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Abstract — We construct a rigid and bounded 3D con-
tainer C with bounded surface area and whose boundary,
although complicated, is smooth everywhere except at a
single point. It is partly filled with a fluid of constant den-
sity and viscosity, having bounded kinetic energy, and in-
deed, uniformly bounded flow velocities. The container’s
shape and the initial location-set and velocity field for the
fluid (both of which are as smooth as possible) all have
finite-length mathematical descriptions.

We demonstrate that, e.g., predicting which of the two
alternatives “≥ 2cm

3 of fluid will flow into basin A during
the next minute” and “≤ 1cm

3 will flow into basin A, ever”
will happen (one of these may be guaranteed) is at least
as hard as solving Turing’s general halting problem, i.e.
undecidable. But a physical system corresponding to C,
would solve the problem in 1 minute. This demonstrates
the falsity of “Church’s thesis”under these laws of physics.

This “demonstration” is not a mathematical proof since

it depends on certain unproved – but empirically very

well confirmed – assumptions. (It also shamelessly ex-

ploits certain mathematical, but unphysical, features of

the equations of hydrodynamics, namely: assumption of

a perfect continuum all the way down to zero length scale,

perfect wall rigidity, and exact constancy of viscosity and

density despite any temperature and pressure changes.)

Nevertheless we produce genuine theorems at the end

whose statements (I argue) signify the failure of hydro-

dynamics.

Keywords — Fluidics, hydrodynamics, undecidability, Church’s thesis,

Turing’s halting problem, algorithmization of physics, non-existence

of hydrodynamic limit, failure of hydrodynamics, water hammer, slug

flow, fault tolerance, Toom rule.
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1 Introduction

FOR A FLUID WITH CONSTANT density ρ > 0 and
constant kinematic viscosity ν > 0 (for water, ρ ≈

1milligrammm−3 and ν ≈ 1mm2/second), and assuming that
all thermal effects can be neglected (either because the fluid
has infinite thermal conductivity, or infinite specific heat, or
because the viscosity and density do not depend on tempera-
ture), the Navier-Stokes equations of 3D fluid flow become

~∇ · ~u = 0 (1)

and

∂~u

∂t
+ (~u · ~∇)~u =

~Fext − ~∇p

ρ
+ ν∇2~u, (2)

customarily called the equations of “hydrodynamics”
[4][9][36][64][71]. Here ~u(~x, t) is the fluid flow velocity field, ~x
is position, t is time, and p(~x, t) is the pressure scalar field.
~Fext(~x, t) are the externally applied forces (if any) per unit
volume. These are 4 equations expressing the 4 unknown
fields (~u and p) at time t + dt in terms of same at time t.

At solid boundaries, one customarily demands the “no slip”
condition ~u = 0 (R.P.Feynman: “it is a common observation
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that the blade of a fan will collect a thin layer of dust”)1. If
ν = 0 (inviscid flow) these equations are instead called the
“Euler equations.”

It has sometimes been wondered what is the computational
complexity of simulating the hydrodynamics PDEs.

It seems impossible to answer that with full mathematical
rigor since at present the more fundamental questions of the
existence (and smoothness properties) of solutions to these
equations remain open2. I will recount the mainstream con-
jectural beliefs about that in §2*. Impatient readers could
skip directly from §1 to §6, (or might only wish to examine
the skipped sections afterwards). The present paper argues
(nonrigorously, but convincingly) starting in §6 that certain
classes of hydrodynamics problems are undecidable, i.e. there
exists no algorithm for their solution. We do get a wholy
rigorous theorem that either (1) this undecidability happens,
or (2) nonexistence happens, or (3) hydrodynamics predicts
behavior on some heavily experimentally-investigated fluid-
dynamic scenarios, underlying established technologies, dif-
ferent from what those experiments find. In any of these 3
cases, I conclude that hydrodynamics is a failure. I believe
that the mode of failure is (1), and it is due to the lack of
existence of what I call the “hydrodynamic limit” – see §13
for interpretation of results and moral.

However, maybe the situation is partially salveagable? Per-
haps hydrodynamics still can succeed for some important sub-
set of hydrodynamical problems – in which case effort should
be devoted to determining what that subset is and defining
what “success” means. In §5, we argue that some attempted
“quick fix” salvages won’t work.

2 Summary of the usual conjectural

beliefs about existence, unique-

ness, and smoothness properties

for hydrodynamics*

A3 few theorems [19][9] are known. They say, roughly, that

1. Smooth solutions to the equations of hydrodynamics,
given smooth and bounded initial data and externally-
applied force fields, will exist, uniquely, for some
nonzero (but possibly problem-dependent) amount of
time T into the future.

2. If the “bound” is small enough, then T = ∞.

The rest of this section summarizes the conventional (albeit
conjectural) wisdom about hydrodynamics. But since I have
never seen such a summary before, I cannot be sure. We shall
use Couette flow, and the Hagen-Poiseuille pipe flow, since
they are probably the two most heavily-studied flows ever, as
running examples throughout our discussion.

The“Couette flow” [60] is a rotatory flow of fluid filling the
annular region between two infinitely long concentric cylin-
ders of radii A and B, 0 < A < B, with the inner cylinder
rotated by an external agency at constant angular velocity Ω.
At all small Ω, there is a unique solution of the equations of
hydrodynamics (after any transients have died), namely

ur = uz = 0, uθ =
ΩA2

r

B2 − r2

B2 − A2
(3)

in cylindrical coordinates. (The pressure p is independent of θ
and z and obeys ∂p/∂r = ρ~u2/r.) This implies that a torque
T (representing power consumption TΩ) must be applied to
the inner cylinder, per unit length, to keep the rotation going.
Here T and E (the total kinetic energy of the flow, per unit
length) are

T = 4πνρΩ
B2A2

B2 − A2
, (4)

E =
π

15
Ω2ρ

A4(B − A)(3A2 + 9AB + 8B2)

(A + B)2
.

However, above some critical angular velocity Ω1 [61][71][60]
Couette flow becomes unstable in the sense that a certain
infinitesimal perturbation of it will grow exponentially with
time. Nevertheless, throughout the interval Ω1 < Ω < Ω2

there is a (different) steady (i.e., time-independent) solution
of hydrodynamics. This solution involves, roughly speaking,
a superposition of EQ 3 with toroidally shaped “smoke ring”
vortices stacked along the z direction at uniform spacing, ro-
tating alternately clockwise and anticlockwise. Note this sec-
ond solution is infinitely nonunique in the sense that it may
be translated along the z direction any amount. It is sta-
ble against exponential growth of infinitesimal perturbations
if Ω < Ω2. However, when Ω2 is exceeded [13][60], it be-
comes unstable to exponential growth of infinitesimal pertur-
bations which (roughly) cause these toroidal vortices to be-
come “wavy,” i.e. their central curves now have z depending
on θ in some oscillatory and periodic manner, rather than
z = const. But, in some regime Ω2 < Ω < Ω3 there still
appears to be a solution of hydrodynamics (involving stacked
toroidal vortices with rotating “waves”) which is periodic in
time, and which also appears to be stable. Note that this
set of solutions is now infinitely nonunique with two degrees
of nonuniqueness freedom (translation in z and in θ). Both
these solutions are observed in numerical and in physical ex-
periments.

Now above some Ω4 presumably all steady solutions of hydro-
dynamics become unstable, and above some Ω5 presumably
all time-periodic solutions of hydrodynamics become unsta-
ble. Above some Ω6 presumably all solutions become unsta-
ble, i.e. exhibit exponential growth of certain infinitesimal

1 One could instead, unconventionally, have considered “slippery”boundaries on which one merely demands ~u ·~1n = 0 (where ~1n is a unit normal
vector to the surface at that point, if one exists; where one does not exist, demand ~u = 0 as usual). I suspect all my results still can be made
to work in this case. See [14][73] for recent experimental evidence slip happens. One could also employ surface tension terms at fluid boundaries,
although we prefer not to since these will destroy the exact scale invariance symmetry of the Navier-Stokes equations.

2The Clay Mathematics Institute is offering a $106 prize for a solution [19]. The “intuitionist” and “constructivist” schools of mathematics sneer
at non-constructive existence statements of the sort the Clay prize problem seeks. Instead they would not regard a solution of the equations of
hydrodynamics as “existing” unless there were an algorithm for constructing an arbitrarily close approximation to it. My present paper strongly
suggests that for that notion of existence, the answer to a similar Clay prize question is “no.”

3The * in this section’s title is intended to indicate that it is inessential to read it. It is here as a service to the community. I had not previously
seen a concise discussion of “the usual conjectural beliefs about the mathematical properties of hydrodynamics” and so I am filling that gap.
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perturbations, i.e. “chaos.” (Observed is: turbulence.) Nev-
ertheless solutions of hydrodynamics presumably exist for all
Ω ≥ 0.

The conventional wisdom is that these kinds of behavior, in
particular the existence of “critical” Reynolds numbers cor-
responding to our Ω1, . . . , Ω6 in the Couette problem, also
happen generically in all forced hydrodynamics problems.

The mathematical cause of this presumed instability is as fol-
lows. Consider (EQ 2). It yields ∂~u

∂t as a linear operator

applied to ~u, except for the added nonlinear term (~u · ~∇)~u.
Upon considering infinitesimal additive perturbations ǫ~q, in
the limit ǫ → 0, to a given velocity field ~u, the equations gov-
erning ~q are entirely linear (if we ignore terms of order O(ǫ2)).
When ‖~u‖ is small this linear operator is dominated by the
(well behaved, diffusion equation) term ν∇2~q, which is self-
adjoint and negative-semidefinite, and hence we get stability.
But when ‖~u‖ is large and the flow ~u is “turbulent” and “ran-

dom looking,” then the (~u · ~∇)~q +(~q · ~∇)~u terms will dominate
and make the linear operator behave like a “random matrix
with large coefficients.” Such a matrix (if it were an N × N
matrix) would be “unstable” (i.e. would have an eigenvalue
with positive real part) with very high probability, perhaps
roughly 1 − 2−N . (This would be exact if each eigenvalue
independently were equally likely to have a positive or a neg-
ative real part.) If we are considering a discretized version of
the hydrodynamical PDEs having only a finite number N of
degrees of freedom, then that discretization will be a system
of N quadratic equations in N variables, and hence should
have only a finite number of solutions (at least in the absence
of symmetries such as the z-translation in the Couette flow).
Meanwhile, the number of these solutions which have rea-
sonably small Sobolev norms and hence act “approximately
continuous” and hence are “legitimate” will presumably be
a comparatively small finite number – I think much smaller
than 2N . This contrast is why I think in the limit N → ∞
that essentially all solutions will be unstable. The result is
“turbulence.”

