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Abstract

The Natario warp drive appeared for the first time in 2001.Although the idea of the warp dive as a
spacetime distortion that allows a spaceship to travel faster than light predated the Natario work by 7
years Natario introduced in 2001 the new concept of a propulsion vector to define or to generate a warp
drive spacetime.Natario defined a warp drive vector for constant speeds in Polar Coordinates over the
x-axis but remember that a real warp drive must accelerate or de-accelerate in order to be accepted as
a physical valid model so it must possesses variable speeds.We developed in this work a new warp drive
vector for the y-axis in both Polar and Spherical coordinates that encompasses variable speeds.Also Polar
Coordinates uses only two dimensions and we know that a real spaceship is a tridimensional 3D object
inserted inside a tridimensional 3D warp bubble that must be defined in real 3D Spherical Coordinates.
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1 Introduction:

The Natario warp drive appeared for the first time in 2001.([1]).Although the idea of the warp dive as a
spacetime distortion that allows a spaceship to travel faster than light predated the Natario work by 7
years Natario introduced in 2001 the new concept of a propulsion vector to define or to generate a warp
drive spacetime.

This propulsion vector nX uses the form nX = X'e; where X' are the shift vectors responsible for the
spaceship propulsion or speed and e; are the Canonical Basis of the Coordinates System where the shift
vectors are based or placed.

Natario (See pg 5 in [1]) defined a warp drive vector nX = wvs * (dx) where vs is the constant speed
of the warp bubble and *(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1]).(see Appendix D about Polar Coordinates).The final form of the original Natario warp drive
vector is given by nX = vs * d(r cos #).However Polar Coordinates are not real tridimensional 3D coordi-
nates since it uses only the two Canonical Basis e, and ey.

We introduced in this work a new warp drive vector nY = wvs * (dY) where vs is the constant speed
of the warp bubble and *(dy) is the Hodge Star taken over the y-axis of motion in Polar Coordinates.The
final form of our new warp drive vector is given by nY = vs * d(rsin@).

The Hodge Star actually must be taken over the product (yvs) giving the expression nY = x(yvs) =
vs * (dy) + y * (dvs) but due to a constant speed vs the term y * d(vs) = 0.In this work we examine what
happens with the new warp drive vector when the velocity is variable and then the term y*d(vs) no longer
vanishes.Remember that a real warp drive must accelerate or de-accelerate in order to be accepted as a
physical valid model.

Natario used Polar Coordinates(See pg 4 in [1]) but for a real 3D Spherical Coordinates another warp
drive vector must be calculated.Remember that a real spaceship is a tridimensional 3D object inserted in-
side a tridimensional 3D warp bubble that must be defined in real 3D Spherical Coordinates.The final form
of the Hodge Star for this warp drive vector based over the y-axis is calculated no longer over d(rsin f)
but instead over xd(r sin ¢ sin ) since this form uses all the tridimensional 3D Canonical Basis e,,ey and
e,.(see Appendix E about tridimensional 3D Spherical Coordinates).

In this work we present the new warp drive vector in tridimensional 3D Spherical Coordinates with
the Hodge Star over the y-axis calculated for both constant nY = ws * d(y) or variable speeds nY =
vs * (dy) + y * (dvs).

In order to fully understand the idea presented in this work(a new warp drive vector in tridimensional
3D Spherical Coordinates over the y-axis) acquaintance or familiarity with the Natario original warp drive
paper is required but we provide all the mathematical demonstration QED(Quod Erad Demonstratum)
in the Appendices.



This work is organized as follows:

e A)-Section 2 introduces the new Natario warp drive vector nY in Polar Coordinates
nY = vs x d(y) for constant speeds.

e B)-Section 3 introduces the new Natario warp drive vector nY in Polar Coordinates
nY =wvsxd(y) + y * (dvs) for variable speeds.

e C)-Section 4 introduces the new warp drive vector nY in tridimensional 3D Spherical Coordinates
nY = vs * d(y) for constant speeds.

e D)-Section 5 introduces the new warp drive vector nY in tridimensional 3D Spherical Coordinates
nY = wvsxd(y) + y * (dvs) for variable speeds.

We adopted in this work a pedagogical language and a presentation style that perhaps will be considered
as tedious,monotonous, exhaustive or extensive by experienced or seasoned readers and we designated this
work for novices,newcomers,beginners or intermediate students providing in our work all the mathematical
background needed to understand the process Natario used to generate warp drive vectors.

As a matter of fact if a novice,newcomer,beginner or intermediate student not familiarized with the Natario
techniques reads the Natario warp drive paper in first place he(or she) will perhaps feel some difficulties.

We hope our paper is suitable to fill this gap.

Although this work was designed to be independent,self-consistent and self-contained it may be regarded
as a companion work to our works in [9],[16] and [17].



2 The equation of the new Natario warp drive vector nY in 2D polar
coordinates over the y-axis with a constant speed vs

The equation of the new Natario warp drive vector nY is given by:

nY =Y"e, + Y (1)

With the contravariant shift vector components Y and Y? given by:(see Appendix A for details)

Y = 2u,f(rs)sinf (2)

Y? = vg(2f(rs) + (rs)f'(rs)) cos b (3)

Considering a valid f(rs) as a shape function being f(rs) = % for large rs(outside the warp bubble)
and f(rs) = 0 for small rs(inside the warp bubble) while being 0 < f(rs) < % in the walls of the warp
bubble also known as the Natario warped region(see pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nY generates a Natario warp drive spacetime if nY = 0 and ¥ = vs = 0 for a
small value of rs defined by Natario as the interior of the warp bubble and nY = vs(t) with Y = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(see pg 4 in [1])(see also Appendices G and H).

Natario in its warp drive uses the polar coordinates rs and 6.In order to simplify our analysis we con-
sider motion in the y — axis only or the vertical plane rs where § = 90 sin(f) = 1 and cos(#) = 0.(see pgs
4,5 and 6 in [1]).

In a 1 4 1 spacetime the vertical plane we get;:

nY =Y"e, (4)

The contravariant shift vector component Y* is then:

YT = 2uf(rs) (5)

Remember that we now defines the y axis as the axis of motion.Inside the bubble f(rs) = 0 resulting

in a Y™ = 0 and outside the bubble f(rs) = 3 resulting in a Y"* = vs and this illustrates the Natario

definition for a warp drive spacetime.(see pg 4 in [1]).(see Appendix D about Polar Coordinates).



3 The equation of the new Natario warp drive vector nY in 2D polar
coordinates over the y-axis with a variable speed vs and a constant
acceleration a

The equation of the new Natario vector nY is given by:

nY =Yle,+Y"e, + Y (6)

The contravariant shift vector components Y*, Y7 and Y of the Natario vector are defined by(see
Appendices B and C for details):

Y! = 2f(rs)rssinfa (7)
Y7 = 2[2f(rs) 4+ rsf'(rs)|at sin @ (8)
Y% = 2f(rs)at[2f (rs) + rsf'(rs)] cos 0 9)

Considering a valid f(rs) as a shape function being f(rs) = 1 for large rs(outside the warp bubble)
and f(rs) = 0 for small rs(inside the warp bubble) while being 0 < f(rs) < 3 in the walls of the warp

bubble also known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value of
rs defined by Natario as the interior of the warp bubble and nY = vs(t) * dy + y * dvs with Y = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])(see Appendices G and H for an explanation about this statement)

Natario in its warp drive uses the polar coordinates rs and 6.In order to simplify our analysis we con-
sider motion in the y — axis or the vertical plane rs where § = 90 sin(6) = 1 and cos(f) = 0.(see pgs 4,5

and 6 in [1]).

In a 1 4 1 spacetime the vertical plane we get;:

nY =Yle, +Y'e, (10)
yt = 2f(rs)rsa (11)
Y = 2[2f(rs)2 +rsf!(rs)]at (12)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2f(rs)at (13)



Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.In this case y is now the
axis of motion.Inside the bubble f(rs) = 0 resulting in a vs = 0 and outside the bubble f(rs) = % resulting
in a vs = at as expected from a variable velocity vs in time ¢ due to a constant acceleration a.Since inside
and outside the bubble f(rs) always possesses the same values of 0 or % then the derivative f’(rs) of the
Natario shape function f(rs) is zero and the shift vector Y = 2[2n(rs)?]at with Y™ = 0 inside the bubble
and Y7 = 2[2f(rs)?]at = 2[2}]at = at = vs outside the bubble and this illustrates the Natario definition

for a warp drive spacetime.(see Appendix D about Polar Coordinates).



