let M be diagonal with
Mjj = j for all j ≥ 1.

2. Left and right inverses. If A and B are finite dimen-
sional matrices, then AB = I ⇒ BA = I. But this
is not the case for infinite dimensional matrices; a
counterexample are the right and left shift operators
acting on a space indexed by the positive integers.

3. Balls in finite dimensional spaces are “compact,” al-
lowing one to make statements about limits easily.
Not so in infinite dimensional spaces.

4. If M = M∗ (M equals its Hermitian conjugate) then
M is self-adjoint. This is true for finite dimensional
matrices, but not infinite ones (a fact that has rarely,
if ever, worried a physicist).

Now: using this hall of horrors as a testing ground, let us
contrast this with the situation in which all our opera-
tors are quantum mechanical and we are only interested
in what happens when they are applied to “physically
reasonable” wavefunctions Ψ satisfying assumption 26.

1. Although the Taylor series for exp(M) still needn’t
converge, the series for exp(M)Ψ does, in many
cases, in particular if M is k times the Hamilto-
nian operator for any complex k with |k| sufficiently
small.

2. Although ABΨ = Ψ for all Ψ in our class still does
not imply BAΨ = Ψ in general, for operators A, B
with complete orthonormal sets of eigenfunctions,
i.e. the ones of primary concern in quantum me-
chanics, AB = I ⇒ BA = I, so this issue is
ignorable, and in fact was already ignorable without
the need for our exponential assumption.

3. We are now most commonly dealing, not with balls
such as

∑
j≥0 |xj |2 ≤ 1, but rather with sets such as∑

j≥0 10j|xj |2 ≤ 1. (If 10j is the “exponential func-
tion” being considered.) These sets are compact.

4. If we restrict our attention to Ψ satisfying our as-
sumption, then if M = M∗, then M will behave
exactly like a self-adjoint operator on the set of per-
missible Ψ only. This is because no issues can arise
about a difference between the domains of M and
M∗, since both have domain that includes the entire
set of interest.

So, the reader now has some idea why wavefunctions
with bounded expected exponential of energy, are a very
pleasant class, and why assumption 26 has the power
to make rigorous quantum mechanics much easier if and
when it applies. It also has the power to make the op-
erator analysis required to get rigorous error bounds for
quantum simulation algorithms, much easier.

But why should assumption 26 correspond to “physi-
cally reasonable” wavefunctions?

DocNumber 36 . 5. 0. 0



W.D. Smith typeset 579 Jan 18, 2004 Quantum Church’s thesis

Well, to begin with, it seems reasonable that the ex-
pectation value of energy itself, should be bounded. But
mathematicians can produce plenty of probability densi-
ties (e.g. proportional to (1 + E2)−1.1) in which an ex-
pectation value E exists but a variance does not – much
less this (far more divergent) exponential quantity.

So: here is a physico-philosophical argument that the
expectation value of CE should be bounded, for some
C > 1.

Suppose you take a physical system and lift it onto
your lab table. If you can’t put it on your lab table, it
was not a “reasonable” system to simulate85. You know
you cannot lift 1000Kg. So when you lifted it, you were
performing a Copenhagen measurement which collapsed
the wavefunction down to a state with zero probabil-
ity of energy> 1000Kg×c2. So, you can now work with
bounded operators, indeed even with finite dimensional
matrices, if there are only a finite number of energy eigen-
modes below this energy. And every increasing function
of energy, in particular 10x, must have bounded expec-
tation value.

A more refined version of the same argument: Really
you and the lab system constitute a bigger combined
system. Before turning on your experiment, you first
isolated it. But before isolating it, you lifted it onto the
lab table. So you were not really performing a “measure-
ment” since we now (being more sophisticated than the
Copenhagen interpretation) realize that there was noth-
ing “classical” here performing a measurement – you and
the system were, together, just some quantum system.
However, still, it seems reasonable to assume it was ex-
ponentially improbable that you managed to lift 1000Kg
– maybe not 0 probability, but exponentially small.

Specifically, assume a Boltzmann max-entropy thermal
energy distribution governs such fluctuations. This falls
off like exp(−E/[kBT ]) at a fixed temperature T . The
probability that, by some astonishing statistical fluke,
you happened to be so far in the tail of the Boltzmann
distribution that you managed to lift 1000Kg up 1 meter,
which was, say, 9000 Joules above your normal ability, is
about

exp
−9000 Joules

4 × 10−21 Joules
≈ 10−1024

(127)

at room temperature.
Under such conditions, some exponentially increasing

function of system energy will indeed have bounded ex-
pectation value!

A different reason I think assumption 26 is pro-
foundly interesting is that it seems to have some rela-
tion to analyticity86. To see what I mean, consider the

85Provided “Church’s thesis” only requires the computer to have
the ability to simulate experiments one could actually have run in
a lab.

86 Incidentally, more than one physics paper contains an unsup-
ported statement of the form “because the interparticle potentials
are analytic functions, the wavefunction must be analytic.” Unfor-
tunately, such statements, although perhaps true for some class of
initial conditions, have never been justified. The best that seems
currently known [47] [48] is that, for example, eigen-wavefunctions
arising from Coulombic interparticle potentials have bounded gra-

following87 lemmas

Lemma 27 The function

f(x) =
∫
Σ
j

aj eijz (128)

is an analytic function of z for all real z, and indeed for
all z in a strip of nonzero width centered on the real axis,
if and only if ∫

Σ
j

|aj|C|j| (129)

converges for some C > 1.

In other words, wavefunctions with bounded expected
exponential of kinetic energy are analytic. Furthermore

Lemma 28 If there is some point x at which f(x) is
non-analytic (for example, it does not have a kth deriva-
tive there, for some k) then (EQ 129) diverges.
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