Now hopefully the (presumed) behavior we have just sketched
for the Couette flow is “typical.” Unfortunately it appears
that any direct attempt to write such a statement of univer-
sality must fail. That is because it leads to contradictions in
the case of another famous flow, the “Hagen-Poiseuille flow”
(G.H.L.Hagen & J.L.M.Poiseuille 1839) of fluid through an
infinitely long circular pipe, of radius R, driven by a constant
pressure gradient G in the axial (z) direction. Let g = G/ρ.
For small g, the unique solution is

ur = uθ = 0, uz =
g

4ν
(R2 − r2). (5)

which leads to a total flow rate F = πR2uz given by

F =
π

8ν
R4g. (6)

Numerous combined analytical and computer-numerical in-
vestigations (e.g. [26][56][65]) using several different models

of “stability” all have concluded that EQ 6 is stable in lin-
earized stability theory (i.e., all infinitesimal perturbations to
it shrink exponentially) at all g, i.e. all Reynolds numbers

Re
def
= 2uR/ν, no matter how large. (But this is not a theo-

rem at this time.) This stability is a counterexample to the
existence of the critical values Ω1, Ω2, . . . , Ω6 that arose in
Couette flow.

But... despite the apparent conclusion, from mathematics, of
Poiseuille’s stability, meanwhile experimentally [54] it seems
to be impossible to get non-turbulent pipe flow for any suf-
ficiently large g! (The empirical critical g corresponds to a
Reynolds number Re ≈ 2100, which for water in a 1cm-radius
pipe, corresponds to an average flow rate of only about 3
liters/minute.) Turbulent pipe flow experimentally [38] is very
different from EQ 6. The flow velocity ~u is time-dependent
and is not purely in the z direction, and its time average
uz has a much flatter dependence on r, roughly proportional
(Prandtl) to (R − r)1/7. Furthermore, the average flow rate
does not obey Poiseuille’s law (EQ 7), but instead, empiri-
cally, obeys the entirely different Darcy-Weisbach (1845) law4

F = kR2.5g0.5 (7)

when g is large. Here k depends on the fluid’s viscosity and
the characteristics of the pipe walls, but, for large Re, seems
asymptotically constant.

The subtle resolution of this experimental-theoretical contra-
diction seems to be:

1. The Poiseuille flow EQ 6, although stable, has smaller
and smaller stability exponents, i.e. eigenvalues with
negative real parts that get arbitrarily near 0, as Re →
∞.

2. It is unstable against finite perturbations, with the
norm of the required perturbation shrinking to 0 as
Re → ∞. Thus eventually, unavoidable microscopic
imperfections in the pipe wall, and/or thermal fluctu-
ations, will be large enough to trigger the instability,
despite its complete stability against infinitesimal per-
turbations5. (This seems a depressing example of the
failure of the equations of hydrodynamics alone to be
a correct and complete description of the physics. It
suggests that one also needs a model of the structure of,
and the size-distribution of, random small finite pertur-
bations that continually appear.)

Hence we must modify our above presumptions that “ev-
ery” solution of high-Re hydrodynamics is unstable, to “most”
are unstable to infinitesimal perturbations, while the rest are
unstable to small finite perturbations, with the norm of the
required perturbation shrinking to 0 at high Reynolds num-
bers. The net physical effect of the modified presumptions is
the same – fluid flow at high Reynolds numbers will always
be “turbulent” and “chaotic.”

4Please do not confuse this with the unrelated and irrelevant Darcy (1856) law about seeping flow through porous media such as sand.
5 This view is supported by the fact that the turbulence-transition Reynolds number in pipe flow can be pushed upward from 2100 to values

over 40000 depending on the experimenter, the city, and the care with which the pipe was polished smooth and the inlet to the pipe was shaped.
Meanwhile the transition Reynolds number in Couette flow seems independent of the experimenter. S.J.Chapman has speculated that the amplitude
of the perturbation required to induce turbulence in Poiseuille pipe flow behaves asymptotically proportional to Re−3/2. Also, note that flow in
pipes can and does convert from laminar to turbulent and then later back to laminar after, e.g. some of the flow is drawn off into a side-channel
to reduce the flow rate, or after a widening of the pipe – either one of which can reduce Re back below the transition value.
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The reason it is usually thought that solutions of hydrody-
namics always exist is that the dissipative term ν∇2~u tends
to “smooth them out,” causing hydrodynamics to “act like an
elliptic PDE on small enough length scales,” implying exis-
tence and smoothness. Indeed, there is an approximate sta-
tistical model of “isotropic turbulence” by A.N.Kolmogorov
[34][21]. It predicts that6 at length scales smaller than
LK ≈ ν3/4D−1/4, (where D is the mean rate of power dissi-
pation per unit mass of the turbulent fluid), fluid flow should
be smooth, well-behaved,“viscous”and“laminar,”whereas, at
length scales L with LK ≪ L ≪ LM (where LM is the length
scale of macroscopic constraints, such as boundaries on the
particular flow being considered), the velocity field should ex-
hibit autocorrelations ([21], chapter 5) of the form

[~u(~x, t) − ~u(~x + ~r, t)]2 ∝ |~r|2/3 (8)

and hence have a “k−5/3-power spectrum.” Kolmogorov’s pre-
dictions seem supported by experiments, both on real fluids
and by computer simulation.

Now, despite the belief that high-Re flows are always turbu-
lent and chaotic, thanks to the dissipative term ν∇2~u (which
is the only thing preventing unforced hydrodynamics from
being a perfect Hamiltonian system and hence from obey-
ing the Liouville law of preservation of “phase space volume”)
the phase space volume everywhere is continually expo-
nentially shrinking – despite the exponential stretching in
certain directions responsible for the chaos. This exponential
shrinking ultimately falls into a set of zero measure called a
“strange attractor” [60]. (Such attractors have been ob-
served and studied for various finite-dimensional ODE sys-
tems starting in the 1970s.)

So: the usual conjecture about turbulence is that it is a
strange attractor in the infinite dimensional phase space of
possible flow fields. This strange attractor has measure zero,
but essentially all members of it are flows unstable to either
infinitesimal or small finite perturbations, so that any actual
physical flow will randomly walk around on the strange at-
tractor (with the“randomness”truly arising from random e.g.,
thermal and quantum fluctuations, which continually get am-
plified exponentially by the flow dynamics).

About uniqueness, let me say this. The conventional wisdom
is that the solution of the hydrodynamics equations (with
smooth initial data and force fields obeying appropriate norm
bounds) generically exists and is unique. (The present paper
may offer grounds for questioning and/or altering this conven-
tional wisdom, but we have not gotten there yet.) The exam-
ple of infinite non-uniqueness in Couette flow we mentioned is
not a counterexample because it was non-generic. I.e. it pre-
sumably would not have happened if the inner cylinder had
gradually been rotated faster and faster until reaching final
speed, and if the initial flow field had been unsymmetric. In
that case instabilities such as Taylor’s would have started from
some state already finitely perturbed from the steady flow of
EQ 3 and hence would have proceeded unambiguously.

However, despite this presumed uniqueness, in fact, due to
our presumptions of instability and chaos, the solutions will
be effectively very highly non-unique because tiny random

perturbations will all the time move one into a different so-
lution. (Also, in our Couette example, the gradual ramp-up
of inner cylinder speed, if slow enough, would have had as
its first effect, the exponential decay of our initial flow field’s
difference from EQ 3 to an extremely tiny value, say 10−9999,
which we would later be depending on to keep us unique. Ha.)

Finally, let me note that although the conventional wisdom
favors existence and uniqueness when ν > 0, in the Euler
equation ν = 0 case the conventional wisdom seems split,
with many betting on existence, and many against it.

3 Some unconventional conclusions

arising from the conventional wis-

dom

If all this be so, in what sense is it useful to “solve the equa-
tions of hydrodynamics?” What is useful to do? I advocate
this answer:

Manifesto: The output of a hydrodynamics “solver” should
be some sort of approximate and discretized (e.g. “pixelized”)
description of the strange attractor, along with a description7

of the transition probabilities, per unit time, between different
pixels in it. Each “pixel” is a flow field.

At present, no Navier-Stokes solver attempts to produce this
kind of output – one reason being that it would be enor-
mous. In practice, though, one often is interested in only a
few numbers about the strange attractor. (For example, in
meteorology “what is the probability it will rain tomorrow?”
or in ship design “what is the drag at 5 meter/second ship
speed?”) In that case the output could be compressed down
to only a small number of bits.

The conventional wisdom suggests that solving hydrodynam-
ics (even with my new recommended notion of “solve”) should
be algorithmic. Specifically, to get accuracy ǫ, it seems plau-
sible that discretizing the PDEs at a length scale of LKǫ or so
should suffice, at which point there will be only ≈ (LKǫ)−3L3

M

degrees of freedom in the discretized system. Now since
volume and total energy are bounded, and we’ve just con-
cluded that effective dimensionality is bounded, the overall
phase space volume is bounded too. Now the (now finite-
dimensional polynomial) equations of discretized hydrody-
namics may then be solved by brute force by, e.g., methods of
“resultants,”or by simply exhaustively examining every size-ǫ
chunk in the entire phase space. By exhaustive search and ex-
haustive randomized experiments all the pixel transition prob-
abilities could then be estimated and the pixelized strange
attractor determined. This is an extremely slow algorithm –
certainly at least exponential time – but it is an algorithm, i.e.
it will terminate, and its output arguably should be useful.

It is conceivable that no significantly faster algorithm exists,
because possibly there is no significantly faster way to esti-
mate integrals over attractors, than by exhaustive examina-
tion of the attractor, and no significantly faster way to find

6For water with D = 1watt/gram, this formula yields LK = 5.6microns.
7Under some auxiliary model of of the structure of, and the size-distribution of, random small finite perturbations which continually appear,

which we need in addition to the equations of hydrodynamics.
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the attractor, than by exhaustive examination of the whole of
phase space8.

There is a much faster algorithm – running9 in time poly-
nomial in L−1

K and ǫ−1, which resembles what practitioners
actually do – but it seems much further from having any rig-
orous justification, either of its validity (i.e. fact that it suc-
ceeds, and hence algorithmicity), or of the usefulness of its
output. It is: solve the finite dimensional polynomial equa-
tions of discretized hydrodynamics by nonrigorous numerical
methods that (hopefully) converge from an initial guess; try-
ing several “random” initial guesses, and then averaging over
the resulting few approximate solutions of discretized hydro-
dynamics (hoping this sampling and averaging procedure is
close enough to a true Monte-Carlo integration over the whole
strange attractor) to find an approximate answer to whatever
the original question (e.g. “what is the drag” or “what is the
probability it will rain”) was.

4 How hydrodynamics can be non-

algorithmic, despite all that con-

ventional wisdom

Kolmogorov’s turbulence model does not apply in anisotropic
situations such as fluid near a boundary. His autocorrelation
and spectral power density laws cannot hold if the interval
LK ≪ L ≪ LM is empty because the container boundary
features “wiggles” at all length scales LM , including arbitrar-
ily tiny ones. Finally, if the initial spectral power distribution
had more power at small scales than the Kolmogorov law,
then again that law cannot hold. Therefore the “usual” ar-
guments from §2 sketching why hydrodynamics should hope-
fully “typically” be algorithmic, and why there should be a
“smallest length scale that matters” (which is the reason for
algorithmicity), both would not hold in such scenarios.

The construction we will present in §6 onward indeed has all
three of these anti-Kolmogorov and anti-conventional-wisdom
properties.