4 The equation of the new warp drive vector nY in tridimensional 3D
spherical coordinates over the y-axis with a constant speed vs

The equation of the new warp drive vector in tridimensional 3D spherical coordinates with a constant
speed vs nY is given by:

nY =Y"e + Y%y + Y, (14)

The corresponding contravariant shift vectors are:(see Appendix J for details)

Y" = [2f(r)]vs(t)sing sin (15)
Y = vs(t)sing[2f(r) + rf'(r)] cos 6 (16)
Y? = ws(t)[2f(r) + rf'(r)]cosd (17)

Considering a valid f(r) as a shape function being f(r) = % for large r(outside the warp bubble) and

f(r) = 0 for small rs(inside the warp bubble) while being 0 < f(r) < % in the walls of the warp bubble

also known as the warped region(pg 5 in [1]):

We must demonstrate that our new warp drive vector satisfies the Natario criteria for a warp drive defined
by:

any warp drive vector nY generates a warp drive spacetime if nY = 0 and ¥ = vs = 0 for a small
value of r defined by Natario as the interior of the warp bubble and nY = vs(t) * dy with Y = vs for a
large value of r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])(see Appendices G and H for an explanation about this statement).

Natario in its warp drive uses the polar coordinates r and 6.In order to simplify our analysis we consider
motion in the y —axis the vertical plane x —y in r where = 90 sin(f) = 1 and cos(6) = 0.(see pgs 4 and 5

in [1]).Also the vertical plane z —y makes an angle of 90 degrees with the z—axis so sin ¢ = 1 and cos¢ = 0.

Then the contravariant components reduces to:

Y" =wvs(t)[sing][2f(r)sind] — Y =wvs(t)[2f(r)] — sing =1 — sinf =1 (18)
Y? = vs(t)[sin @] [2f(r) + rf'(r)] cosf] =0 — sing =1 — cosf =0 (19)
¥ = [us(t)eosd]2(/(r)) + (' ()] = 0 — cosé = 0 (20)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Now the y-axis is the axis
of motion.Inside the bubble f(r) = 0 resulting in a Y” = 0 and outside the bubble f(r) = 3 resulting in
a Y" = vs and this illustrates the Natario definition for a warp drive spacetime.(See Appendix E about
Spherical Coordinates).



5 The equation of the new warp drive vector nY in tridimensional 3D
spherical coordinates over the y-axis with a variable speed vs due to
a constant acceleration a

The equation of the new warp drive vector in tridimensional 3D spherical coordinates with a variable speed
vs due to a constant acceleration a nY is given by:

nY =Yle, +Y7e, + Y% + V4 (21)

With the contravariant shift vector components Y* Y7, Y% and Y? given by:(see Appendices K and
L for details )

Y* = 2(rf(r)a)) (sin ¢) (sin 6) (22)

Y = (2at)[2£(r)? + (rf'(r)](sin ) (sin 6) (23)
Y0 = (2 (r)at) 2£(r) +rf'(r))(sin 8) (cos 0) (24)
Y? = (2f(r)at)[2f (r) + (rf'(r)](cos) (25)

Considering a valid f(r) as a shape function being f(r) = % for large r(outside the warp bubble) and

f(r) = 0 for small rs(inside the warp bubble) while being 0 < f(r) < % in the walls of the warp bubble

also known as the warped region(pg 5 in [1]):

We must demonstrate that our warp drive vector satisfies the Natario criteria for a warp drive defined
by:

any warp drive vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small
value of r defined by Natario as the interior of the warp bubble and nY = wvs(t) * dy + y * dvs(t) with
Y = vs for a large value of r defined by Natario as the exterior of the warp bubble with vs(t) being the
speed of the warp bubble.(pg 4 in [1])(see Appendices G and H for an explanation about this statement)

Natario in its warp drive uses the polar coordinates r and 6.In order to simplify our analysis we con-
sider motion in the y —axis or the vertical plane z —y in r where § = 90 sin(f) = 1 and cos(6) = 0.(see pgs
4,5 and 6 in [1]).Also the vertical plane z — y makes an angle of 90 degrees with the z — axis so sing =1

and cos¢ = 0.Then the contravariant components reduces to:

Yt =2(rf(r)a))(sin¢)(sinf) — Y' = 2(rf(r)a)) — sing =1 — sinf = 1 (26)

Y™ = (2at)[2f(r)? + (rf'(r))](sin ) (sin @) — YT = (2at)[2f(r)® + (rf'(r))] — sing =1 — sinf =1 (27)

Y9 = (2f (r)at)[2f(r) + rf'(r)](sin ¢)(cos§) = 0 — sinp = 1 — cosh = 0 (28)



Y = (2f(r)at)[2f(r) + (rf'(r)](cosg) = 0 — cos ¢ = 0 (29)

The remaining contravariant components are:

Y' =2(rf(r)a))(sin¢)(sin@) — Y =2(rf(r)a)) — sing =1 — sinf = 1 (30)

Y" = (2at)[2f ()% 4 (rf'(r)](sin @) (sin §) — Y7 = (2at)[2f(r)? + (rf'(r))] — singp =1 — sinf =1 (31)

nY =Yle, +Ye, (32)
Y'=2rf(r)a (33)
Y7 = 2(2f(r): 4 rf'(r)]at (34)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2f(r)at (35)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Now the axis of motion
is y.Inside the bubble f = 0 resulting in a vs = 0 and outside the bubble f = % resulting in a vs =
at as expected from a variable velocity vs in time t due to a constant acceleration a.Since inside and
outside the bubble f(r) always possesses the same values of 0 or 3 then the derivative f'(r) of the shape
function f(r) is zero and the shift vector Y™ = 2[2f(r)?]at with Y” = 0 inside the bubble and Y =
2[2f(r)*at = 2[2{]at = at = vs outside the bubble and this illustrates the Natario definition for a warp

drive spacetime.See Appendix E about Spherical Coordinates.



6 Conclusion

In this work we introduced a new tridimensional 3D spherical coordinates warp drive vector nY with the
Hodge Star based over the y-axis using the Natario mathematical techniques.We focused ourselves in the
application of the Hodge Star in 3D spherical coordinates for both constant and variable speeds.

Natario used Polar Coordinates(See pg 4 in [1]) and a Hodge Star based over the x-axis and in this
work we computed Hodge Stars in both Polar and Spherical Coordinates for the y-axis.

For a real 3D Spherical Coordinates a new warp drive vector must be calculated.Remember that a real
spaceship is a tridimensional 3D object inserted inside a tridimensional 3D warp bubble that must be de-
fined using all the tridimensional 3D Canonical Basis e,,ep and e.(see Appendix E about tridimensional
3D Spherical Coordinates).

Polar Coordinates are not real tridimensional 3D coordinates since it uses only the two Canonical Ba-
sis e, and ey.(see Appendix D about 2D Polar Coordinates).

The Hodge Star actually must be taken considering variable speeds.In this work we examine what happens
with the warp drive vector when the velocity is variable. Remember that a real warp drive must accelerate
or de-accelerate in order to be accepted as a physical valid model.

Our focus was concentrated in the Natario methods to obtain a warp drive vector.We know that we
used a language and a presentation method or style that may be regarded as exhaustive tedious and
monotonous for experienced or seasoned readers but we are concerned about beginners,newcomers,novices
or intermediate students not familiarized with the techniques Natario used to develop warp drive vectors
so our extensive mathematical demonstrations QFED Quod Erad Demonstratum will benefit this audience
at least we hope.We gave our best efforts trying to accomplish this goal but only this audience will tell in
the future if we succeeded (or not).

The application of the new tridimensional 3D spherical coordinates warp drive vector wether in constant
or variable speeds to the ADM (Arnowitt-Dresner-Misner) formalism equations in General Relativity using
the approach of MTW (Misner-Thorne-Wheeler)resembling the works [10],[11][12] and [13] will appear in
a future work.

The Natario warp drive is probably the best candidate(known until now) for an interstellar space travel
considering the fact that a spaceship in a real superluminal spaceflight will encounter(or collide against)
hazardous objects(asteroids,comets,interstellar dust and debris etc) and the Natario spacetime offers an
excellent protection to the crew members as depicted in the works [18],[19],[20] and [21].

