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Abstract. The (half) area of the surface of the Möbius strip is the expected

product of the length of the circular spine times the width of the sweep line
times a positive correction factor. The manuscript writes down this factor as

a Taylor series of the ratio of width over circle radius; it approaches one if that

ratio approaches zero.

1. Incentive

The Guldin rule (Pappus’ theorem) provide a formula for the surface generated
by revolving a planar curve with known center of mass around a circle [1, (8.72)].
The näıve expectation is that the Möbius strip has an area equal to the product
of length of a circular center line by the width. This manuscript corrects this
hypothesis and evaluates a correction factor for this product.

2. Mathematical Model, Coordinates

We look at a Möbius strip of guide line radius R located in the x−y−plane with
a paddle of width w staying with its middle at the guide line. A point on the guide
line has the Cartesian coordinates

(1)

 R cosλ
R sinλ

0


parameterized by an azimuthal angle 0 ≤ λ ≤ 2π. The tangent line to the circle
points into the orthogonal direction

(2)

 − sinλ
cosλ

0

 .

A point on the strip at a distance t to the guide line has a torsion angle θ relative
to the x−y-plane, such that its z-coordinate is t sin θ in the range −w/2 ≤ t ≤ w/2.
This leaves the factor t cos θ for the x and y coordinates. Since the paddle is
obtained by rotation around the tangent (2), its direction must be orthogonal to
that, so dispersion of the t cos θ factor gives a paddle vector of

(3)

 t cos θ cosλ
t cos θ sinλ
t sin θ

 .
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Attaching it to the circle (1) gives the Cartesian coordinates of a point on the strip
parameterized by λ and t:

(4) ~r(λ, t) =

 R cosλ
R sinλ

0

+

 t cos θ cosλ
t cos θ sinλ
t sin θ

 =

 (R+ t cos θ) cosλ
(R+ t cos θ) sinλ

t sin θ

 .

The principle of the definition now lets the torsion angle θ increase linearly with
λ such that a point of constant t initially at

(5) ~r(0, w/2) =

 R+ w/2
0
0


ends up at

(6) ~r(2π,w/2) =

 R− w/2
0
0


after one λ-rotation through the circle. This is achieved by setting

(7) θ = λ/2.

Continuous surfaces with larger numbers of twists as in Figure 1 can be constructed
by selecting other positive integers k:

(8) θ = kλ/2.

Insertion into (4) defines a family of Möbius strips [2, 5]:

(9) ~r =

 (R+ t cos kλ2 ) cosλ
(R+ t cos kλ2 ) sinλ

t sin kλ
2

 .

3. Gaussian Parameters

Two tangential directions on the surface are constructed as the partial deriva-
tives:

(10)
∂~r

∂t
≡ ~rt =

 cos kλ2 cosλ
cos kλ2 sinλ

sin kλ
2

 ; E = |~rt| = 1;

(11)
∂~r

∂λ
≡ ~rλ =

 − tk2 sin kλ
2 cosλ−R sinλ− t sinλ cos kλ2

− tk2 sin kλ
2 sinλ+R cosλ+ t cosλ cos kλ2

tk
2 cos kλ2

 .

These are orthogonal:

(12) F = ~rλ · ~rt = 0.

The cross product (direction of the surface normal, not of unit length) is

(13) ~rt × ~rλ =

 tk
2 sinλ−R sin kλ

2 cosλ− t cosλ sin kλ
2 cos kλ2

− tk2 cosλ−R sin kλ
2 sinλ− t sinλ sin kλ

2 cos kλ2
(R+ t cos kλ2 ) cos kλ2

 .
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k=0 k=1

k=2 k=3

Figure 1. Möbius ribbons for twist numbers 0 to 3.

The length of the cross product is

(14) |~rt × ~rλ| = |~rλ| =
√
G =

√
(R+ t cos

kλ

2
)2 + (

tk

2
)2.

4. Area

The area is [6, (8.19)][1, (3.498b)]

(15) Ak =

∫∫ √
EG− F 2dλdt =

∫∫
|~rt × ~rλ|dλdt

=

∫ 2π

0

dλ

∫ w/2

−w/2
dt

√
(R+ t cos

kλ

2
)2 + (

tk

2
)2

= R

∫ 2π

0

dλ

∫ w/2

−w/2
dt

√
(1 +

t

R
cos

kλ

2
)2 + (

tk

2R
)2

=
wR

2

∫ 2π

0

dλ

∫ 1

−1

dx

√
(1 +

xw

2R
cos

kλ

2
)2 + (

xwk

4R
)2.

Remark 1. Optionally one could multiply this by 2 to cover the ‘back-side’ area,
i.e., to sweep this in the range 0 ≤ λ ≤ 4π.