Incidentally, the Clay prize problem statement by Fefferman
[19] only considers incompressible single fluids filling all of R

3

or (R/Z)3, i.e. forbids solid boundaries, two fluids, and free
surfaces. Throughout our upcoming undecidability construc-
tion, solid boundaries and free liquid surfaces will be very
convenient and helpful tools. It might be much more diffi-
cult or impossible to make our same argument go through
with those tools denied to us. Thus the present work sug-
gests that, by making this problem choice, in order to “get rid
of presumably irrelevant complications,” Fefferman actually

may have unintentionally sacrificed much of the richness of
the problem.

I also point out that in hydrodynamics with free surfaces, a
radially collapsing cylindrical cavity – for which there is a
trivial exact vorticity-free solution ur ∝ −r−1 – actually does
lead to a near-singularity (exponentially large fluid speeds in
exponentially small volumes reached in finite time with finite
energy input), see footnote 18. Furthermore, if we also al-
low unconventional “slippery” boundary conditions (footnote
1) or alternatively, “Euler” fluids of viscosity ν = 0, then one
can construct solutions yielding infinite flow speeds in finite
time with finite energy input: simply push water into a con-
verging pipe with radius proportional to x0.4 where x is the
length along the pipe (or into a converging wedge with width
proportional to x0.8).

5 Is there a “quick fix”?

This paper will argue that hydrodynamics is nonalgorithmic.
But: perhaps all the useful hydrodynamics problems – the
ones that arise in“real life”– are algorithmic. If so, that would
be very important and desirable. This section will discuss 5
attempts to define such a “good” subclass of hydrodynamics
problems. Call any such attempt (if successful) a “quick fix.”
Unfortunately, all 5 of the quick fix attempts we shall discuss
fail, either because (i) they exclude a large class of hydrody-
namics problems previously widely regarded as useful, or (ii)
because they do not defeat my undecidability construction, or
(iii) because the proposed “subclass” of hydrodynamic situa-
tions in fact can self-generate situations which lie outside of
that class.

Try #1: Lipshitz container walls. One may be led by
§4 to the speculation that perhaps hydrodynamics is algo-
rithmic if we demand that the container boundary be smooth
(i.e., all derivatives of all orders exist) everywhere and have
Lipshitz10 normal vectors everywhere, and similarly demand
that the initial velocity field in the fluid also be smooth and
Lipshitz everywhere – these conditions tend to prevent impos-
ing microscopic structure at arbitrarily small length scales11.

Why it fails: But before the physicist/engineer-reader
walks away sneering that my whole paper is merely an
uninteresting mathematical quibble, a mere byproduct of
“rigor mortis,” let me remind him that the whole Kutta-
Joukowski theory of aerofoils12 demands a “sharp trailing
edge” at which boundaries are necessarily non-Lipshitz and
non-differentiable. Most physicists are unwilling to sacrifice
aerofoil theory13.

8Food for thought: (1) It is easy to set up finite dimensional ODE systems – especially easy if those ODEs are, like hydrodynamics, dissipative
– which simulate the operation of universal computers such as “counter machines.” (2) Here are three undecidable problems (by similar proofs to
the usual demonstration [47] of the insolubility of the Halting Problem). Attractor membership: Given a Turing Machine and a state, decide
if that state is a member of a perpetual loop the TM will execute. Attractor cardinality: Decide if that TM will fall into a perpetual loop
of length < k (for any specified integer k). Attractor existence: Decide if that TM will fall into a perpetual loop, or if its state sequence will
be aperiodic. (3) Finitized versions of the first two of these problems (i.e. with the TM replaced by a computer having only a polynomially large
number of memory bits) are PSPACE-complete.

9And it probably is possible to reduce the polynomial dependence on ǫ−1 to become polynomial in | log ǫ| by employing “spectral” numerical
methods [28] of “infinite order,” rather than fixed-order grid-based discretization schemes. I won’t worry about that.

10A continuous function F (x) is “Lipshitz” if |F (x + ∆) − F (x)| < c|∆| for some “Lipshitz constant” c.
11Refusing to allow perfect incompressibility and perfect independence from thermal effects might be important to allow algorithmicity.
12Admittedly, Kutta-Joukowski theory was formulated for inviscid flow.
13There is also the well known phenomenon of “shock waves” (discontinuities in velocity and density) which arise naturally thoughout the

mechanics of compressible fluids.
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Because the construction for my undecidability argument
will involve boundaries smooth everywhere except at a sin-
gle point, it actually arguably is nicer than Kutta-Joukowski
aerofoils.

Try #2: forbid small features. Instead of requiring a
Lipshitz condition, one could, in some other (unknown) way,
try to make a condition forbidding solid boundaries with
“features” below some particular “minimum permitted length
scale.” Aside from the question of how to make that notion
precise, there is another problem: there are scenarios, which
experimental physicists work with, in which solid boundaries
and fluid features arise exhibiting “fractal” behavior down to
very small scales. In the case of “diffusion-limited aggrega-
tion” [70] (which produces beautiful tree-like fractal struc-
tures during the electrodeposition of copper in water, and
which is partially responsible for the fractal-like appearance
of snowflakes), this fractality seems to continue all the way
down to atomic scale. Fractal structure also arises in dielec-
tric breakdown (e.g. lightning, the subject of ≈ 20000 pa-
pers) [50]. Surely physicists are unwilling to sacrifice the pre-
sumed ability of fluid dynamics to treat flows in the presence
of snowflakes and lightning?

Even presuming they are willing to sacrifice that, there is
another problem. Consider the “viscous fingering” instabil-
ity [6][16][50][51] arising when a fluid of low viscosity flows
(slowly, with the flow always being entirely laminar) under
pressure into a fluid of high viscosity. If the interfacial sur-
face tension between the two fluids is small (especially if it is
zero) then beautiful fractal tree-like flow structures appear.
By making one of the fluids be plaster of Paris slurry [16],
one can create fractal solid objects which may be studied at
leisure. (A fractal dimension 1.6 ± 0.1 was found, extending
over at least 3 decades of length scaling [16], with the min-
imum branch size being of order tens of micrometers – ap-
proximately as small as one could hope for, given that treat-
ing plaster as a “liquid” is an approximation that presumably
breaks down at the size scale of the colloidal plaster parti-
cles.) Mathematical models of this suggest viscous fingering
will create fractality at every length scale, all the way down to
zero, in finite time. (In Bensimon et al. [6], see EQ 1.13 with
T = 0 and b, U positive constants, and also see their sentence
after EQ 3.25.) So one either must admit (a) the need to ap-
ply the Navier-Stokes equations in scenarios with boundaries
of this kind, or (b) that hydrodynamics is not good enough
to handle scenarios it itself can create.

Try #3: forbid high-frequency power: Another at-
tempted quick fix – demanding that the initial spectral power
density not be allowed to have more power at small length
scales than Kolmogorov’s law – also seems inadequate. First
of all, it seems possible (see §9) to make our undecidability
construction have a bounded and very pleasant initial veloc-
ity distribution, with all the strangeness arising from later
interaction with the solid boundaries. Second, various inter-
esting and realistic physical scenarios seem constructible in
which this scaling demand is false14. (Presumably our physi-
cist does not want to sacrifice the ability of hydrodynamics to
help analyse such scenarios.)

Try #4: relativity. Might fluid dynamics be salvaged (i.e.
again become algorithmic) if we agree to employ relativistic
hydrodynamics? This suggestion is motivated by the desire
to defeat the occurrence, in my upcoming undecidability con-
struction, of unboundedly high fluid speeds.

My replies: First, a technical quibble: there is no such thing
as relativistic hydrodynamics since the constant-density con-
dition implies infinite speed of sound, faster than the speed
of light. But there is a relativistic version of the full Navier-
Stokes equations [37]. Second, I suspect relativity will not sal-
vage algorithmicity (although I have no proof) because merely
the size-scaling employed in my uncomputability construction
(without the speed scaling) likely is sufficient. Third: How-
ever, suppose for the sake of argument that it does salvage
algorithmicity. In that case, physicists would, in order to
simulate their bathtub, resort to relativistic hydrodynamics.
This goes against the usual physicist’s belief that “obviously,
relativistic effects are not important in bathtubs and may be
neglected.” (But see footnote 18 and the final paragraph of
§13 for examples in which physicist’s intuitions of this sort
are entirely wrong.) That belief would in fact be incorrect
in the sense that they would have the very important effect
of salvaging algorithmicity. But really, this would be no sal-
vage at all, for practical physics purposes, since obviously, if
relativistic effects had a dramatic macroscopic effect on the
solutions of the fluids PDEs, then those PDEs would be a very
poor approximation of water, so that those solutions would
be both physically irrelevant and presumably extremely ill-
conditioned. (This all in fact happens: see footnote 18 and
the final paragraph of §13.) So, the possible event of relativity
“saving” hydrodynamics would be a Pyrrhic victory – really
this would be the final nail in its coffin!

Try #5: forbid nasty topology: Luc Tartar (Math dept.
CMU) suggested that topology could come to the rescue –
my upcoming uncomputability construction involves a con-
tainer whose boundary’s topology involves an infinite num-
ber of “handles.” Perhaps computability could be restored to
hydrodynamics by forbidding such? But actually, all of the
“pipes” in our construction could be slit by narrow slits, and
the resulting pipe-wall fragments attached to an outer spher-
ical wall by means of rods. The resulting container would
have an interior topologically equivalent to the interior of a
sphere. But if the slits were narrow enough, flows though the
pipes would be only negligibly affected by leakage through
the slits and so my construction should still work. So appar-
ently Tartar’s quick-fix idea does not work – topology is not
relevant.

6 Top level plan of undecidability

construction

We will follow the standard plan [47] for proving uncom-
putability. Thus our proof will greatly resemble, in its large
scale organization, Conway’s proof [1] of the undecidability of
the long term behavior of his one-player game life. In that

14For example, consider making a fractal solid object, as before, out of an explosive material, then explode it. Similar effects presumably arise
in lightning. A less dramatic example is simply the classical thermal acoustic spectrum, which by the “equipartition principle” from statistical
mechanics, has a flat power spectrum. Yet another example is “sonoluminescence,” see footnote 18.
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proof, Conway showed how various life constructs could em-
ulate AND, OR, and NOT logic gates and signal transmitting
“wires” and “crossovers.” Then, he argued, one could, within
the life world, build a computer. That computer could be
programmed to solve an arbitrary Turing halting problem and
then depending on the answer, set in motion some events that
would drastically alter the whole life picture. (For example,
erasing everything, or not.) That would prove deciding the
long term fate of a life configuration is at least as hard as
solving an arbitrary Turing halting problem, i.e. undecidable.
Q.E.D. We similarly will show how, using hydrodynamics, to
build logic gates and wires, and thus to build computers. We
shall use the scaling properties of the Navier-Stokes equations
to show how to make that “computer” perform an infinite
number of primitive steps in finite time even with a finite en-
ergy supply. We shall use error-correction techniques to show
it does not matter even if each of our logic-gates suffers from
some small-enough-constant probability of making a logic er-
ror. We conclude: deciding essentially any question about
what a hydrodynamic system will do in some finite time, is at
least as hard as solving an arbitrary Turing halting problem,
i.e. is undecidable. Q.E.D. The rest of this section outlines
this plan in a little more detail, and then the full proof is
presented in the rest of the paper.

