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Abstract In this paper Ross-Littlewood paradox is going to be analyzed. Two new experiments were proposed and it

will be argued that number of balls at the end of experiment is infinite.

1 Introduction

Here, we are going to analyze two elementary experiments with enumerated balls and boxes (or

vases) [1, 2], known as Ross-Litllewood paradox (RLP). In this section, the analysis of the RLP that

was presented in [3] is going to be repeated (obviously, in [3] author was not aware of existence of

RLP).

First experiment: Imagine that we have infinite number of balls with all natural numbers written

on them exactly once, that are placed in the source box (SB) that has the size equal to the number of

natural numbers, and that we have another, experimental box (EB) of proper size.

In the moment 1 minute before midnight, we are going to move balls with numbers 1 to 10

on them from SB to EB, and remove from the EB the ball with number 10 on it. In the moment ½

minute before midnight, balls with numbers 11-20 are transferred from SB to EB, and ball with

number 20 on it is removed from EB. We continue the process at the moments 1/2 n, n  ϵ N, n > 1,

minute before midnight – transfer the balls with numbers form n*10+1 to (n+1)*10 from SB to EB,

and remove ball with number (n+1)*10 on it from EB.

Now, we can try to answer the following question: What is the number of the balls in EB at

midnight (this is slightly imprecise question, but it can be easily rectified)? The answer is obvious



and everybody will answer that the number of balls in EB is infinite. 

Second experiment: Imagine, again, that we have infinite number of balls with all natural numbers

written on them exactly once that are placed in the source box (SB) that has the size equal to the

number of natural numbers, and that we have another, experimental box (EB) of proper size.

In the moment 1 minute before midnight, we are going to move balls with numbers 1 to 10

on them from SB to EB, and remove from the EB the ball with number 1 on it. In the moment ½

minute before midnight, balls with numbers 11-20 are transferred from SB to EB, and the ball with

number 2 on it is removed from EB. We continue the process at the moments 1/2n,  n ϵ N, n > 1,

minute before midnight – transfer the balls with numbers from n*10+1 to (n+1)*10 from SB to EB,

and remove ball with number (n+1) on it from EB.

Now, we can try, again, to answer the following question: What is the number of the balls in

EB at midnight? Again, the answer looks quite obvious and everybody will answer that number is

infinite.  However, if you are asked to give an example of the ball with any specific number on it,

that is still in the EB, you will not be able to do it. The reason is quite obvious – for any number

you choose, you can specify a moment in time in which the ball with that number on it, has been

removed from the EB. That can lead to the conclusion that there is a chance that the number of balls

in EB, at the “end” of the process is zero, although in every moment, clearly, 9 new balls were put

in the EB. Two new experiment, proposed in the next section, will contribute to the understanding

that the number of the balls in the EB at the end of the process is infinite.

So, numbers on the balls could lead to different conclusions for two experiments that are

equivalent.  If  we  remove  the  numbers  from balls  –  in  both  experiments  that  were  previously

analysed,  the process was following – put  10 balls  in  the EB and then remove one – or  very

simplified, put nine balls in the EB in every step. If there is no collapse of elementary reasoning

(CER),  it  can  be  safely concluded that  number  of  the  balls  in  the  EB at  midnight  is  infinite.

Actually, it is not difficult to be seen that two previously mentioned  experiments are the special



cases of a more general experiment in which in every step ten balls are put in the EB and one of

the existing balls in the EB is removed completely randomly [2].

It is interesting to notice that experiment 2, can be seen as the process that represents an

algorithm for removal of the first 1/10 of the infinite number of natural numbers from the set of

infinite number of natural numbers. What can be interesting to notice is that we can actually define

shallow and deep infinity (or even mathematical black hole) – however, this discussion is out of the

scope of this paper. 

In order to see why one possible conclusion in the second experiment is wrong, two new

experiments are going to be analyzed.

2 Additional experiments

In this section, two new experiments, similar to previous ones, are going to be presented.

Third experiment: Imagine that we have infinite number of balls with all natural numbers written

on them exactly once, that are placed in the source box (SB) that has the size equal to the number of

natural numbers, and that we have another, experimental box (EB) of proper size.