The λ-integral leads to Elliptic integrals which we shall avoid here.
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Remark 2. The t-integral may be executed [3, 2.262.1,2.262.2]

(16)

∫ w/2

−w/2
dt

√
R2 + 2Rt cos

kλ

2
+ t2 cos2

kλ

2
+
t2k2

4

=
(cos2 kλ2 + k2/4)t+R cos kλ2

2(cos2 kλ2 + k2/4)

√
(R+ t cos

kλ

2
)2 +

t2k2

4

+
R2k2

8(cos2 kλ2 + 2k2)3/2
arsinh

(cos2 kλ2 + k2/4)t+R cos kλ2
kR/2

|w/2t=−w/2

but since this still leaves a pending λ-integration, this analysis is not continued from
there.

Remark 3. The case k = 0 is the trivial planar hollow circle with A0 = π[(R +
w/2)2 − (R− w/2)2] = 2πwR.

The further strategy is to expand the square root in the kernel into a series of
small w.

Definition 1.

(17) ŵ = w/R

is the unitless ratio of the strip width by the radius of the backbone circle.

(18)

√
(1 +

xw

2R
cos

kλ

2
)2 + (

xwk

4R
)2

= 1 +
x

2
cos

kλ

2
ŵ +

x2k2

32
ŵ2 − x3k2

64
cos

kλ

2
ŵ3

+
x4k2

2048
(4 cos

kλ

2
− k)(4 cos

kλ

2
+ k)− x5k2

2096
cos

kλ

2
(16 cos2

kλ

2
− 3k2)ŵ5 + · · ·

and integration over λ and x is easy then. The terms with odd powers of x disappear
while integrating because the x−limits are symmetric. And because ŵ appears with
the same power as x in each term, Ak is 2πRw multiplied by an even function of
ŵ.

5. Results

Insertion of the previous expansion into (15) and term-by-term integration over
−1 ≤ x ≤ 1 and 0 ≤ λ ≤ 2π yields

(19) A1 = 2πwR
[
1 +

1

96
ŵ2 +

7

10240
ŵ4 +

25

458752
ŵ6 +

25

25165824
ŵ8

− 2793

2952790016
ŵ10 − 53277

223338299392
ŵ12 + · · ·

]
There is an apparent discrepancy between this formula and the usual manual con-
struction of a Möbius model which attaches two ends of a rectangular stripe of
dimension 2πR×w after bending/twisting. In fact the paper model does not keep
the center line of the rectangular stripe on a planar circle; its 2-dimensional surface
is even more complex than the mathematical model (4) [7, 4, 8].
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No new aspect arises in the analysis if twist numbers k ≥ 2 are computed—
besides the fact that for even k the computed area is indeed the area of only one
of two sides.
(20)

A2 = 2πwR

[
1 +

1

24
ŵ2 +

1

640
ŵ4 − 1

3584
ŵ6 − 5

98304
ŵ8 +

21

1441792
ŵ10 +

205

27262976
ŵ12 + · · ·

]
;

(21) A3 = 2πwR
[
1 +

3

32
ŵ2 − 9

10240
ŵ4 − 783

458752
ŵ6 +

4115

8388608
ŵ8

+
267183

2952790016
ŵ10 − 28573965

223338299392
ŵ12 + · · ·

]
;

(22)

A4 = 2πwR

[
1 +

1

6
ŵ2 − 1

80
ŵ4 − 5

1792
ŵ6 +

25

6144
ŵ8 − 1533

720896
ŵ10 − 399

6815744
ŵ12 + · · ·

]
;

(23) A5 = 2πwR
[
1 +

25

96
ŵ2 − 85

2048
ŵ4 +

1825

458752
ŵ6 +

309625

25165824
ŵ8

− 56366625

2952790016
ŵ10 +

3746147475

223338299392
ŵ12 + · · ·

]
.

6. Summary

The (quasi one-sided) surface area of the Möbius strip of width w with a planar
guide line of radius R is given by (19), where (17) denotes the unitless ratio of the
two main parameters.

Appendix A. Embedding

The parameters of the second quadratic fundamental normal form are listed here
[1, (3.503c)][6, (8.26)]. The normal vector of the plane is

(24) ~n =
1√
G
~rt × ~rλ

The products of partial derivatives are

(25) L = −~nλ · ~rλ =
1√
G

sin
kλ

2

[
(R+ t cos

kλ

2
)2 +

t2k2

2

]
;

(26) N = −~nt · ~rt = 0;

(27) M = −(~nλ · ~rt + ~nt · ~rλ)/2 =
kR

2
√
G
.
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