Henry Cejtin often wished that his computer had just one
additional instruction: the “go ten times faster” instruction,
which would multiply the clock speed by a factor of 10. Ac-
tually, it would suffice to add a “go 1.01 times faster” instruc-
tion (or “go s times faster,” for any constant s > 1) to the
instruction set of a Turing machine, to allow it to solve the
“Halting problem” (which is insoluble for conventional Tur-
ing machines) in finite time15. This is because the total time
to execute an infinite sequence of instructions, each s times
faster than the previous one, is 1 + s−1 + s−2 + s−3 + · · · =
s/(s − 1) < ∞.

For our purposes it is best to imagine having both a “go 1.01
times faster” and a “go 1.01 times slower” instruction.

Today’s computers are built out of logical elements which in
turn are made of electrical wires, resistors, and transistors. If
there were no “atomic size scale” and no discrete “electrons”
quantizing electric charge, but instead matter (and electrical
charge) were true continua of infinite durability, then there
would be no objection to having an infinite set of transistors,
resistors, and wires each 1.01 times smaller (and performing
each logical operation 1.01 times faster while consuming 1.012

times less energy per logical operation) than the previous one,
and with the whole infinite set of these components fitting into
a finite volume. Indeed it would then be possible to have a
computer that would, after doing some instructions, download
its state into a 1.01-times smaller and faster and less power
hungry computer (but with a 1.001-times larger memory ca-
pacity) next door. That computer in turn, after doing some
instructions, could download its state into a third computer
1.01-times smaller than it, and so on. E.g., the kth computer
would run at clock speed ∝ 1.01k, have memory size ∝ 1.001k,

and perform a number of instructions ∝ 1.001k before down-
loading itself to computer k+1. Each computer, after getting
the answer to its problem (if any), would upload that an-
swer to the next larger computer. The whole infinite set of
computers would occupy finite volume and would perform an
infinite number of instructions in finite time (allowing solution
of Turing’s “Halting Problem,” with output by the top-level,
macroscopic, computer) and with the consumption of a finite
amount of energy in total.

The above scenario is almost precisely the idea I am going
to use, except that I am going to base it, not on electrical
elements such as wires, resistors, and transistors, but instead
on hydraulic elements. Because the PDEs of hydrodynamics,
which everything will rest upon, are true-continuum equa-
tions, there will be no obstacle caused by the discreteness of
charge or atoms, and because I am assuming the container
is perfectly rigid, there will be no obstacle caused by finite
material strengths.

We will depend heavily on the following “scale invariance
property” of hydrodynamics (which, incidentally, is well con-
firmed experimentally – including in turbulent flows).

Lemma 1 (Scale invariance of hydrodynamics). Let
s > 0 be real. If all velocities ~u are scaled by a factor of s,
all lengths are scaled by a factor s−1, and all times are scaled
by a factor of s−2 (also pressures p are scaled by s2, and ex-
ternal forces per unit volume by s3, and the rigid container is
length-scaled), while the fluid’s density ρ and kinematic vis-
cosity ν are left unchanged: then the equations EQ 1 and 2 of
hydrodynamics are unchanged.
Note that under this scaling, energies scale as s−1, flow rates
as s−1, power dissipation as s, surface areas as s−2, and en-
ergy densities as s2.

In §7 we’ll describe the fundamental logic components our hy-
draulic computers are made from. In §8 we’ll sketch how to
assemble them into a computer, with more details filled in in
§9. Worries re unreliable components and precision require-
ments for the initial data are dealt with in §11 and §10. In §12
we discuss extensions of our construction to handle “higher
levels” of undecidability. §13 concludes. Although many of
the arguments in this paper are not mathematically rigorous,
the ones that are suffice to yield a fully rigorous theorem in
§13.

7 Nikola Tesla, “Fluidics,” and hy-

draulic logic components

One of the lesser-known patented inventions of Nikola Tesla
(1856-1943) was his “valvular conduit,” which later writers
have also called the “hydraulic diode” and “fluidic diode.”

This is a wholy rigid pipelike device (i.e. it has no moving
or flexible solid parts) through which fluid will flow with low
resistance in one direction, while flow in the reverse direction
incurs high resistance. Flow rates at the same pressure differ-
ence can easily differ by over a factor of 10. There are many

15 Of course [47], the availability of a machine to solve the halting problem in 1 hour, would immediately make it easy to, e.g., settle the Riemann
hypothesis, solve Chess, settle the P=NP question, build artificial superintelligences, predict the weather, etc. Even if the machine merely produced
a random bit which, with probability ≥ 2/3, was the correct answer to the halting problem specified to it, that would still be essentially as good.
Also, of course the aim of the present paper is not to show how to build a useful device to solve the halting problem – that would be ridiculous –
but instead is to show that the usual mathematical formulation of hydrodynamics is unsimulable and leads to Turing-undecidable problems.
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possible geometries, but I have illustrated the simplest ver-
sion of Tesla’s conduit in figure 1. Its principle of operation
(expressed in modern terms) is as follows. Flow in the for-
ward direction A → B proceeds roughly in a straight line and
is smooth and laminar. If one attempts to force flow in the
reverse direction B → A, then some of it will be diverted into
the side-tube at D, and its re-emergence at C will induce a
transition to turbulence (the side-tube could also be shaped in
such a way as to encourage turbulent flow through it) which
will greatly increase the hydraulic resistance. This also causes
what backwards flow does occur, to be of a randomly whirling,
intermittent, and unsteady character (although this can be
“smoothed out” by a subsequent conversion back to laminar
flow as in footnote 5).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AB
D C

Figure 1. Tesla’s valvular conduit (simplified).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If we restrict attention just the region near C (enclosed
by dashed boundary), what we have is a more basic three-
terminal hydraulic component which could be called the “hy-
draulic transistor.” There is no need for the entrance to the
side tube (at D) to be drawn off from our main flow. It
could instead have been drawn from some other flow in some
other pipe (provided the inlet pressure was in the permissible
range). In that case, the hydraulic resistance of B → A flow
would be varied over a 10:1 ratio by an external control.

This ability to build hydraulic “transistor circuits” analo-
gously to electrical ones (and see table 2 of analogies, plus
consider the remark about conversion between laminar and
turbulent flows in footnote 5) suggests that it ought to be
possible to build a complete family of all-hydraulic digital
logic components and, with them, a digital computer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Hydraulic
Voltage Pressure
Current Flow rate (volume/time)
Charge Fluid volume
Resistor Sinuous capillary, or porous plug (laminar-viscous flow)
Inductor A pipe (large momentum in flow)
Capacitor charged to some voltage Tank of water raised to some height
Nonlinear resistor Length of pipe (turbulent flow)
Diode Valvular conduit
Bipolar transistor hydraulic transistor

Figure 2. Electrical-Hydraulic analogies.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This hope is realized. Although I was initially inspired by
Tesla’s Valvular Conduit patent, further searching in the lit-
erature revealed that

1. Hydraulic “amplifiers” or “fluid-controlled-fluid-
switches” based on the transition to turbulence had
already been invented by Chichester A. Bell in 1892,
i.e. before Tesla (and of course, the “diodic” observa-
tion that certain bodies have different coefficients of
drag when moving forwards instead of backwards, dates
to antiquity).

2. The field of“fluidics,”rooted in initial discoveries such as
these, as well as other principles of operation such as jet
diversions, jet interactions, vortices, and the “Coanda
effect” [12] is nowadays an established technology.

“Fluidics”has been defined as “techniques which use flowing
gases or liquids as an information-carrying medium and as a
basis for signal sensing, switching, amplification, and control
of fluid flows, and digital and analog logic, employing devices
which have no moving parts.” An introduction is [3].

Numerous fluidic-logic components including XOR, AND,
NAND, NOR, and OR gates, analog and digital ampli-

fiers both inverting and noninverting (including high-gain
“op-amps” with differential inputs capable of being used
in negative-feedback circuits), binary-adders and counters,
Schmitt triggers, oscillators, and bistable “flip-flop” like el-
ements based on the Coanda effect (these seem to have no di-
rect electrical analogue) are commercially available. Typical
“fanouts” are ≈ 5. Vortex-based fluidic diodes have diodicity
ratios of 40:1. Fluid-controllable variable resistors with resis-
tance ratios of 10:1 are available. Amplifiers can exhibit enor-
mous power and/or amplitude gains if cascaded (thus small
fluid flows have been used to steer large rockets) but 10:1 to
200:1 gains are typical of uncascaded amps.

Integrated fluidic logic circuits involving ≈ 100 components
have been built using photolithographic techniques with sub-
millimeter line widths. They can run at kilohertz frequencies.
(E.g. the frontspiece of [3] pictures a fluidic divide-by-10 cir-
cuit.)

The Univac corporation built a complete small (4 bit) flu-
idic general purpose computer (for experimental purposes) in
1964, using air as the working fluid and plastic parts. It had
about 250 NOR gates with fanout and fanin 4 and switching
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times of around 1-5 milliseconds. It is pictured on page 245 of
[31]. Air is the most common working fluid in fluidics technol-
ogy due to its availability and low mess. At the low pressures
(≤ 1 psi) and low subsonic (≤ 0.3 mach) flow speeds often
used [33], air may be treated fairly accurately as incompress-
ible; thus the fluidic components mentioned in [3] are claimed
to work with most any liquid or gas.

In addition to fluidic digital logic devices, there are also
fluidic vacuum pumps (based on Venturi effect), vacuum
and pressure sensors, liquid-level sensors, sensors for pres-
ence/absence of stream-blocking objects, acoustic sensors and
acoustic generators, fluidic timers, flow meters, and pumps
and pneumatic-powered mechanical devices, One may pur-
chase a “fluidic logic design kit” containing 24 NOR gates and
other devices from www.air-logic.com.

The 5 main ideas behind the operations of the most common
fluidic logic components are these:

Coanda effect: A jet of fluid is “attracted” toward solid sur-
faces (due to Bernoulli and“entrainment”effects). One can set
up geometries in which a fluid jet emerges vertically upward
from a nozzle and then bends rightward until it hits a surface.
It then continues to move along that surface (which may also
be vertical, or perhaps sloped diagonally to the right). Alter-
natively, the jet bends leftward until it hits a different surface,
then continues along it. There are thus two stable states, and
a perturbation by a puff of fluid introduced from a separate
“control”nozzle can be enough to induce the state to flip. One
can also make several control nozzles such that a simultane-
ous signal from all of them is needed to cause the state-flip
(AND) or such that only one signal suffices (OR).