10



7 Appendix A:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nY = vs x dy for a constant speed vs
over the y-axis in Polar Coordinates in a R? space basis

This appendix is also being written for novice or newcomer students on Warp Drive theory still not ac-
quainted with the methods we used to arrive at the final expression of the Natario Vector nY

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eq 3.72 pg 69(a)(b) in [2]):

er = ;1 ~ dr ~ (rdf) A (rsinfdp) ~ r?sin 0(d6 A dy) (36)
10 . .
€= "55 "~ rdf ~ (rsinfdp) A dr ~ rsinf(de A dr) (37)
1 9 )
~ rsinfdp ~ dr A (rdf) ~ r(dr A df) (38)

= rsinﬁ%

From above we get the following results

dr ~ 12 sin0(d A dp) (39)
rdf ~ rsinf(de A dr) (40)
rsinOde ~ r(dr A db) (41)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

sdr = 12 sin 0(df A dy) (42)
srdf = rsinf(de A dr) (43)
w1 sin Odp = r(dr A df) (44)

11



Look that

dy = d(rsinf) = sin Odr + r cos 0df

dy = d(rsin ) = sin Odr + cos Ordf
Applying the Hodge Star operator * to the above expression:

«dy = *d(rsin @) = sin O(xdr) + cos 0(*rdf)

From

sdr = r*sin 0(df A dy)

srdf = rsinf(de A dr)
We have:

sdy = *d(rsin ) = sin [r? sin 0(df A dy)] + cos O[r sin 0(dy A dr)]
xdy = *d(rsinf) = [r?sin®0(dO A dp)] + [rsin @ cos O(dy A dr)]
xdy = *d(r sin @) = sin fe, + cos fey

1
d <2 sin? 9dg0>

We must also apply the Hodge Star operator to the expression above

Now examining the expression:

And then we have:

1
sed (2 sin? 9dg0>

1 1 1
*d (2 sin? 9dg0> ~ gk d[(sin? 8)dyp] + 5 sin 6 * [ddy]
According to eq 3.90 pg 74(a)(b) in [2] the term 3 sin? 6 * d[(dp)] = 0
This leaves us with:

% % d[(sin® 0)dyp] ~ %2 sin 6 cos 6(df N dy)

12

(46)

(47)



1 1
3% d[(sin? 0)dy] ~ 5 2sin 6 cos0(do A dy)

% % d[(sin? 0)dyp) ~ sin @ cos 6(df A dyp)

Because and according to egs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

xd(a+ ) =da+dp
xd(fa)=df Nha+ (=1)PfAda --»p=2--+»xd(fa) =df Na+ f Nd«a
xd(dx) = d(dy) = d(dz) =0
From above we can see for example that
xd[(sin” 0)dp] = d(sin? 0) A dp + sin® O A ddp = 2sinf cos 0(dO A dyp)
Now examining the expression:
2 L. o
[(r*) (tan 0)][*d <2 sin 0dg0>]

sin 6

[(72)(tan 0)][sin 6 cos (dO A de)] = [(r%)( 7 )][sin 6 cos 0(d6 A de)]

COS

[(TQ)(CJ)] [sin @ cos 0(df A d)] = [(%)][sin? O(dO A dip)] = sin fe,

os 6
Now examining the expression:
1
d|( -r’d
(37%)
We must also apply the Hodge Star operator to the expression above
1
wd | =r’d
(%)

wa(Grde ) ~ 5+ d02)de] + 5wl d)

And then we have:

According to eq 3.90 pg 74(a)(b) in [2] the term $r? x d[(dp)] = 0
This leaves us with:

1 1
5 * [d(rg)dgo] ~ §2r(dr A dp)

13
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Because and according to egs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

xd(a + ) = da + df
xd(fa)=df Nha+ (=1)PfANda--»p=2--»x*d(fa) =df Na+ [ Ada

xd(dx) = d(dy) = d(dz) =0
From above we can see for example that
[d(r?*)dy] = 2rdr A dp + 12 A ddp = 2r(dr A dp)
1 ) 1
5 * [d(r®)dg] ~ §2r(dr Ndp) ~r(dr Ndp) = r(dr Ndy) = —r(de Adr)
We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):
do ANdr = —dr Ady
1 2
3 * [d(r*)de] ~ —r(de A dr)

Now examining the expression:
(—=1)(sin)(cos 9)% % [d(r?)dp] = (—1)(sin ) (cos 0)[—r(dp A dr)]

(—1)(sinB)(cos O)[—r(de A dr)] = [rsinf cos8(dp A dr)] = cos beg

Combining the expressions:
2 L . o .
[(7%)(tan 0)][xd <2 sin 9d<p>] = sinfe,
and
. 1 2
(—=1)(sin6)(cos 9)5 * [d(r*)dp] = cosfeg

As being

[(r?)(tan 0)][+d (; sin? 9dgo>] + (—1)(sin@)(cos 0)% x [d(r?)dy)

We obtain the same result of the Hodge Star for the y-axis

sdy = *d(rsinf) = [r?sin®0(dO A dp)] + [rsin 8 cos 6(dy A dr)]

«dy = *d(rsin @) = sin fe, + cosfey

14



Then we have:
*dy = *d(rsin @) = sin fe, + cos fey

xdy = [(TQ)(tan 0)][xd <; sin? 0d<p)] + (—1)(sin @)(cos «9)% * [d(rQ)dcp]

Now using the following expression:

[2f(m)][(r?)(tan 0)][xd (; sin? 9dcp>] + [2f(r) + rf'(r)](=1)(sin h)(cos 9)% x [d(r?)dy)

With these ones:
2 L .9 .
[(7%)(tan 0)][*d <2 sin Hdcp)] = sinfe,

1
(—=1)(sin6)(cos 9)5 s [d(r?)dy] = cos feq
We have finally

[2f(m)][(r?)(tan 0)][*d <; sin? 0d<p)] + [2f(r) + rf'(r)](=1)(sin 6)(cos 0)% x [d(r?)dy)

[2f(r)] sinfe, + [2f(r) + 7 f'(r)] cos Oeq

Defining the new Natario vector nY with the Hodge Star operator * explicitly resolved :

nY = vs(t)[2f(r)]sin e, + vs[2f(r) + rf'(r)] cos fey

nY = 2vs(t)f(r) sinfe, + vs(t)[2f(r) + rf'(r)] cos Oeq

compare the new Natario vector nY with the original Natario vector nX pg 5 in [1]:

nX = —2vs(t) f(r) cosbe, + vs(t)[2f(r) + rf'(r)] sinfeg
nX = 2vs(t)f(r) cosbe, — vs(t)[2f(r) + rf'(r)] sinfeg

nY = 2vs(t) f(r) sinfe, +vs(t)[2f(r) + rf'(r)] cos Oeq
Do they look familiar 7

nY =Y"e + Y,
Y = 2u,f(rs)sinf

Y9 = 4o, (2f(rs) + (rs)f'(rs)) cos 0

15



8 Appendix B:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nY = vs*x dy for a constant speed vs or
for the first term vs*xdy from the Natario vector nY = vsxdy+y=*dvs(a
variable speed) in a R* space basis-Polar Coordinates

This appendix is also being written for novice or newcomer students on Warp Drive theory still not ac-
quainted with the methods we used to arrive at the final expression of the Natario Vector nY

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eqs 3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in
[3])(see also egs 4.55 and 4.56 pg 179 in [8]):

er = (98 ~ dr ~ dt A (rdf) A (rsinfdg) ~ r*sin (dt A d A dy) (99)
r
10 . .
eg = ~90 "~ rdf ~ dt A (rsin@de) Adr ~ rsin@(dt A de A dr) (100)
=L 9 sinGdp ~ di Adr A (rd0) ~ r(di A dr A dB) (101)
e@_rsinﬁanp " 4 TAV ' '

From above we get the following results

dr ~ r2sin §(dt A df A dyp) (102)
rdf ~ rsin@(dt A dp A dr) (103)
rsin@de ~ r(dt A dr A df) (104)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqgs 2.67 to 2.70 and pg 92 in
[3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

sdr = r?sin 0(dt A df A dy) (105)
xrdf = rsinO(dt A\ dp A dr) (106)
1 sin Odp = r(dt A dr A df) (107)
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Look that

dy = d(rsin ) = sin @dr + r cos 6df (108)

dy = d(rsin 6) = sin @dr + cos Ordf (109)
Applying the Hodge Star operator * to the above expression:

«dy = *d(r sin 0) = sin O(xdr) + cos 6(*rdf) (110)
From

sdr = r?sinO(dt A dO A dop) (111)
xrdf = rsin(dt A dp A dr) (112)