In the moment 1 minute before midnight, we are going to move ball with number 1 on it

from SB to EB, and remove from the EB the ball with number 1 on it. In the moment ½  minute

before midnight, ball with number 2 on it is transferred from SB to EB, and ball with number 2 on

it is removed from EB. We continue the process at the moments 1/2n, n  ϵ N, n > 1,  minute before

midnight – transfer the ball with number n+1 on it from SB to EB, and remove ball with number

n+1 on it from EB.

Now, we can try to answer the following question: What is the number of the balls in EB at

midnight  (what is expected number of balls in the EB as time approaches midnight)? The answer is

obvious and everybody will answer that number of balls in EB is zero. If we assume here that the

idea that it is possible to establish bijection between natural numbers and natural numbers that are



powers of 2, in this experiment all natural numbers were put in EB and removed from EB. One

thing is quite clear – in this case there is no potential for a paradox.  

Forth experiment: Here, the second experiment is going to be slightly changed. Imagine, again,

that  we have infinite  number of  balls  with reciprocals  of  all  natural  numbers  written  on them

exactly once, that are placed in the source box (SB) that has the size equal to the number of natural

numbers, and that we have another, experimental box (EB) of proper size.

In the moment 1 minute before midnight, we are going to move balls with reciprocals of

numbers 1 to s (s ϵ N, s > 1) on them from SB to EB, and remove from the EB the ball with number

1 on it. In the moment ½  minute before midnight, balls with reciprocals of numbers (s+1) to (2s)

are transferred from SB to EB, and the ball with reciprocal of number 2 on it is removed from EB.

We continue the process at the moments 1/2n, n ϵ N, n > 1,  minute before midnight – transfer the

balls with reciprocals of numbers from  n*s+1 to (n+1)*s from SB to EB, and remove ball with

reciprocal of number (n+1) on it from EB.

Now, we can try, again, to answer the following question: What is the number of the balls in

EB at midnight? Here, like in the experiment 2,  we can conclude that the number of balls in the EB

at midnight can be zero if we cannot specify any number that is still inside the EB. However, in this

case we have an opportunity to analyze the problem from different point of view..

Here we are going to analyze the problem from a lightly different perspective: we are going

to calculate the sum of the numbers that are in the box at the “end” of the process. Let's denote the

with S(s) following sum:

S(s) = 1+1/2+...+1/s-1+1/(s+1)+1/(s+2)+...+1/(2s)-2+...

We can see that S(s) represents the sum off all numbers left in the EB at midnight (or sum of all

numbers  in  EB  as  time  approaches  midnight).  It  is  known  that  S(s)  =  ln(s)  (see  e.g.  the



Mathologer's video: The best A-A≠0 paradox). So, since S(s) is not zero for  s > 1, we can safely

conclude that EB at the end of the process cannot be empty. Actually, the number of balls in EB at

the end of the process is not zero but infinite, which is quite reasonable from the point of view that

we put s-1 new balls in the EB in every moment (the other way to conclude it is that ln (s), s > 1, is

an irrational number, so number of balls at the end must be infinite). We can also see that the

conclusion  in  the  Third  experiment  is  also  supported,  since  S(1)  =  ln(1)  =  0.  It  also  can  be

concluded that probabilistic approach that was used in [2] was not implemented precisely and leads

toward wrong conclusion. 

However, if you are asked to give an example of the ball with any specific number on it, that

is still in the EB, you will not be able to do it. The reason is quite obvious – for any number you

choose,  you can specify a moment in  time in which the ball  with that  number on it  has been

removed from the EB. So, how can we justify the answer that there is an infinite number of balls in

the EB when for every ball with specific number on it we can define a moment in time when that

ball is removed from the EB? In order to answer that question properly, clearly, there is a necessity

for a proper definition of infinite numbers and that is quite out of the scope of this paper.

Conclusion

An analysis of Ross-Littlewood paradox was performed. Two new experiment were analzsed and

they enabled us to conclude that the number of balls in the EB at the end of the experiment is

infinite. Also, from the analysis that was performed, it seems that, anyway, it is necessary to give a

proper definition of infinite natural numbers, at least to answer properly to all challenges that are

posed by RLP.



References

[1] A. Ross. (1941). Imperatives and Logic. Theoria, vol. 7, pp. 53-71.

[2] S. Ross. (2010). A First Course in Probability, Pearson Prentice Hall. (Eight Edition, Chapter 2,

Example 6a, p. 46).

[3] M. Jankovic. (2021) Proof of Twin  Prime Conjecture (Together with the Proof of Polignac's

conjecture for Cousin Primes). hal-02549967v9.