This effect was discovered, and devices based on it patented,
by Henri Coanda [12] in 1936. However, already Thomas
Young in 1800 had published some observations of this ef-
fect, as demonstrated by the sideways “attraction”of a candle
flame and its smoke stream to solid objects. (Directions for
how to use a candle to build your own fluidic “flip-flop”based
on this effect are in [58].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3. Coanda-based flip-flop. Main jet J is “attracted”
to right wall and stays there. After perturbation by puff from
control jet B, will move to left wall and stay there. Puffs from
A1 OR A2 will flip it back. By making the device asymmetric
so that the left wall is closer to J than the right wall, one can
make a “biased” flip-flop which automatically initializes itself
to the left-state, in the absence of a control signal.

A B

J

A1

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jet diversions:

Figure 4. Differential op-amp based on diversion of main
jet M by control jets B (positive input) and A (negative in-
put) to inverting and non-inverting outputs. (Also imple-
ments logical-NOT function.)

B

A

M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jet interactions:

Figure 5. Passive AND and XOR gates based on jet inter-
action (or lack thereof). Jets input at A and B interact to
yield output C = A AND B, and output D = A XOR B.

A

B
C D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jet transition to turbulence:

Figure 6. “Turbulence amplifier” implements logical NOR
functionality: If fluid emits from neither A NOR B, then
main jet flows laminarly from input to output (2). If A OR B
control jets are active, then a laminar→turbulent transition
is triggered in main jet (1) causing the in→out path to have
large hydraulic resistance, and causing most of input flow to
exit through the vent.
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A B

Vent

In Out

A B

Vent

In Out

(1)

(2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vortices:

Figure 7. “Vortex diode.” Shut vent B. Fluid flows with low
resistance from A to C as fairly straight jet; but if C → A flow
is attempted, then the flow will form a vortex, causing large
hydraulic resistance. Indeed in the inviscid limit zero flow (in
theory) will exit A if centrifugal “pressure threshhold” is not
exceeded at input C.

If B is not shut, the same device instead works as an inverting
amplifier or “variable resistor.” The main jet flows from B to
A with low resistance; but if a control jet from C is intro-
duced, it will deflect the main jet to form a vortex (dashed
spiral) causing high B → A hydraulic resistance.

A

B
C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fluidic technology is the subject of numerous books: [2] [5]
[10] [17] [20] [30] [31] [33] [48], as well as the Journal of Fluid

control (formerly Fluidics quarterly). (There also are articles
on fluidics in the Brittanica and Americana encyclopedias.)

Thanks to the vast increases in speed and reductions in size,
power consumption, and cost of electronic logic circuitry dur-
ing 1940-2000, fluidics cannot compete with electronics in gen-
eral purpose logic and computing applications. However, flu-
idic devices can be built to be very robust and to work in
extreme environmental conditions such as:

• heavy radiation,
• huge electrical noise,
• (this one may surprise you) intense vibration,
• high temperature,
• high power levels,
• harsh chemicals,
• in the presence of easily ignited fuels.

These conditions might be incompatible with electronics.
Also, in some applications, fluidic power sources are read-
ily available but electrical power sources are not, while great
speed is not needed. People are also interested in ways to
control and create fluid flows which do not suffer from the
unreliability inherent in devices with moving parts. Also, in-
terest in fluidics has recently been reinvigorated by possible
applications in “micromachines” and/or biomedical devices,
and chemical micro-quantity analysers and processing devices.
There may also be musical and acoustical applications. All
this causes fluidics to remain viable.

8 Assembling the computer from

logic gates

We make a sequence C0, C1, C2, C3,... of self-contained gen-
eral purpose Von Neumann architecture fluidic computers,
each presumably rather similar to Univac’s. Those unfamiliar
with how to build computers (as well as simpler constructs,
e.g. adders) from elementary logic gates may consult [29].
(Call the complete multicomputer C.) Ck+1 is similar to Ck,
but all of its pipes and fluidic logic components are scaled
down in16length by a factor of 1.01, while its number of bits
of memory is scaled up by a factor of 1.001. We assume our
fundamental fluidic logic components are robust enough to
handle driving logic gates a few percent larger or smaller than
usual without error, so that Ck and Ck+1 can communicate.
The scaleup of the memory size could present some difficul-
ties caused by the necessity of making the pipes between the
memory and processor get longer and longer relative to their
diameter. Such difficulties need to be circumvented by placing
amplifying “repeaters” along such long pipes. Indeed we may
imagine everything as built on a grid with no pipe segment
longer than a constant number of grid side-lengths [39] and
no logic gate output needing to drive more than a constant
number of other inputs.

Due to the scaling relations of Lemma 1, Ck’s fundamental
logic gates will operate 1.012k times more quickly than C0’s.

16This fluid-computer construction is actually extremely similar to the human circulatory system, which is fractal in nature [35] with the aorta
(diam. 2.5cm) branching into arteries, branching ultimately down to capillaries (diam. 10µm) which then recombine, ultimately forming large
veins. The radii at the branchings approximately obey “Murray’s law” R3 =

P

k r3
k which tends to minimize pumping power for a given volume

and flow rate [35][49][69]. (Supposedly in turbulent flow the exponent would be 2.33 not 3.) The fact that the heart can pump blood through this
system with a complete cycle taking only finite time is due to essentially the same sort of math (scaling relationships and finite sums of geometric
series) that allows the present paper’s construction to work in finite time and energy.
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However, since each memory access could be up to 1.001k

times slower (we are being generous here) than if Ck had a
constant size memory, the overall instruction-rate of Ck will
be ≥ 1.012k1.001−k.

Ck performs 1.001k instructions before turning on, copying
its state to, and handing control over to, Ck+1. (If, however,
these instructions included a “halt” instruction, it instead up-
loads the information “I have halted” to Ck−1.) All this takes
time proportional to 1.01−2k1.0012k. It then sits and waits
for an answer (if any) to be uploaded from Ck+1; if so it up-
loads that answer in turn to Ck−1. The total waiting time
for Ck to wait for all Cj with j > k is also proportional to
1.01−2k1.0012k or less. After this waiting period has expired,
Ck may turn itself off. Ck fits inside a cube with sidelength
proportional to 1.01−k1.001k. The whole set of cubes may
be placed along a line in a self-similar manner (they all are
inscribed in a cone, see figure 9) with a limit point C∞ at the
apex of the cone.

The internal plumbing of Ck has everywhere smooth bound-
ary, so that the entire multicomputer is a container with ev-
erywhere smooth boundary except at the unique limit point.
The surface area of the container due to Ck is proportional
to 1.01−2k1.001kkO(1). The total power consumption of Ck is
proportional to 1.01k1.001k but it only needs to operate for a
time proportional to 1.01−2k1.0012k or less, so its total energy
consumption is proportional to 1.01−k1.0013k or less. Hence
(by summing geometric series) the entire multicomputer has
bounded surface area and bounded energy consumption.

Initially consider Ck to be powered by its own self-contained
pressure reservoir containing an amount of fluid proportional
to 1.01−3k1.0012k at an input pressure (supplied by an exter-
nal force pressing downward on the upper surface of the fluid
in the reservoir) proportional to 1.012k1.001k. Fluid from
this reservoir flows through the computer during its opera-
tion and into a same-volume self-contained drainage basin (at
zero pressure) as in figure 8.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pressure

Ck Ck

(a)

(b)

Figure 8. (a) Schematic of simple power supply scheme for
computer Ck. (b) Alternatively the flow could be cyclic with
the initial energy stored kinetically rather than as pressure

(and/or the power could be supplied by external forcing). In
§9 we shall abandon these schemes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To solve the general Turing halting problem: The input
is assumed to be pre-initialized into the data in the memory
bits of the first computer Ck whose memory is sufficiently
large to contain it. (I.e., this input data is encoded in the ini-
tial conditions of our hydrodynamics problem.). All other Cj

start with a blank memory. Thus the whole multicomputer
including its “input” and/or “program” is finitely describable
(since, e.g., all the Ck are geometrically similar). All the com-
puters Cj do nothing until the input-containing computer is
reached, then the real computation starts.

Alternatively, all computers can be initialized identically, but
there are order-N blobs of fluid (whose size and speed are
appropriately scaled) in a row all flying into a sensor located
within Ck, where there are N bits of input and Ck is the first
computer capable of reading that much input into its memory.
(The queued-up input in this setup would have to be allowed
initially to extend outside of C.)

The output from the top-level computer C0 can be used (per-
haps after some amplification) to flip the state of a Coanda
flip-flop, thus diverting the flow emerging from one source
basin into one of two possible destination basins, so that, if
the halting problem’s answer is “it halts,” the diversion will
activate and hence most (say > 90%) of that flow will end up
in basin A, whereas if the answer is “does not halt” then no
diversion will be activated and > 90% of the water will end
up in basin B (see figure 9).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C C C C0 1 2 3

A B

Figure 9. Multicomputer C formed by cubical computers
C0, C1, C2, . . . inscribed in cone with apex C∞. Arrows de-
note information-flow channels.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thus the question of deciding which basin, A or B, will end
up containing more water, is Turing-undecidable. We are now
done presenting the core of our uncomputability argument,
but additional details and extensions will be fleshed out in
§9-12, and a theorem statement will be presented in §13.

9 How to power it

Our plan as we’ve so far described it has flaws. For simplic-
ity I said the kth computer was powered by its own pressure
reservoir (the hydraulic equivalent of a “battery”), with an ex-
ponentially increasing sequence of required initial pressures,
but an exponentially decreasing sequence of required reservoir
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volumes (and hence exponentially decreasing total stored en-
ergies). These pressure reservoirs needed to be “turned on” at
appropriate moments. But all this is not realistic if externally
applied forces and moving solid parts are disallowed.

Furthermore, some initial reservoir pressures were unbound-
edly large – despite the fact that their summed energy re-
mained bounded. Some readers would object to that17.

Fortunately, it seems possible to still make everything work
even with all initial energy densities (and pressures and ve-
locities) subjected to one, uniform, global upper bound.

The idea is that, because of our assumptions of perfect wall
rigidity and perfectly incompressible fluid, it is possible to
generate unboundedly large pressures. For example, suppose
a mass M of fluid moving with velocity V in a radius-R pipe
suddenly collides with a barrier in the pipe (and/or with an-
other, pre-existing stationary equal mass of fluid) and that
barrier happens to have been shaped almost exactly the same
as the forward boundary of the fluid mass (so that the entire
collision happens in time ǫ). Then the time-averaged force
exerted on the fluid mass during a time-interval of width ǫ,
must be at least MV/ǫ, which can be made arbitrarily large by
decreasing ǫ → 0+. Similarly (and necessarily) the pressures
found in the fluid near the barrier will also be proportional to
MV R−2ǫ−1 during a time interval of width ≈ ǫ. Such large
temporary pressures could be used to power our computers for
the small amounts of time they must remain operational. If
the fluid mass initially was moving as a solid body separated
from the pipe walls by ǫ, then there would be no frictional
losses until the collision happened.

The idea we have just described is what underlies the es-
tablished technology of “two stage light-gas guns” [15][27] in
which a piston, driven by a gunpowder explosion, is used
to drive a mass of fluid along a pipe and then into a small
hole, where it in turn is used to launch projectiles at up to
11km/second. The fluid used to reach these high speeds is hot
hydrogen gas, because it is the most incompressible fluid (in

the sense of having the highest speed of sound) available18.