We have:
sdy = *d(rsinf) = sin O[r? sin O(dt A df A dy)] + cos O[rsin O(dt A dp A dr)] (113)
sdy = *d(rsin @) = [r?sin® O(dt A df A dp)] + [rsin @ cos O(dt A dp A dr)] (114)
«dy = *d(rsinf) = sin fe, + cos fey (115)

Now examining the expression:

1
d <2 sin? 9d¢> (116)
We must also apply the Hodge Star operator to the expression above

And then we have:
1,
*d 5 Sin fdy (117)
1.5 1 . 9 1.5
*d 5 8in Odp | ~ 5 * d[(sin® 6)dy] + 5 8in 0 x [ddy] (118)
According to eq 3.90 pg 74(a)(b) in [2] the term 3 sin? 6 * d[(dp)] = 0
This leaves us with:

% % d[(sin? 0)dyp) ~ %2 sin @ cos O(dt A df N dy) (119)
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1 1
3% d[(sin? )dp] ~ 52sin0cos6(dt A df A dip)

% % d[(sin? 0)dyp) ~ sin @ cos O(dt A df A dp)

Because and according to egs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:
xd(a+ ) =da+dp
xd(fa)=df Nha+ (=1)Pf ANda --» p=3 --+» xd(fa) =df Na— f Nd«a

xd(dx) = d(dy) = d(dz) =0

From above we can see for example that

xd[(sin” 0)dg] = dt A d(sin? 0) A dp — sin® Odt A ddp = 2sinf cos O(dt A d A di)
Now examining the expression:
2 L. o

[(r*) (tan 0)][*d <2 sin 0dg0>]

sin 6

[(72)(tan 8)][sin @ cos A(dt A dO A de)] = [(r*)( 0)][sin0 cos (dt A df A dy)]

COS

sin 0

)[sin @ cos O(dt A dO A dip)] = [(r2)][sin O(dt A dO A dip)] = sin fe,

1
d <2r2d50>

We must also apply the Hodge Star operator to the expression above

1
*d <2r2dcp)

wa(Grde ) ~ 5+ d02)de] + 5wl d)

[(r*)(

Now examining the expression:

cos @

And then we have:

According to eq 3.90 pg 74(a)(b) in [2] the term $r? x d[(dp)] = 0
This leaves us with:

1 1
3 * [d(r?)dp] ~ §2r(dt Adr A dp)
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Because and according to egs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:
xd(a + ) = da + df
xd(fa)=df Nha+ (=1)P’fAda --»p=3 --+»xd(fa) =df Na— f Nda

xd(dx) = d(dy) = d(dz) =0

From above we can see for example that

«[d(r?)dp) = 2rdt A dr A dp — r?dt A dde = 2r(dt A dr A dip)

1 1
2 * [d(r?)d] ~ §2r(dt Ndr Adp) ~r(dt Ndr Ade) =r(dt Adr Adp) = —r(dt Adp A dr)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):
dt Ndo Ndr = —dt ANdr Ndp
1 2
3 * [d(r*)dp] ~ —r(dt A dp A dr)

Now examining the expression:
1
(—=1)(sin6)(cos 9)5 s [d(r?)dy] = (—1)(sin @) (cos 0)[—7(dt A dp A dr)]

(—=1)(sinB)(cos ) [—r(dt Adp A dr)] = [rsinf cos@(dt A dp A dr)] = cosbeqy

Combining the expressions:
2 L .o .
[(7%)(tan 0)][*d <2 sin 0d<p>] = sinfe,
and
. 1 2
(—=1)(sin6)(cos 9)5 * [d(r*)dp] = cosfeg

As being

[(72)(tan §)][+d (; sin? 9d¢>] + (—1)(sin@)(cos 9)% s [d(r?)dy)

We obtain the same result of the Hodge Star for the y-axis

xdy = *d(rsin @) = [r*sin® 0(dt A dO A dip)] + [rsin cos O(dt A dp A dr)]

«dy = *d(rsinf) = sin fe, + cos fey

19

(133)
(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)



Then we have:
*dy = *d(rsin @) = sin fe, + cos fey

xdy = [(TQ)(tan 0)][xd <; sin? 0d<p)] + (—1)(sin @)(cos 9)% * [d(rQ)dcp]

Now using the following expression:

[2f(m)][(r?)(tan 0)][xd (; sin? 9dcp>] + [2f(r) + rf'(r)](=1)(sin h)(cos 9)% x [d(r?)dy)

With these ones:
2 L .9 .
[(7%)(tan 0)][*d <2 sin Hdcp)] = sinfe,

1
(—=1)(sin6)(cos 9)5 s [d(r?)dy] = cos feq
We have finally

[2f(m)][(r?)(tan 0)][*d <; sin? 0d<p)] + [2f(r) + rf'(r)](=1)(sin 6)(cos 0)% x [d(r?)dy)

[2f(r)] sinfe, + [2f(r) + 7 f'(r)] cos Oeq

Defining the new Natario vector nY with the Hodge Star operator * explicitly resolved :

nY = vs(t)[2f(r)]sin e, + vs[2f(r) + rf'(r)] cos fey

nY = 2vs(t)f(r) sinfe, + vs(t)[2f(r) + rf'(r)] cos Oeq

compare the new Natario vector nY with the original Natario vector nX pg 5 in [1]:

nX = —2vs(t) f(r) cosbe, + vs(t)[2f(r) + rf'(r)] sinfeg
nX = 2vs(t)f(r) cosbe, — vs(t)[2f(r) + rf'(r)] sinfeg

nY = 2vs(t) f(r) sinfe, +vs(t)[2f(r) + rf'(r)] cos Oeq
Do they look familiar 7

nY =Y"e + Y,
Y = 2vsf(rs)siné

Y9 = 4o, (2f(rs) + (rs)f'(rs)) cos 0
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9 Appendix C:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nY = x(vsy) = vsxdy+y*dvs for a variable
speed vs and a constant acceleration a in Polar Coordinates

any Natario vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value of r
defined by Natario as the interior of the warp bubble and nY = vs(t) * dy with Y = vs for a large value of
r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])(see Appendix G for an explanation about this statement)

In the Appendices A and B we gave the mathematical demonstration of the Natario vector nY = vs x dy
in the R? and R* space basis when the velocity vs is constant.Hence the complete expression of the Hodge
star that generates the Natario vector nY for a constant velocity vs is given by:

nY = x(vsy) = vs * (dy) (162)

The equation of the Natario vector nY for a constant velocity vs is given by:

nY = 2vs(t)f(r) sinfe, + vs(t)[2f(r) + rf'(r)] cos Oeq (163)

nY =Y"e, + Y, (164)

With the contravariant shift vector components explicitly given by:

Y™ = 2v,f(rs)siné (165)

Y9 = 4, (2f(rs) + (rs) f'(rs)) cos 8 (166)

Because due to a constant speed vs the term y * d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term y x d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the Natario vector nY for a variable velocity vs is now given by:

nY = x(vsy) = vs * (dy) + y * (dvs) (167)

In order to study the term y * d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R* space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 1!,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 02 pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

o= o~ dt e dr A (1) A (rsin ) ~ 12 sin (dr A do 1 d) (168)

dt ~ r?sin@(dr A df A dy) (169)

!These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S =u =1

2This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which ¢ =1
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The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2])(see
pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

sdt = r2sin §(dr A df A dyp) (170)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (171)

Because and considering a valid f(r) as a Natario shape function being f(r) = 3 for large r(outside
the warp bubble where Y = vs(t) and nY = wvs(t) x dy + y * d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where Y = 0 and nY = 0) while being 0 < f(r) < % in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [1]) and considering also that the Natario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every

point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) =0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity. The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time ¢1 and vs(t) = v2 in the time ¢2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
flr) = % giving a generic expression for a variable velocity vs as vs(t) = at and consequently a vl = atl
in the time t1 and a v2 = at2 in the time ¢2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[at f'(r)dr + f(r)tda + f(r)adt] (172)
Applying the Hodge star to the total differential dvs we get:

xdvs = 2[atf'(r) « dr + f(r)t =« da+ f(r)a * dt] (173)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t * da = 0.This leaves us with:

xdvs = 2[atf'(r)  dr + f(r)a x dt] (174)

sdvs = 2[atf'(r) * dr 4 f(r)a * dt] = 2[atf' (r)r* sin@(dt A df A d) + f(r)ar®sin@(dr A dO A dp)] (175)
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xdvs = 2[at f'(r) * dr + f(r)a x dt] = 2[atf'(r)e, + f(r)aei] (176)

