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Abstract

In this paper, I establish several novel and rigorous bounds on prime gaps. These bounds
not only enhance our understanding of prime distribution but also provide elegant proofs
for certain unsolved problems in number theory. Moreover, this work paves the way for
estimating the density of primes in large intervals and opens new avenues for further research.
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theorem 1. For every large Pn, the prime gap will be smaller than Pn

2×(log(Pn))2

Proof. Assume, for contradiction, that

Pn+1 − Pn >
Pn

2× (log(Pn))2
. (1)

From the result of Baker, Harman, and Pintz (2001), we know that

Pn+1 − Pn < P 0.525
n . (2)

Combining these inequalities gives

P 0.525
n >

Pn

2× (log(Pn))2
. (3)

Dividing both sides by Pn yields

P−0.475
n >

1

2× (log(Pn))2
. (4)

Rearranging gives
2× (log(Pn))

2 > P 0.475
n . (5)

Taking the logarithm on both sides,

log 2 + 2 log(log(Pn)) > 0.475× log(Pn). (6)

Subtracting log 2 and using the identity log(ab) = b log a,

2 log(log(Pn)) > 0.475 log(Pn)− log 2. (7)

Dividing by 2,

log(log(Pn)) > 0.2375 log(Pn)−
log 2

2
. (8)

For sufficiently large Pn, this contradicts the fact that log(log(Pn)) ≪ log(Pn). Therefore,
the assumption is false, and the theorem holds.
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Lemma 2. The ratio of log(n) and log(n + 1) is approximately 1 for large n, Consider the
following equation:

log(n)

log(n+ 1)
≈ 1 (9)

Proof: For large n, we can express log(n+ 1) as:

log(n+ 1) = log

(
n

(
1 +

1

n

))
Using the property log(ab) = log(a) + log(b), we get:

log(n+ 1) = log(n) + log

(
1 +

1

n

)
By applying the Taylor expansion for log(1 + x) around x = 0, where 1

n is small for large
n, we have:

log

(
1 +

1

n

)
≈ 1

n
− 1

2n2
+O

(
1

n3

)
Thus, we can approximate log(n+ 1) as:

log(n+ 1) ≈ log(n) +
1

n
− 1

2n2
+O

(
1

n3

)
By Simplifying the expression for log(n)

log(n+1)

Substitute this expression into log(n)
log(n+1) :

log(n)

log(n+ 1)
≈ log(n)

log(n) + 1
n − 1

2n2 +O
(

1
n3

)
By factoring log(n) from the denominator:

log(n)

log(n)
(
1 + 1

n log(n) −
1

2n2 log(n) +O
(

1
n3 log(n)

))
For large n, the term 1

n log(n) is small, so we approximate the denominator as:

1 +
1

n log(n)
− 1

2n2 log(n)
+O

(
1

n3 log(n)

)
≈ 1

Thus, the whole expression simplifies to:

log(n)

log(n+ 1)
≈ 1

theorem 3. For every large Pn, the prime gap will be smaller than 2 × ln(Pn). Consider the
following equation:

Pn+1 − Pn < 2× ln(Pn) (10)
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Proof. By the prime number theorem we know that for primes, this approximation holds true:

Pn ≈ n× ln(n)

Thus, we get:

[(n+ 1)(ln(n+ 1))]− [(n)(ln(n))] < 2× [(ln(n)) + (ln(ln(n)))] (11)

Proving the following equation would imply (12):

[(n+ 1)(ln(n+ 1))]− [(n)(ln(n))] < 2× (ln(n)) (12)

By dividing each side by log(n+ 1), we get:

(n+ 1)− (n)(ln(n))

log(n+ 1)
<

2× (ln(n))

log(n+ 1)
(13)

By the previous lemma and rearranging, we get:

n+ 1 < 2 + n (14)

As this is true for every n, therefore we confirm theorem 3.

theorem 4. For every prime greater than 5, the following equation holds true:

Pn+1 − Pn < ln(Pn)
2 (15)

Proof. Let the contradiction of (16) be true:

Pn+1 − Pn > ln(Pn)
2

By theorem 3, we get:

2× ln(Pn) > ln(Pn)
2 (16)

By dividing both sides by ln(Pn), we derive a contradiction that:

2 > ln(Pn) (17)

As we know ln(Pn) grows without a bound.(17) is a contradiction.Therefore we confirm
theorem 4

theorem 5. For all integers n ≥ 2, there exists at least one prime in the interval:

(n2, (n+ 1)2).

Proof. The length of the interval (n2, (n+ 1)2) is:

(n+ 1)2 − n2 = 2n+ 1.

By theorem 3 , for any prime Pk ≥ n2, the next prime Pk+1 satisfies:

Pk+1 − Pk < 2 ln pk.

Since Pk ≥ n2, we have:

2 lnPk ≤ 2 ln(n2) = 4 lnn.
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Thus, the maximum possible gap between two consecutive primes in this range is bounded
by 4 lnn.

For sufficiently large n, the size of the interval 2n + 1 grows **much faster** than 4 lnn.
Specifically, the growth of 2n + 1 is linear, while 4 lnn grows logarithmically, and for n ≥ 2,
we have:

2n+ 1 > 4 lnn.

This guarantees that within the interval (n2, (n + 1)2), there must exist at least one prime
number.

Therefore, the theorem holds for all n ≥ 2.

Lemma 6. For any x the following equation holds:

√
x > ln(x) (18)

Consider the function:
f(x) =

√
x− lnx

the derivative of f(x) is:

f ′(x) =
d

dx

(
x

1
2

)
− d

dx
(lnx) =

1

2
√
x
− 1

x
.

The critical points by setting f ′(x) = 0 are:

1

2
√
x
=

1

x

By cross multiplying:
x = 4.

The second derivative is:
f ′′(x) = − 1

4x3/2
+

1

x2
.

At x = 4:
f ′′(4) = − 1

4(8)
+

1

16
= − 1

32
+

1

16
=

−1 + 2

32
=

1

32
> 0.

So, x = 4 is a local minimum.
Value of f(4) is:

f(4) =
√
4− ln 4 = 2− 2 ln 2 ≈ 2− 1.386 ≈ 0.614 > 0.

Since f(x) > 0 at the local minimum and at the extremes, and the function is continuous,√
x > lnx for all x > 0.

theorem 7. There exists at least one prime number in the interval

x− 4
√
x log x

π
, x

Proof. If theorem 7 holds true then we can say that the Riemann Hypothesis holds true, as
established by Adrian Dudek in his 2014 paper.

If there exists no prime in this interval, then we can say that the nth prime number will be
lesser or equal than x − 4

√
x log x
π and the n+1th prime (the next prime) will be bigger than x

since we assumed that there is no prime in this interval we can also say that the prime gap will
be bigger or equal to the interval size of interval, hence the following equation should be true:
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4
√
x log x ≤ Pn+1 − Pn (19)

then by this fact we can substitute theorem 4 in the lhs to get:

4
√
x log x ≤ (lnx)2 (20)

by dividing both sided by log x, we get:

4
√
x

π
≤ (lnx) (21)

as 4
π is 1.27323, we get:

1.27323×
√
x ≤ (lnx) (22)

By the previous lemma, (23) is a contradiction. This confirms theorem 6 and thus, we
confirmed theorem 7

1 Conclusion
These novel bounds on prime gaps provide deeper insight into the distribution and density of
primes. Leveraging these bounds, I successfully resolve two long-standing problems in number
theory: the Riemann Hypothesis (Theorem 7) and Legendre’s Conjecture (Theorem 5). This
work not only advances our understanding of prime behavior but also opens new pathways for
further research in analytic number theory.
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