In this scheme, the power source for the Ck would be a mass of
fluid moving initially at a velocity independent of k, and hav-
ing a shape largely (but not entirely) independent of k. The
linear dimensions of the kth fluid mass, and the pipe con-
taining it, and the separation between that fluid mass and its
containing pipe walls, and the collision-time-duration when
that mass hit the barrier at the end of its pipe, all would
decrease exponentially with k at different rates (permitting
everything to fit in finite volume), while the pressures gen-
erated at the small ejection nozzles in the barrier (figure 10)
would increase exponentially with k. These ejection nozzles
would serve as19 the pressure source for powering computer
k.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AB

Figure 10. When blob B of incompressible fluid, moving as
solid body at fixed speed, hits end of pipe, initially stationary
blob A of fluid will be ejected at pressures and speeds which
can be made arbitrarily large by decreasing the radius of the
hole and the discrepancy between the shapes of B and the
pipe-end.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17 Actually, it is fairly common in the fluid mechanics literature to use the “vortex” flow, which is the same as Couette flow EQ 3 in the limit
A → 0+ with ΩA2 held constant. This has infinite flow velocity on the vortex’s axial line. Note that in this limit the energy E and torque T in EQ 4
approach finite values. This suggests that many mathematical fluid mechanicists do not care about infinite flow speeds if energy remains bounded.
Because linear combinations of the Couette and Poiseuille (EQ 6) flows are also exact solutions, one can also have “helical vortices.” In the limit
ν → 0, g → 0, g/ν → constant these also are solutions of the Euler equations for frictionless flow. (Also note that high-speed helical vortex-like
flows arise naturally as “tornadoes.” Science News 155,20 [15 May 1999] claimed that Prof. Joshua Wurman used truck-mounted Doppler Radar
to measure a wind speed, ≈ 50 meters up, of about Mach 0.43 in a tornado at 7pm 3 May 1999 near Moore, Oklahoma. In an incompressible fluid,
Mach 0.43 would be infinite. It is not known whether infinite speeds can arise “naturally” under the equations of hydrodynamics, but this suggests
the possibility exists.) It should be possible to tap an Euler helical vortex at one end for power (notice its geometry nicely fits our scaling needs).
So if fluidic logic still works well enough to build computers even under the Euler equations, then this vortex-based power supply scheme ought
to be usable to show a theorem analogous to our final result theorem 5 but for Euler equations. However, whereas in that theorem with ν > 0 I
feel confident that alternative 2 is the correct one, in the Euler ν = 0 case any of the 3 alternatives seem plausible to me.

18 The phenomenon of large short-duration pressure surges also arises in water systems after the closing of a valve as a well known hazard called
“water hammer” [32][7][57][72]. A related hazard closer to our idea is “slug flow” in which a blob of water appears (due to condensation) in a pipe
filled with flowing steam. It is carried along by the gas and collides with a pipe bend at high speed. These phenomena have led to, e.g., nuclear
power plant failures. When one uses a hammer to pound a nail, a small amount of force applied over a comparatively long time is converted on
impact into a large amount of force for a short time. We want to use the same idea to build hydraulic pressure up-convertors. Another related effect
is “sonoluminescence” [53] in which spherical bubbles in liquid collapse. (Similar effects should happen during the radial collapse of a cylindrical

cavity. However spherical cavities presumably are the only ones with shape-stability if surface tension terms are imposed at free liquid boundaries.)
The walls of the bubble, in an ideal incompressible fluid, would reach infinite speed during such a collapse; in actual common liquids they are
known to reach 4 times the speed of sound (i.e. about 6km/sec), creating shock waves, pressures of order 106Atm, temperatures > 104Kelvin, and
consequent visible 100-picosecond flashes of ultraviolet light. This happens spontaneously in certain common fluid flow scenarios [68] including
when shrimp snap their claws in the ocean [41].

19Actually it may not be necessary to make the collision “take time ǫ” by carefully shaping the barrier slightly imprecisely. Alternatively the
barrier could be shaped precisely (collision time zero) but with a small hole in the barrier leading to computer k, with the computer and hole
already pre-filled with (stationary) fluid. The size and hydraulic resistance of computer k would then automatically serve to self-adjust the pressure
to the correct post-collision value. The situation is analogous to an LR inductor-resistor series electrical circuit with a pre-existing current I in
the (large) inductor. The value R of the resistor then will serve to self-adjust the voltage across it to be IR. In other words, view this as a current
source rather than a pressure source.
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10 Precision requirements

Unfortunately, while the power supply idea of §9 can repair
one aesthetic objection (unbounded initial pressures), it does
so at an aesthetic cost: we now require very precise timings
and hence initial positionings. In the previous picture from §8
with pressure reservoirs supplied via deus ex machina, all the
initial velocities, and lengths and volumes of the component
pipes, logic gates, and chambers could all have been off by a
few percent and everything could still work. This is no longer
entirely true since the timing of the pressure surges needs to
be extremely precise.

However, it is possible to partially overcome even this objec-
tion, by making the moving slugs of fluid, which ultimately
will power everything, initially be aligned. Then, Ck will turn
on a predictable amount of time (depending on the length of a
pipe Pk from Ck to Ck+1) before Ck+1 does. This turn-on may
be sensed by Ck, which can delay itself appropriately to com-
pensate for any small relative error in the length of Pk. In this
case only the initial alignment of the initial power-supplying
fluid mass, and the initial requirement that this fluid be mov-
ing at exactly constant velocity (“as a solid body”) needs to
be enforced ultra-precisely. Unfortunately these remaining
alignment requirements are still subject to criticism.

There are several approaches that plausibly allow overcoming
that criticism. One of them: Ck could act in such a way as
to speed up or slow down the mass of onrushing fluid that is
to be used to power the Cj with j > k in such a way as to
get the effect of artificially enforcing this ultra-precise initial
alignment, without actually needing to have it. Alternative
power-supply methods aimed at this same goal:

1. Ck perhaps could adjust the stores of pre-existing pre-
impact stationary fluid inside the Cj with j > k, or

2. Ck could “output” the flow used to power Ck+1 by a
diversion and pressure up-conversion (by intentionally
creating a “water hammer” pressure surge, as before)
from a constant fractional part of its own power store.
This idea seems very desirable since it would allow the
use of solely constant ratio standardized pressure up-
convertors and would allow the entire multicomputer
to be (essentially) a geometrically self-similar object
depending solely on the scale invariance properties of
lemma 1.

3. Both of the preceding ideas could be combined with
“sensing” by Ck of when Ck+1 has turned on.

It is not completely clear whether these ideas really can be
accomplished, and indeed it is not clear to me how to precisely
state the desirable notion that our fluid-computer is “self cor-
recting”and“immune to any sufficiently small perturbation in
its initial conditions.” (The question is: what kind of pertur-
bations should be allowed? If one tries to write down suitable

conditions, one soon finds oneself dealing with unusual – and
perhaps unnatural and undesirable – new kinds of “norms.”)

The question of whether idea #2 can be done, depends on
how reproducibly Ck can control the shape of the forward en-
velope of a body of fluid it intentionally ejects (e.g. into a
pipe whose end is shaped, to very high accuracy, identically,
analogously to figure 10). I would suspect the answer is “ex-
ponentially (in bk) accurately if bk stages of logical ‘buffering’
are placed between Ck and its fluidic ejector device.” In that
case, idea #2 really should be feasible... but the fluid initially
filling those bk buffer stages would have to have initial speed
exactly zero and the buffer devices and corresponding pipe-
end would have to be shaped exactly so that this “solution of
the precision problem” would in some ways defeat itself.

Whether or not error-tolerant, self-correcting power supply
schemes and fluid computers are possible (and I think they
are20) we still conclude that at least some initial conditions
exist for which hydrodynamics is unsimulable.

11 Component reliability

Since some fluidic logic component designs are based on tur-
bulence, it might be thought (if we believe, cf. §3, that turbu-
lence, or hydrodynamics itself, is a randomized phenomenon)
that such components may not operate 100% reliably but in-
stead would occasionally err, say with probability ≤ 10−10 of
failure on any particular logic operation. (Empirically they
always seem to work21, but this is not a proof.) This (since
our computer has an infinite number of components, and per-
forms an infinite number of logic operations) would seem to
be the kiss of death. Fortunately there are known“fault toler-
ance”techniques for designing reliable circuits from unreliable
components.

For our purposes, the best22 available such method is, essen-
tially, due to Andrei L. Toom [63], with the latest and best
proof being given by Peter Gács [22] (building on ideas of
Gács, Reif, Berman, and Simon [8][25][24]).

Definition 2. Let a 2D Cellular Automaton (CA), whose
cells are the integer lattice points Z

2 and each cell containing
1 bit, obey the “Toom [transition] rule” if the state transitions
are: each cell’s updated version is the majority vote of itself
(x, y), its North neighbor (x, y + 1), and its East neighbor
(x + 1, y).
Toom’s point is that if all cells are initially 0s (or initially all
1s) then repeated application of the Toom rule will keep them
that way. Even if some small fraction of the cells are random-
ized at each time step, the Toom rule will tend to eliminate
the errors. A theorem formalizing this can be shown, and was
shown, by Toom, and the latest and greatest version by Gács
appears as our lemma 3 below23.

20This contrasts with my earlier work [59] settling the computability status of Newtonian mechanics. There, error correcting diminution of all
small perturbations seemed impossible. Here, because hydrodynamics is dissipative, it does seem possible.

21Angrist [3] tested one fluidic logic component for 3.5 × 109 cycles with no failure, even in the presence of heavy vibrations.
22The upper bound we will give, which involves O(log(Nt)2)-fold increase in the number of components in an N-gate circuit with t levels of

delay, does not quite meet [23]’s lower bound Ω(log(Nt)). The simplest way I know of making circuits reliable which does meet this lower bound, is
to replace each wire with a bundle of m = O(log(Nt)) wires and on each employ a m-input, m-output corrector which works by using a “bipartite
expander graph” with m inputs and m outputs and constant valency 5 (the “Ramanujan graphs” of [43] will do) where each output takes a majority
vote among its 5 corresponding input signals. But this method is not suitable for our purposes since expander graphs cannot be embedded efficiently
into 3-space [39].