The complete expression of the Hodge star that generates the Natario vector nY for a variable velocity
vs is given by:

nY = x(vsy) = vs * (dy) + y * d(vs) (177)

The term vs * dy was obtained in the Appendices A and B as follows:

vs * (dy) = 2vs(t) f(r) sinbe, +vs(t)[2f(r) + rf'(r)] cosbeq (178)

xdy = 2f(r) sinfe, + [2f(r) + rf'(r)] cos feq (179)

The complete expression of the Hodge star that generates the Natario vector nY for a variable velocity
vs is now given by:

nY = *(vsy) = vs(2f(r) sinfe, + [2f(r) + rf ()] cosOeq) + y(2latf (r)e, + f(r)ae]) (180)

But remember that we are in polar coordinates(pg 4 in [1]) in which y = rsinf(see pg 5 in [1]) (see also
Appendix D)and this leaves us with:
nY = x(vsy) = vs(2f(r)sinfe, + [2f(r) + rf'(r)] cosbeq) + rsind(2[at f'(r)e, + f(r)aet]) (181)

But we know that vs = 2f(r)at.Hence we get:

nY = x(vsy) = 2f(r)at(2f(r)sinfe, + [2f(r) + rf'(r)] cosOeg) + rsinf(2[at f'(r)e, + f(r)aes])  (182)

Then we can start with a warp bubble initially at the rest using the Natario vector shown above and
accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed
we turn off the acceleration and keep the speed constant.The terms due to the acceleration now disappears
and we are left again with the Natario vector for constant speeds shown below:

nY = 2vs(t) f(r)sinOe, + vs(t)[2f(r) + rf'(r)] cos feq (183)
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Working some algebra with the Natario vector for variable velocities we get:

nY = x(vsy) = 2f(r)at(2f(r) sin e, + [2f(r) + rf'(r)] cosfeg) + rsin(2[at f'(r)e, + f(r)aes])  (184)

nY = 4f(r)2atsinfe, + 2f(r)at[2f(r) + rf (r)] cos Oeg + 2at f'(r)rsin Oe,. 4+ 2f (r)r sin fae; (185)

nY = 2f(r)rsinfae; + 4f(r)%at sin e, + 2at f'(r)rsin Oe, + 2f(r)at[2f (r) + rf'(r)] cos Oeg (186)

nY = 2f(r)rsinfae; + 2[2f(r)% + rf'(r)]at sin fe, + 2f (r)at[2f(r) + v (r)] cos feg (187)

Then the Natario vector for variable velocities defined using contravariant shift vector components is
given by the following expressions:

nY =Yle,+Y"e, + Y% (188)

Or being:

nY = 2f(r)rsinfae; + 2[2f(r) + rf (r)]atsinfe, + 2f(r)at[2f(r) + rf'(r)] cos feq (189)

The contravariant shift vector components are respectively given by the following expressions:

Yt = 2f(r)rsinfa (190)
Y™ =2[2f(r)* + rf'(r)]at sin 6 (191)
Y9 = 42f (r)at[2f(r) + rf'(r)] cos 6 (192)
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10 Appendix D:Polar Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs x (dx) where vs is the constant speed
of the warp bubble and *(dx) = *d(rcos @) is the Hodge Star taken over the x-axis of motion in Polar
Coordinates(See pg 4 in [1]).(See also Appendices A and B in [9] for the detailed calculations).

We defined a warp drive vector nY = ws * (dy) where vs is the constant speed of the warp bubble
and *(dy) = *d(rsinf) is the Hodge Star taken over the y-axis of motion in Polar Coordinates.(See
Appendices A and B for the detailed calculations).

Due to a constant speed vs the term y * d(vs) = 0.We examined what happens when the velocity is
variable and then the term y * d(vs) no longer vanishes.Remember that a real warp drive must accelerate

or de-accelerate in order to be accepted as a physical valid model.

The complete expression of the Hodge star that generates the Natario vector nY for a variable veloc-
ity vs is now given by nY = x(vsy) = vs x (dy) + y * (dvs)(see Appendix C for detailed calculations).
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11 Appendix E:Tridimensional 3D Spherical Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs * (dx) where vs is the constant speed
of the warp bubble and *(dx) = *d(rcos @) is the Hodge Star taken over the x-axis of motion in Polar
Coordinates(See pg 4 in [1].(See also Appendices D and F).

Note that in this case of Tridimensional 3D Spherical Coordinates the Hodge Star must be taken
no longer over d(r cos) but instead over d(psin ¢ cosf) and this demands more calculations.Replacing p
by r we have the following expression for the Hodge Star xdx = *d(r sin ¢ cos 0):(see Appendices J and K
in [9] for details)

We in this case of Tridimensional 3D Spherical Coordinates defined the Hodge Star no longer over
the x-axis of motion but instead we took the Hodge Star over the y-axis and this means a Hodge Star
taken over d(psin ¢sin @) and this demands more calculations.Replacing p by r we have the following ex-
pression for the Hodge Star xdy = *d(r sin ¢ sin ).

Our new tridimensional 3D spherical coordinates warp drive vector in R® with constant speed vs

or in R* with constant speed vs is given by: nY = vs * dy = vs * d(r sin ¢ sin 0).(see Appendices J and
K for details)
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Due to a constant speed vs the term y * d(vs) = 0.Now we must examine what happens when the
velocity is variable and then the term y * d(vs) no longer vanishes.Remember that a real warp drive must
accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression of
the Hodge star that generates the warp drive vector nY in tridimensional 3D spherical coordinates for
a variable velocity vs is now given by nY = vs x dy + y * dvs(see Appendix L for detailed calculations):
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12 Appendix F:Tangent and Cotangent Spaces I

The Canonical Basis of the Hodge Star * in spherical coordinates in R? can be defined as follows(see pg 4
in [1],eq 3.72 pg 69(a)(d) in [2]):

er = % ~ dr ~ (rdf) A (rsinfdp) ~ r?sin 0(d6 A dy) (193)

ey = %% ~ rdf ~ (rsinfdyp) A dr ~ rsinf(de A dr) (194)
1 0

ey rsind 9y rsinf@dy ~ dr A (rdf) ~ r(dr A df) (195)

The Canonical Basis of the Hodge Star * in spherical coordinates in R* can be defined as follows(see
pg 4 in [1],eqs 3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 egs 2.67 to 2.70 and
pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

er = % ~ dr ~dt A (rdf) A (rsinfdp) ~ r?sin0(dt A df A dep) (196)
10 : .
= 25" rdf ~ dt A (rsin@dp) A dr ~ rsin@(dt A de A dr) (197)
=L O sinGdp ~ di Adr A (rd0) ~ r(di A dr A dB) (198)
e(p_rsinH&,o 7 sin 0dp rA(r r r
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In order to study the term y * d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R* space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 13,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 0* pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

e = % ~ dt ~ dr A (rd) A (rsin@dp) ~ 2 sinO(dr A df A dp) (199)

As a matter of fact we have for the Canonical Basis and the Hodge Star * in R?* the following equations
(see pg 47 eqs 2.67 to 2.70 in [3]):

xeg = e1 A\ eg A e3 (200)
xe; = eg A eg A es (201)
xeg = eg N ez A eq (202)
xe3 = eg Aei A ey (203)

In R? the corresponding equations are:(see pg 55 in [5])(see also pg 54 fig 4.2 in [5] for a graphical
presentation of the Hodge Star * in R3)(see pg 18 eq 1.55 in [6]):

*e1 = ey N\ e3 (204)
xeg — ez Nep = —eqp A es (205)
xe3 = e1 A ey (206)

The Canonical Basis e; are related to the partial derivatives 8%1 or simplifying related to dx; wether in

R3 or R* and are graphically represented by the partial derivatives dx; included in the tangent space of
the picture given in the beginning of this section.

3These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S =u =1

4This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which ¢ =1
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On the other hand in R* we also have the following relations for the Hodge Star *:(see pg 92 in [3])(see
also egs 4.55 and 4.56 pg 179 in [8])

xdt = dx Ndy N\ dz (207)
xdr = dt Ndy N dz (208)
xdy = dt N dz N\ dx (209)
xdz = dt Ndx N\ dy (210)

Also for R* considering the ((w,v)(eA3)(R"?)) formalism we may have the following relations:(see pg
382 in [4]) (2! = z,22 = y,23 = 2)

xdt = dxt A da® A da® (211)
sdx' = dt A dx? A da® (212)
xda? = dt A da® A da! (213)
sdr® = dt A dxt A da? (214)

In R? we would have the following relations:(see pg 117 eqs 4.6 and 4.7 in [7])(see pg 298 in [4])

xdr = dy N\ dz (215)
xdy = dz N dz (216)
xdz = dz N\ dy (217)

The differentials dz,dy,dz or dz', dz? and da? are related to the cotangent space differentials included
in the picture given in the beginning of this section.

See the graphical presentations of the relations between tangent and cotangent spaces in pg 55 fig 2.28 and

pg 70 fig 3.1 in [4].See pg 168 fig 5.19 for a graphical presentation of dx A dy,pg 169 fig 5.20 for a graphical
presentation of dy A dz and pg 170 fig 5.21 for a graphical presentation of dz A dx all in [4].
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Useful relations to deal with the Hodge Star * are given by eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3
pg 68(a)(b) in [2]:See also pg 89 in [3],pg 112 in [4],pg 97 in [5],pg 36 egs 2.21 and 2.22 in [6],pg 70 eq 3.3
in [7].

xd(fa)=df Nha+ (=1)P’f ANda --» p=3 --» xd(fa) =df Na— f Nda (218)
xd(fa)=df Nha+ (—1)PfANda--+»p=2--»x*d(fa) =df Na+ [ Ada (219)
«d(dz) = *d(dy) = *d(dz) =0 (220)

p = 3 stands for the R* and p = 2 stands for the R3.

See also Appendix I.
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The Warp Bubble
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Figure 4: Artistic Presentation of a Warp Bubble.(Source:Internet)

13 Appendix G:Artistic Presentation of a Warp Bubble

In 2001 the Natario warp drive appeared.([1]).This warp drive deals with the spacetime as a ”strain” tensor
of Fluid Mechanics(pg 5 in [1]). Imagine a fish inside an aquarium and the aquarium is floating in the
surface of a river but carried out by the river stream.The warp bubble in this case is the aquarium.An
observer at the rest in the margin of the river would see the aquarium passing by him at a large speed but
inside the aquarium the fish is at the rest with respect to his local neighborhoods.Since the fish is at the
rest inside the aquarium the fish would see the observer in the margin passing by him with a large relative
speed since for the fish is the margin that moves with a large relative velocity

any Natario vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nY = vs(t) * dy with Y = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Lets explain better this statement:Natario considered in this case a coordinates reference frame placed
inside the bubble where the fish inside the aquarium or the astronaut in a spaceship inside the bubble
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depicted above are at the rest with respect to their local neighborhoods.Then any Natario vector must be
zero inside the bubble or the aquarium or the spaceship.

On the other hand since the fish sees the margin passing by him with a large relative velocity or the
astronaut would see a stationary observer in outer space outside the bubble passing by him with a large
relative velocity then any Natario vector outside the bubble must have a value equal to the relative velocity
seen by both the fish and the astronaut.

Considering a valid f as a Natario shape function being f = % for large r(outside the warp bubble)
and f = 0 for small r(inside the warp bubble) while being 0 < f < % in the walls of the warp bubble
also known as the Natario warped region(pg 5 in [1]):The walls of the bubble the Natario warped region
corresponds to the distorted region in the picture depicted in this Appendix.

See also Appendix H.
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Figure 5: Another Artistic Presentation of a Warp Bubble.(Source:Internet)

14 Appendix H:Another Artistic Presentation of a Warp Bubble

Natario considered a coordinates reference frame placed inside the bubble.Now we must consider a coordi-
nates reference frame placed outside the bubble:In this case the observer at the rest in the margin of the
river would see the aquarium passing by him with a large velocity with the fish inside.Also a stationary
observer at the rest in outer space would see the spaceship depicted in the picture above passing by him

with a large velocity with the astronaut inside.

Now the rules originally defined by Natario are interchanged:

Since the observer in the margin and the observer in outer space are at the rest any Natario vector in

this case must be zero outside the bubble.

But since the fish and the spaceship are being seen by the observer at the rest in the margin and the
observer at the rest in outer space both fish and spaceship with a large velocity then the Natario vector
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inside the bubble must have a value equal to the velocity seen by both observers.

Considering a valid f as a Natario shape function being f = 0 for large r(outside the warp bubble)
and f = % for small r(inside the warp bubble) while being 0 < f < % in the walls of the warp bubble also
known as the Natario warped region:The walls of the bubble the Natario warped region corresponds to the
distorted region the ”blue circle” in the picture depicted in this Appendix.

For an introductory explanation about remote frames outside the bubble or ship frames inside the bubble
or comoving coordinates frames see pg 8 in [22].
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Figure 6: Artistic Presentation of Tangent and Cotangent Spaces II.(Source:Internet)

15 Appendix I:Tangent and Cotangent Spaces 11

Consider a curve R in R?* defined in function of a given set of coordinates u®,u',u? and u> as being

R = R(u% u',u? u?).

A total derivative of R is given by:

OR ., OR, , OR , 6, OR  ;,
Applying the Einstein summing convention:
OR . .
dR = I du® = e;du’ (222)
or
OR | . .
dR = Wduj = ejdu’ (223)
With 4,57 = 0,1,2,3 as the coordinates,gg and % as the directional partial derivatives of R with

respect to each coordinate and e; and e; are the respective Canonical Basis.

Defining ds? = dR @ dR we have:

oR oR , .
2 _ _ — e ,

ds” = dR® dR = Wduz ® %duj = e;du’ ® e;jdu’ (224)

OR OR ;. . . g

2 2 e = esesdutdu’ = gpsdutdu’
ds* = 5 D du'du’ = ejejdu’de’ = gijdu'du (225)

OR OR

9ij = o o €iCj (226)
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The directional partial derivatives of R and their respective Canonical Basis are related to the 9; and
; tangent spaces of the picture depicted in the beginning of this section while the differentials du’ and
du’ are related to the respective cotangent spaces.See pg 148 problem 17 in [14],pg 132 eq 10.12 pg 133
eqs 10.14a,10.14b and 10.15 in [15].

. _ OR OR

Gij = 5. 5ur = €i€j is the spacetime metric tensor of General Relativity.
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16 Appendix J:differential forms,Hodge star and the mathematical demon-
stration of the new warp drive vector nY = vs x dy for a constant
speed vs in a R? space basis-3D Spherical Coordinates

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in [1],eq
3.72 pg 69(a)(b) in [2]):

e, = aﬁ ~ dr ~ (rdf) A (rsinfdyp) ~ 2 sin 0(d6 A d) (227)
r
10 . .
eg = v rdf ~ (rsinfdp) A dr ~ rsinf(dp A dr) (228)
r
=L 0 inbdp ~dr A (rdf) ~ r(dr A db) (229)
eso_rsinﬁago . PA n

Back again to the equivalence between 3D spherical and cartezian coordinates d(psin ¢ sin ) :(See Ap-
pendix E)

We will replace p by r and ¢ by ¢.Then we have:

d(rsin ¢ sin ) = sing[d(r sin 8)] + (rsin 6)d(sin ¢) (230)

d(rsin ¢sin ) = sing[sinfdr + r(dsin 0)] + (r sin 0)(cos¢dg) (231)
d(rsin ¢sin§) = sin[sinf(dr) + rcosf(df)] + (rsin 0)[cosd(d)] (232)
d(rsin ¢sin§) = sing[sinf(dr) + cosd(rdf)] + cosd|(r sin 6) (dp)] (233)

Applying the Hodge Star * to the term [sinf(dr)+cosf(rdf)] we will get the same results already shown
in the Appendix A and the first part of the 3D spherical warp drive vector is the one of the Appendix A
multiplied by sin ¢ .Then we must concern ourselves with the term cos¢[(rsin®)(d¢)] and the following
Canonical Basis for the Hodge Star * since the other two were covered in the Appendix A.