23Note the asymmetry of Toom’s N-E-self pattern. This appears to be essential: Attempts to replace it with symmetrical patterns, such as
majority vote of oneself and one’s 4 (N,S,E,W) neighbors, fail.
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Gács used the Toom rule as a tool to help build reliable
logic circuits (despite components with some small error rate)
which could emulate arbitrary circuits (which might not have
been reliable if their components had some small error rate).
For example:

Lemma 3 (Gács’s error bound [22] for Toom rule).
Start with any N -cell long 1D CA. Cross product it with a
Z

2
m “discrete torus” (m × m grid with horizontal and vertical

“wraparound24”) to get a 3D CA. Use as the transition rule
on this 3D CA, the Toom rule in 2D planes, followed by the
1D CA rule in the 3rd dimension. Use the 3D CA to sim-
ulate t steps of the 1D CA using the 3D CA with 1D data
simply initially copied m2 times into all entries within the
corresponding m×m plane. Suppose each 3D CA cell’s state
is toggled, each transition, with a probability of ≤ ǫ, where
ǫ < 12−832−1. Then the total error probability at the end of
the t-step simulation (i.e., the probability that the final state
of the 1D CA, with each 1D CA cell state judged by majority
vote within its m × m plane, will be wrong) will be

≤ 24tm2N(288ǫ1/12)m + 24ǫ. (9)

Thus by making m large we get exponential reliability, and
m of order log(tN) suffices to drive the final error probability
below 12−8. Note that the probabilities of logic failures do
not need to be assumed to be independent. All one needs
to assume, is that, at any particular timestep at any particu-
lar gate, the conditional probability (conditioned on whatever
the other gates did or are doing) of a logic failure right here
and right now (with correctness judged based on the present,
local, input signals), is ≤ ǫ.

Instead of starting with a 1D CA, we can start with any cir-
cuit built out of “wires” and bounded-fanin and fanout logic
“gates” in 3D. (Regard any “repeaters” in the middle of long
wires simply as 1-input, 1-output “gates.”) Replace each wire
with a “bundle” of m×m wires. Replace each logic gate with
a Gács-Toom correction step (taking x, y coordinates modulo
m) before and after, plus m2 parallel copies of the appropri-
ate gate operation on disjoint tuples of input wires, one from
each input bundle. Note (see footnote 24) that no wires longer
than a constant are required in the new circuit, if none were
required in the original circuit. Note also that this converts
any circuit into a circuit that emulates the original one but
is reliable even if each gate in the new circuit will, when per-
forming any particular logical operation, produce the wrong
answer with some probability ≤ ǫ. Finally, the new circuit,
if built with the same-size components as the original circuit,
occupies O(m3) times its volume, and O(m) times its linear
dimensions.

The key message here is that, if the failure probabilities of
one’s computer components may be brought below some con-
stant threshhold (12−832−1 in Gács’s proof, but probably in
reality, since that proof undoubtably is weak, 0.001 suffices)
then the whole computer may be redesigned to decrease its
failure probability to exponentially small levels.

Now, to make our entire multicomputer reliable it suffices to
Gácsify Ck using m = O(k+1). This causes the entire infinite

computation to proceed to completion with ≤ 30ǫ probabil-
ity (i.e., well below 1/3) that any error at all occurred, ever,
on any logical operation. Because, e.g.,

∑

k≥1 k31.01−k con-
verges, the total volume, power consumption, surface area,
etc. all remain finite and are only increased by a constant
factor. (Then the “cone” in figure 9 is no longer a cone, but
a slightly different pointed shape, and that picture no longer
looks exactly self-similar.)

Note also that this way of decreasing the output-error prob-
ability below 1/3 also may be regarded as an existence proof
for a zero-error hydrodynamic computer, if we now again re-
gard hydrodynamics as completely deterministic given by EQ
1 and 2, and if we regard all the “random” errors as really
arising from small perturbations in the initial data, and if we
assume they still act (if that perturbation had initially been
chosen randomly) in the required probabilistic manner. I.e.,
under all those assumptions we have proven that some set of
initial data exist in a tiny neighborhood of the “right” such
data (in fact, of relative measure ≥ 2/3 within that neigh-
borhood) that makes C deterministically work. We could use
this to solve the halting problem with high correctness prob-
ability by repeatedly rerunning the hydrodynamic system C,
starting from random small-norm perturbations of the “right”
initial data, each run.

12 Higher levels of undecidability

The ability to solve the general halting problem represents
immense computational power (cf. footnote 15). But we can
get more. There are “higher levels” of undecidability. The
ability to solve the halting problem for general Turing ma-
chines is level 1. Level k + 1 is the ability to solve the halting
problem for a general Turing machine which has access to an
oracle for solving arbitrary level-k problems in 1 step. By (es-
sentially) simply giving each of our computers Ck their own
private copy of the “cone” of computers Cj for all j > k for
use as an oracle, hydrodynamics can solve level-2 undecidable
problems in finite time. Now if each these private cones is
itself made of computers with their own private oracles, we
get level-3. In fact, one can similarly achieve level k for any
finite k.

The above plan (as illustrated in figure 11) does not work to
reach k = ∞ because the energy requirements would be in-
finite. However, if instead of making Ck+1 about 1.01 times
smaller than Ck, it is permissible to make it, say, 5 times
smaller, and if instead of making Ck have only one descen-
dant Ck+1 we make it have two (forming an infinite binary
tree of child-computers), then hydrodynamics gains access to
level-∞ undecidability, still with only finite energy, volume,
and time resources (since now the appropriate geometric se-
ries converge – the factor of 2 caused by the branching of the
binary tree is no longer enough to make them diverge).

The only penalty one pays for all this extra compute-power
is that the container becomes more peculiar. At level 1, it
sufficed to have a container smooth everywhere except at one
bad point of R

3. At level 2, there are a countable infinity of
such bad points, which have one point of accumulation (call

24 Note: One can embed an m × m toroidal grid graph in the plane without using any wire lengths longer than a constant, no matter how large
m is, by the well-known trick of mapping the integers from 0 to ⌊(m − 1)/2⌋ into even positions and the integers from ⌈m/2⌉ to m − 1 into odd
positions in reverse order.
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this a “2-bad” point). At level 3, there are a countable in-
finity of bad points and a countable infinity of 2-bad points,
and the 2-bad points have a point of accumulation (call that
a “3-bad” point). At level k there are a countable infinity of
bad, 2-bad,... and (k − 1)-bad points plus one k-bad point.
At level ∞, the container has an uncountable infinity of bad
points on its boundary, part of which is a fractal-like surface
in some ways like the “Koch snowflake” [44].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 11. Multicomputer C extended by the addition of
oracles (in downward pointing solid cones) for each Ck so
that it can solve level-2 undecidable problems. There are now
an infinite number of “bad” points x at which the boundary
is non-smooth, as well as a “2-bad” point z which is a limit
point of bad points. It is also possible to extend C so that
it can solve level-3, or indeed level-∞, undecidable problems.
This is signified by the widening of the downward pointing
oracle-cones (shown dashed for first two cones).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

But the story still is not over. It is possible to reach trans-
infinite levels of undecidability in a similar way. (The entire
infinite tree of computers may be used as an oracle...) It was
unclear to me how far (and how to describe how far!) one can
go, but recursion theorist Frank Stephan helped me. Accord-
ing to him, the computational power these techniques allow
access to is described by ∆1

1 = Σ1
1 ∩ Π1

1, which is the set of
so-called “hyperarithmetic” sets and we follow the notation of
Odifreddi ([52] vol. 1, page≈ 362). Here

A ∈ Σ1
1 ⇐⇒ [x ∈ A ⇐⇒ ∃F such that P (F, x1, x2, . . . , xn)]

(10)
for some computable predicate P , and

A ∈ Π1
1 ⇐⇒

[

x ∈ A ⇐⇒ ∀F, P̃ (F, x1, x2, . . . , xn)
]

(11)
for some computable predicate P̃ , and x1, x2, . . . , xn ∈ N,
A ⊆ N, and F is a function from N to N. Here A is the “com-
putational problem”being handed to some computer and sets
such as Σ1

1 or Π1
1 of problems are the “language being rec-

ognized by some computer.” To learn about these sets, see
[52][55]. My crude understanding of ∆1

1 (as a non-logician)
is that it seems to be everything one can compute using infi-
nite and transinfinite recursive oracle calls to halting-problem
solvers for machines of ≤ ∆1

1 power, where the structure of
the recursive calls and what you do with them is required to
be specifiable by a finite program. The fact that ∆1

1 = Σ1
1∩Π1

1

is a nontrivial theorem.

Going still further, a multicomputer like ours could easily be
programmed to access, and return at top level in finite time,

any desired bit from an infinite pre-filled read-only memory.
Thus any Boolean-valued function of the input bits could be
computed by hydrodynamics, which seems the ultimate in
computational power. However, accomplishing this feat re-
quires (what computational complexity theorists call) “non-
uniformity.” I.e.: for our previous “uniform” hydrodynamic
computers, just one container-shape C defined a “universal”
computer, capable of being programmed to execute any al-
gorithm. The program was specified via a finite number of
bits, each encoded as, e.g., the presence or absence of (or one
of two possible velocity vectors for) a standardized fluid blob
(and that encoding appeared to be capable of being made im-
mune to all small relative errors in, e.g., the positioning of the
blobs). But in our “non-uniform” construction each compu-
tational problem requires a different container shape, or the
initial data (e.g. the program) needs to be specified via an
infinite number of bits. Many computer scientists regard such
non-uniform results as “cheating.”

13 Conclusion and moral

The whole mission of hydrodynamics was the hope that
macroscopic fluid flows, involving huge numbers (N = 1023-
1064) of atoms, could be successfully modeled as a continuum,
without having to think about 1023 different particles. What
might be called the “hydrodynamic limit” was precisely that
continuum limit of N → ∞, or numerical pixel size→ 0 (there
are numerous possible precise definitions and I intentionally
do not make one). The present paper has shown (nonrigor-
ously) that the hydrodynamic limit does not exist.

In other words, the moral is that the usual physicist’s as-
sumption that real fluids can be modeled as a continuum with-
out sacrificing accuracy for macroscopic problems, is false.
Scenarios within the equations of hydrodynamics can exist in
which phenomena happening at arbitrarily tiny length scales,
and having arbitrarily tiny energies, cause predictable macro-
scopic effects (or their absence) of a fixed finite size in a fixed
finite amount of time. (Note: this is not the same thing as
“chaos,” in which infinitesimal perturbations in initial condi-
tions merely grow exponentially [and hence by a finite factor]
with time – it is something far more severe than that. Our
construction does not employ chaos [or if it does, it is only
at sub-component length scales which never “leak” into neigh-
boring components].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 12. Nonexistence of the hydrodynamic limit
with all velocities bounded. An infinite sequence of mov-
ing balls of fluid collide in a geometrically self-similar 3D spiral
pattern. If tiny ball 1 is present, then 2 will be deflected to
hit 3, which will be deflected to hit 4, etc. Thus an infinites-
imally tiny fluid ball will cause macroscopic effects in finite
time, even if all balls move with unit speed. In this case the
hydrodynamics of each collision will not be scaled-identical,
but all the small balls will effectively be in the “Stokes limit”
of hydrodynamics in which viscous effects are (exponentially)
enormously dominant, thus each smaller and smaller collision
will act more and more like an inelastic collision of solid bod-
ies. Newton’s laws alone then should suffice to convince you
that it will work.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To convince yourself of the nonexistence of the hydrodynamic
limit, it is not necessary to go through our whole argument
about fluidic computers, undecidability, etc.

Theorem 4 (Nonexistence of hydrodynamic limit). As-
sume that a fluidic amplifier device exists25. Then unbound-
edly small perturbations in the initial state of a fluidic system
suffice to cause full size changes in the flow after a bounded
amount of time.