1 9 :
ep = 099~ rsin@dg ~ dr A (rdf) ~ r(dr A df) (234)

Now applying the Hodge Star * to the term d(r sin ¢ sin ) we have:

xd(r sin ¢ sin 0) = sing[sinf x (dr) + cosd = (rdf)| + cosd[*(r sin 0)(de)] (235)
xd(rsin ¢ sin 0) = sing[(sind)e, + (cosh)eg| + (cosp)ey (236)
«d(rsin ¢ sin 0) = sing[sinfe, + cosbeg| + cospe, (237)
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In Appendix A we computed the Hodge Star *dy in 2D Polar Coordinates as being *dy = *d(r sin )
as being:

«dy = *d(rsinf) = sin fe, + cos fey (238)
*dy = [(?)(tan )] [*d <; sin? 9d<p>] + (—1)(sin @)(cos 9)% % [d(r?)dy] (239)
We used the following expression:
27 tan )] 5 sin? O )]+ () + 1 ()} (-1)(sin0) cos0) < d02)de] (210)
With these ones:
[(2)(tan 0)][*d <; sin? 9d<p>] = sinfe, (241)
(—=1)(sin0)(cos 9)% s [d(r?)dy] = cos feq (242)

We arrived finally at:
[2£(r)][(r2) (tan 6)][vd @ sin? 0d<p>] F2A) + () 1)(sin6)(cosb) 5  [d(r?)dg]  (243)

[2f ()] sinfe, + [2f(r) + 7 f'(r)] cos Oeq (244)

This is the new Natario vector nY with the Hodge Star operator *

Coordinates:

explicitly resolved in 2D Polar

nY = vs(t)[2f(r)] sinfe, + vs[2f(r) + rf'(r)] cosbey (245)
But in 3D Spherical Coordinates the Hodge Star xdy is given by *dy = *d(r sin ¢ sin 0)

*d(rsin ¢ sin 0) = sing[sinbe, + cosbeg] + cospe, (246)

The term sinfe, + cosfey above will be replaced by [2f(r)]sinfe, + [2f(r) + rf'(r)] cosfey and the
term cosgey will be replaced by [2f(r) + rf'(r)]cospey

And finally we arrived at the final expression for the new warp drive vector nY with the Hodge Star
operator * explicitly resolved in 3D Spherical Coordinates for a constant speed vs:

nY = vs(t)sing[[2f(r)] sinfe, + [2f(r) + 7 f'(r)] cos Oeg] 4+ vs(t)[2f (1) + 7 [ (1)]cosgpe, (247)
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nY = vs(t)sing[[2f(r)] sinfe, + [2f(r) + rf'(r)] cos Oeg] + vs(t)[2f (r) + rf'(r)]cospes (248)

nY = [2f(r)]vs(t)sing sin e, + vs(t)sing[2f(r) + rf (r)] cosOeg + vs(t)[2f (1) + rf'(r)]cospe,  (249)

This is the final form of our new tridimensional 3D spherical warp drive vector nY with the Hodge
Star over the y-axis for a constant speed vs.Note that Natario in pg 4 in [1] defined the x-axis as the polar
axis but now the y-axis is the polar axis.If the motion occurs only in the y-axis in polar coordinates then
the angle between the x-y plane and the z-axis is 90 degrees and in this case sin¢ = 1 and cos¢ = 0 and
our new warp drive vector nY in tridimensional 3D spherical coordinates reduces to the original Natario
warp drive vector nY in polar coordinates.(see Appendix A).

For our new tridimensional 3D spherical coordinates warp drive vector nY with a constant speed ws
and Hodge Star over the y-axis:

nY =Y"e + Y%+ Y, (250)

The corresponding shift vectors are:

Y = [2f(r)]vs(t)sing sin O (251)
Y? = ws(t)sing[2f(r) + 7 f'(r)] cos O (252)
Y? =ws(t)[2f(r) + 7f'(r)]cos¢ (253)

Compare with the equation of the new warp drive vector in tridimensional 3D spherical coordinates
with a constant speed vs nX and the Hodge Star over the x-axis given by:

nX = X"e, + X%q + X%, (254)

With the contravariant shift vector components X", X% and X¢ given by:(see Appendix .J in [9] for
details )

X" =ws(t)[sin¢|[2f(r) cosb] (255)
X% = —vs(t)[sing][2f (r) + rf'(r)] sin 0] (256)
X? = [vs(t)cosg][cotf[2(f(r)) + (rf'(r))] (257)

Note that Natario in pg 4 in [1] defined the x-axis as the polar axis.If the motion occurs only in the
x-axis in polar coordinates then the angle between the x-y plane and the z-axis is 90 degrees and in this
case sin ¢ = 1 and cos ¢ = 0 and our new warp drive vector nX in tridimensional 3D spherical coordinates
reduces to the original Natario warp drive vector nX in polar coordinates.(see Appendix A in [9]).
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17 Appendix K:differential forms,Hodge star and the mathematical
demonstration of the warp drive vector nY = vs x dy for a con-
stant speed vs or for the first term vs x dy from the warp drive
vector nY = vs * dy + y * dvs(a variable speed) in a R? space basis-
Tridimensional 3D Spherical Coordinates

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in [1],eqs

3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see
also egs 4.55 and 4.56 pg 179 in [8]):

= Lt s - Penarani
/r‘
10 . .
€= o5~ rdf ~ dt A (rsin@de) Adr ~ rsin@(dt A de A dr) (259)
r
_ 1 92 inOdp ~ dt A dr A (rdf) ~ r(dt A dr A d6) (260)
e‘P_TSmGGQD remrde TAV ' '

Useful relations to deal with the Hodge Star * are given by eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3
pg 68(a)(b) in [2]:See also pg 89 in [3],pg 112 in [4],pg 97 in [5],pg 36 egs 2.21 and 2.22 in [6],pg 70 eq 3.3
in [7].

xd(fa)=df N\a+ (=1)PfAda --+» p=3 --» xd(fa)=df Na— f Nda (261)
xd(fa)=df N\a+ (=1)PfANda--+» p=2--»xd(fa)=df Na+ f Nda (262)
«d(dz) = *d(dy) = *d(dz) =0 (263)

p = 3 stands for the R* and p = 2 stands for the R3.

Back again to the equivalence between 3D spherical and cartezian coordinates d(psin ¢sinf) :(See Ap-
pendix E)

We will replace p by r and ¢ by ¢.Then we have:
d(rsin ¢ sin @) = sing[d(rsin )] + (r sin §)d(sin ¢) (264)

d(rsin ¢sin ) = sing[sind(dr) + cosf(rdf)| + cos¢[(rsin0)(d¢)] (265)

Applying the Hodge Star * to the terms above we will get the same results already shown in the
Appendix J.As a matter of fact comparing the Appendices A and B the given final result is the same in
both Appendices except for the fact that in Appendix A the Hodge Star is taken over R? and in Appendix
B the Hodge Star is taken over R*.

*d(rsin ¢ sin @) = sing[sind * (dr) + cosf = (rdf)] + cosd = [(rsin 6)(de)] (266)
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The final result is the same of Appendix J:

nY =Y"e, + Y%y + Y¢e¢

The corresponding shift vectors are:

Y = [2f(r)]vs(t)sing sin O
Y? = vs(t)sing[2f (r) + rf'(r)] cos 0

Yo = vs(t)[2f(r) + rf (1)]cose
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18 Appendix L:differential forms,Hodge star and the mathematical
demonstration of the new warp drive vector nY = x(vsy) = vs x*
dy + y x dvs for a variable speed vs and a constant acceleration a in
Tridimensional 3D Spherical Coordinates

any warp drive vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value
of r defined by Natario as the interior of the warp bubble and nY = wvs(t) * dy with Y = vs for a large
value of r defined by Natario as the exterior of the warp bubble with vs(¢) being the speed of the warp
bubble.(pg 4 in [1])(see Appendix G for an explanation about this statement)

In the Appendices J and K we gave the mathematical demonstration of the new warp drive vector nY
in the R? and R* space basis in tridimensional 3D spherical coordinates where the velocity vs is con-
stant.Hence the complete expression of the Hodge star that generates the warp drive vector nY = vs * dy
for a constant velocity vs is given by:

nY = x(vsy) = vs * (dy) (271)

Our new tridimensional 3D spherical coordinates warp drive vector in R* with constant speed vs
nY = vs x dy or for the first term vs * dy of the new tridimensional 3D spherical coordinates warp drive
vector in R* with variable speed vs nY = vs * dy + y * dvs is given by:

nY = vs(t)sing[[2f(r)]sinfe, + [2f(r) + 7 f'(r)] cos Oeg) + vs(t)[2f(r) + 7 f'(r)]cospe, (272)

nY =Y"e, + Y%y + Y, (273)

The corresponding shift vectors are:

Y = [2f(r)|vs(t)singsin (274)
Y = vs(t)sing[2f(r) + rf'(r)] cos 6 (275)
V¢ = ws(t)[2f(r) + rf (r)]cos¢ (276)

Because due to a constant speed vs the term y * d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term y * d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the warp drive vector nY for a variable velocity vs is now given by:

nY = x(vsy) = vs * (dy) + y * (dvs) (277)
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In order to study the term y * d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R* space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 15,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 0° pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

e = % ~ dt ~ dr A (rdf) A (rsin0de) ~ r2sin0(dr A df A do) (278)