Proof: An infinitely long exponential cascade of geometri-
cally similar fluidic amplifiers will suffice to make our point.
We rely on lemma 1. Say each amplifier has “gain 8,” mean-
ing (for the present purposes) that a jet with volume ∝ 8
is diverted by a control jet of volume ∝ 1. Each amplifier
stage, lengths and energies are scaled up by, and velocities
are scaled down by, a factor of 2. The delay time for the kth
amplifier stage is ∝ 4k. Thus the total signal propagation
delay, even for an infinitely long amplifier sequence, is finite if
the last (biggest volume) stage has volume 1. An infinitesimal
jet having infinitesimal energy causes a size-1 effect in finite
time. Q.E.D.

Remark. Our uncomputability construction – the main re-
sult of this paper – is more than merely some disguised version
of theorem 4. That is because it invoves the self-generation
of an unboundedly small flow perturbation as the result of
some unboundedly long computation, and only then is that
perturbation amplified up to macroscopic size.

Remark. In the scenario of theorem 4, as usual, some readers
may dislike the fact that the very small jets have very high
speeds (despite the finiteness of total energy). This appar-
ently cannot be avoided if one wants to precisely use the scale
invariance properties of hydrodynamics from lemma 1. How-
ever, the present scenario is so simple that it seems we can get
away with making each amplifier stage be hydrodynamically
inequivalent and keeping all velocities bounded : that is done
in figure 12.

Our (nonrigorous) undecidability result represents the utter
failure of hydrodynamics from the point of view of a computer
scientist. Our moral represents the utter failure of hydrody-
namics from the point of view of a physicist.

Because our undecidability result has not been a Theorem,
there seems to be an escape hatch for physicists to wriggle
out of. But in fact, by wording things appropriately to en-
capsulate all the unproved assumptions in one nugget, we can
summarize our arguments with a genuine theorem – which,
in my opinion, slams shut that escape hatch, since each of its
three alternatives seem to represent (to a physicist) a “failure”
of hydrodynamics.

Theorem 5 (Failure of hydrodynamics). One of the fol-
lowing 3 alternatives must be true:

1. Solutions to the equations EQ 1 and 2 of unforced hy-
drodynamics in rigid bounded containers of fluid do
not necessarily exist for all future times. (Here we
may demand that the fluid have everywhere-smooth and
bounded initial velocity and pressure fields, and that all
fluid surfaces and container-boundaries have finite sur-
face area, and that the latter [and all fluid free surfaces]
are smooth everywhere except at a single point of R

3.)
2. There does not exist an algorithm (even a randomized

one) for approximating either the velocity field or the
location-set of the fluid, at time t > 0 in the future, to
accuracy ǫ > 0 (in, e.g., the L1, L2 or L∞ norms; ǫ and
t are part of the input to the algorithm), with correctness
probability ≥ 2/3.

25One could easily make any number of precise mathematical definitions of “fluidic amplifier device,” but it seems pointless to bother.
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3. The widely accepted engineering/experimental conclu-
sion that boolean-complete “Fluidic logic” component
families exist, which work26 with low mean error rate is
incompatible with the predictions of the equations of hy-
drodynamics. Here, by “low mean error rate,” we mean
that each logical operation errs on its inputs with condi-
tional probability ≤ 7×10−11, conditioned on everything
else.

Morally unsatisfied physicists should also re-read our §5.

Another moral is that the Navier-Stokes PDEs of hydrody-
namics are unsimulable. You can’t build an algorithm to
simulate those PDEs. If physicists ask a computer program-
mer “program a simulation of the hydrodynamics PDEs” then
those physicists were asking the impossible. They were asking
the wrong question. They should have been asking for some-
thing possible. If physicists want to simulate fluids, they have
to put in something else into the mathematical description of
the set of physical laws other than merely the Navier-Stokes
PDEs EQ 1 and 2. I suggested, in §3, also putting in a model
of thermal or other “noise,” but it appears that this too will
be insufficient, and perhaps nothing short of simulating all
the atoms will really work.

Let me end with a bang. I think this all represents a death-
blow to computational hydrodynamics. To make an analogy:
tremendous effort has been devoted, and will be devoted, to
the task of debugging computer programs. But there is
no easy way, and no mechanized way, to do that – and there
never will be, because, as is well known [47], it is a nonal-
gorithmic task. That is noncontroversial. Tremendous com-
putational effort has been and will be devoted to simulating
the Navier-Stokes fluid equations. But these attempts have
never been easy and have (almost) never come with any guar-
antees about solution quality. There has never been a general
purpose Navier-Stokes solver with arbitrarily specified guar-
anteed solution quality and there never will be.

And now let me hit you again. Here is a typical state-
ment, which I think it is safe to say, could have been made
(before the appearance of the present paper) by 90% of all
physicists: “The constant temperature and density equations
of hydrodynamics are perfectly adequate, to very good ap-
proximation, for modeling you playing in your bathtub with
your pet shrimp. That is because all flow velocities are go-
ing to be well below the speed of sound (1.5km/sec) in water,
all pressures are going to be a few atmospheres at most (far
below those required to compress water significantly), and all
temperatures are going to be constant to within a few centi-
grade.” But in fact, this statement is entirely wrong. The
truth is: “You, by playing in your bathtub with your pet
shrimp, are entirely capable of easily creating situations with

pressures > 106atm, flow speeds 6km/sec, and temperatures
> 104Kelvin. This has been experimentally observed [53][68].
Indeed, such flows are very common and are biologically im-
portant to the shrimp [41]27. In these situations, the usual
equations of hydrodynamics are clearly inapplicable – indeed
they predict their own failure. The fact that hydrodynamics
often gets certain gross characteristics of the flow (e.g. drag,
integrated flow volume) roughly correct, is therefore largely
due to luck. Indeed, mathematical scenarios can be created
(the point of this paper) in which the gross characteristics of
the flow (according to the equations of hydrodynamics) are
not predictable by any algorithm.”

14 Open problems

1. What happens to algorithmicity if we refuse to permit solid
walls, or free surfaces, or both?

Free surfaces seem avoidable if we power everything via the
recirculating scheme of figure 8 (b) and use, as the output
bit, an integrated flowmeter measurement rather than a vol-
ume measurement. In these cases the entirety of C can be
completely filled with liquid, but timed large external forces
are needed to power it. Really the only thing we needed the
free surfaces for was the bounded-initial-speed power supply
scheme of §9. (Under the Euler equations of inviscid flow, as
we mentioned in footnote 17, one may be able to get power
from a vortex without needing free surfaces.)

It is conceivable that the solid walls in our construction could
be avoided, with their role somehow instead being played by
some very clever initial flow velocity distribution. (Tornado-
like vortices could perhaps be used instead of “pipes?” Cf.
footnote 17.) Also, if two fluids were permitted, it might be
possible to get the effect of having solid walls, by using a fluid
of very large density ρ and viscosity ν. (It is often claimed
that window glass is a “liquid” with very large viscosity [45].)
Perhaps something like our construction could still be made
to work even for large but finite ρ, ν.

Many physicists justifiably object that our construction, in-
volving a container wall with self-similar “wiggles” at un-
boundedly small length scales, is “unnatural.” If a “natural”
fluid flow could be constructed that somehow would automat-
ically create such a structure, this physicist’s objection would
vanish. It is indeed possible to satisfy – at least partially –
the desire for such a construction, if we now allow hydrody-
namics plus moving solid rigid parts, plus some kind of ability
to “freeze” certain parts of the liquid into rigid solid28. The
idea is, roughly, to build a computerized “robot” out of a flu-
idic computer and hydraulic-powered machinery. This robot

26The vague-sounding term “work” here could be given a precise mathematical meaning. Essentially, it means to work in the engineering sense
in which electronic logic devices presently commercially available from various manufacturers, are supposed to work – if their inputs are voltages
(for us: pressures) within certain allowed ranges, and their power supply pins are supplied with voltages in certain allowed ranges, etc., then they
will produce output with certain specified properties and react in certain specified ways to certain stimuli, and this all is demanded to remain
true no matter how these devices are interconnected, and no matter how the initial conditions are perturbed, provided those perturbations have
sufficiently small norms and provided those interconnections obey certain widely accepted and well known design rules. Those design rules are
requirements such as “keep fanout below 5” and “use pipe lengths, curvatures, and input pressures within the following bounds...” Furthermore, it
suffices if these logic devices “work” with some sufficiently small constant probability of failure.

27The shrimp use the “pop” sounds created by cavity collapses to signal each other. A fluidic signal processor, complete with fluidic microphone,
could recognize these sounds, just as the shrimp do, and respond by diverting 100 liters of flow. I believe such a device should be entirely feasible to
build. In that case a 100-liter flow diversion would be triggered by a cavity-collapse event for which the PDEs of hydrodynamics were inapplicable.

28Again we remark that a fluid with large density ρ and large viscosity ν essentially is a rigid solid body. Fluids whose viscosity and/or density
change (sometimes permanently) in a history dependent manner are well known (“non-Newtonian fluids;” commonplace examples include human
blood and bread dough). Recently it was discovered [18] that nitrogen gas, when subjected to pressures p = 1.4-2.4GPa at room temperature,
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is programmed to manufacture a smaller, scaled copy of itself.
It would then weld the smaller robot onto itself as a new ap-
pendage, download its program into that smaller robot, and
turn it on. Due to the scaling properties of lemma 1 and the
fact that geometric series converge to finite answers, the entire
infinite chain of robot manufacturing will happen (due to our
assumption of a true-continuum) down to zero length scale in
finite time – but note we only needed to start with one robot
having all length scales macroscopic. The flaw in this idea is
the need to power all the smaller robots, but conceivably the
power-diversion idea of item 2 in the list at the end of §9 can
be used to accomplish that29.

2. Does the set of initial conditions leading to non-
algorithmicity, in some sense have “measure zero?” Or not?
(I think the answer is “not,” at least for some reasonable for-
mulation of the question. See the remarks on “precision” in
§10.)

3. What about the non-constructive existence problem for
hydrodynamics [9][19]?

4. Try to delineate precisely: In what senses, and when, and
how often, can physical validity and algorithmicity be ascribed
to hydrodynamics?

Clearly, there are some scenarios (such as Couette and
Poiseuille flow at low speeds) when fluid dynamics is algo-
rithmic and works well to describe and predict most or all ex-
perimentally measureable properties people care about. But
there are other scenarios, such as the one constructed here,
where that does not happen. So there is some “dividing line”
separating these two possible kinds of scenarios, and the prob-
lem is to understand it. §5 suggests that this line will not be
easy to draw and may have disquieting properties.

15 Abbreviations used in this paper
CA Cellular automaton;
ODE ordinary differential equation;
PDE partial differential equation;
Re Reynolds number UL/ν (U=typ. speed, L=typ. length,

ν=kinematic viscosity);
TM Turing machine (often I have universal ones in mind).
R, Z, N Reals, integers, and natural numbers.
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[22] Peter Gács: A new version of Toom’s proof, Boston University
CS tech. report 1995-009-toom-proof.pdf, 8 pages (http://cs-
www.bu.edu/techreports/pdf/1995-009-toom-proof.pdf).
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