The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2](see
also egs 4.55 and 4.56 pg 179 in [8])):

xdt = 12 sinO(dr A dO A do) (279)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (280)

Because and considering a valid f(r) as a Natario shape function being f(r) = % for large r(outside
the warp bubble where Y = vs(t) and nY = wvs(t) * dy + y * d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where Y = 0 and nY = 0) while being 0 < f(r) < % in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [1]) and considering also that the Natario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every
point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) =0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity. The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time ¢1 and vs(t) = v2 in the time ¢2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
flr) = % giving a generic expression for a variable velocity vs as vs(t) = at and consequently a vl = atl
in the time t1 and a v2 = at2 in the time ¢2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[atf'(r)dr + f(r)tda + f(r)adt] (281)

5These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S =u =1

5This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which ¢ =1
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Applying the Hodge star to the total differential dvs we get:

xdvs = 2[atf'(r) « dr + f(r)t = da+ f(r)a * dt] (282)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t « da = 0.This leaves us with:

xdvs = 2[atf'(r) x dr + f(r)a x dt] (283)

sdvs = 2[atf'(r) * dr + f(r)a * dt] = 2[atf (r)r® sin0(dt A dO A dp) + f(r)ar?sin(dr A dO A do)]  (284)

xdvs = 2[atf'(r) * dr + f(r)a * dt] = 2[atf'(r)e, + f(r)aei] (285)

The complete expression of the Hodge star that generates the warp drive vector nX for a variable
velocity vs is given by:

nY = x(vsy) = vs * (dy) + y * d(vs) (286)
The term vs * dy was obtained in the Appendices J and K as follows:

nY = vs(t)sing[[2f(r)]sinfe, + [2f(r) + 7 f(r)] cos Oeg] 4+ vs(t)[2f (1) + 7 f'(1)]cospe, (287)
The complete expression of the Hodge star that generates the warp drive vector nY for a variable

velocity vs is now given by:

nY = vs(t)sing[[2f(r)] sin e, +[2f (r)+r f'(r)] cos Oegl+vs(t)[2f (r)+rf ()] cospes+y(2[at f' (r)e .+ f(r)aes])

(288)

But remember that we are in tridimensional 3D spherical coordinates(see Appendix E) in which y =
rsin ¢ sin @ and this leaves us with:

nY =A+B— A=vsxdy — B =yx*dvs (289)
A = vs(t)sing[[2f (r)] sinfe, + [2f(r) + 7 f'(r)] cos Oeg) + vs(t)[2f (1) + 7 f'(r)]cospe, (290)

B = (rsin¢sin0)(2[atf'(r)e, + f(r)aet]) (291)
But we know that vs = 2f(r)at.Hence we get:
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nY =A+B— A=vsxdy — B =yx*dvs (292)

A = [2f(r)at]sing[[2f(r)] sinbe, + [2f(r) + rf'(r)] cos Oeg] + [2f (r)at][2f(r) + rf'(r)]cospes (293)

B = (rsin¢sin0)(2[atf'(r)e, + f(r)ae]) (294)

Then we can start with a warp bubble initially at the rest using the warp drive vector shown above and

accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed

we turn off the acceleration and keep the speed vs constant.The term B due to the acceleration y * (dvs)

now disappears the speed vs is no longer vs = 2f(r)at and we are left again with the warp drive vector for
constant speeds shown below:

nY =A— A=uvsxdy (295)

A = vs(t)sing[[2f(r)] sinOe, + [2f(r) + 7 f'(r)] cosOeg] + vs(t)[2f (1) + [ (1)]cospe, (296)

Working some algebra with the new warp drive vector for variable velocities we get:”

nY =A+B— A=vs*xdy — B=1yx*dvs (297)

A = [2f(r)at]sing[[2f(r)] sinfe, + [2f(r) + rf'(r)] cosOeg] + [2f (r)at][2f(r) + 7' (r)]cospe, (298)

B = (rsin¢sin0)(2at f'(r)e, + f(r)aes)) (299)

A = (2f(r)at) sin ¢[2f (r) sin Oe,|+(2f (r)at) sin §[2f (r)+r f'(r)] cos Oeg+(2f (r)at)cos[[2(f (T))+(rf’(%)(])8<§s]]
B = 2(rsin ¢sinf)at f'(r)e, + 2(rsin ¢ sin ) f (r)ae, (301)

A = A(f(r)*at)(sin ¢)(sin O)e,+(2f (r)at)[2f (r)+rf'(r))(sin ¢) (cos B)eg+(2f (r)at) [2(f (r))+(rf’(r))](c?§<§;§¢

B =2(at)(rf'(r))(sin ¢)(sin ) e, + 2(rf(r)a))(sin ¢)(sin 0)e; (303)

"we know that we are being tedious monotonous and repetitive but we are writing this mainly for beginners or introductory
students
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Rearranging the terms we have:

A = A(f(r)*at)(sin ¢)(sin O)e,+(2f (r)at)[2f (r)+r f'(r))(sin ¢) (sin 0)eg+ (2 (r)at) [2(f(7“))+(?”f’(?”))](00(8¢)€)¢
304

A = (2f(r)at) sin ¢[2f (r) sin Oe,[+(2f (r)at) sin ¢[2f (r)+rf'(r)] cos 9€o+(2f(7")at)008¢[[Q(f(?”))+(7”f'(7g))]6<§]]
305

(2f (r)at)[2f (r)](sin ¢) (sin O)er+(2f (r)at)[2f (r)+rf'(r)] (sin §) (cos O)eg+(2f (r)at) [2f (r)+(r f'(r))] (CO«(%ﬁ)eSﬁ
306

B =2(at)(rf'(r))(sin ¢)(sin ) e, + 2(r f(r)a))(sin ¢)(sin 0)e; (307)
Working the terms with e,

(2f (r)at) sin ¢[2f (r) sin O, ] + 2(at) (r f'(r)) (sin ¢)(sin ) e, (308)
(2f (r)at)[2f (r)](sin ¢)(sin O)er + 2(at)(rf'(r))(sin ¢)(sin O)e, (309)
(2at)[2f(r)?](sin ) (sin B)e, + 2(at) (rf' (r))(sin ) (sin O)e; (310)
(2at)[2f(r)* + (rf'(r))](sin ) (sin f)er (311)

At last we can give now the new warp drive vector for variable velocities in real tridimwensional 3D
spherical coordinates using its respective contravariant shift vector components:®

nY =Y'e, +Ye, + Y + Y, (312)

V' =2(rf(r)a))(sin ¢)(sin 0) (313)

Y" = (2at)[2f(r)? + (rf'(r)))(sin ¢) (sin 0) (314)
Y% = (2f(r)at)[2f (r) +r['(r)](sin §)(cos 0) (315)
Y? = (2f(r)at)[2f(r) + (rf'(r))] (cos®) (316)

8again:the section is extensive but a beginner needs all these QED Quod Erad Demonstratum mathematical demonstrations
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Comparing the new warp drive vector for variable velocities in real tridimensional 3D spherical coor-

dinates with the Natario polar coordinates warp drive vector counterpart:

nY =Yle, +Y7e, + Y%+ Ve,
Y! = 2(rf(r)a))(sin ¢)(sin 0)

Y7 = (2at)[2f(r)* + (rf'(r)))(sin ¢) (sin 0)
Y? = (2f(r)at)[2f (r) + ' (r)](sin ¢)(cos 0)
Y? = (2f(r)at)[2f(r) + (rf ()] (cose)
nY =Yle,+Y"e, + Y
Y! = 2f(r)rsinfa
Y™ = 2[2f(r)* 4+ rf'(r)]atsinf

Y% = 12f(r)at[2f(r) + rf'(r)] cos 6

(317)

(318)

(319)

(320)

(321)

(322)

(323)

(324)

(325)

Natario defined a motion in the x — azis of polar coordinates (pgs 4 and 5 in [1]) but we considered the
motion in the y — axis then the polar plane x — y makes an angle of 90 degrees with the z — axis and since
sing = 1 and cos ¢ = 0 it is easy to see that in this case the new warp drive vector for variable velocities
in real tridimensional 3D spherical coordinates reduces itself to the Natario polar coordinates warp drive

vector counterpart:

The difference occurs only in a real tridimensional motion.
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Comparing the new warp drive vector for variable velocities in real tridimensional 3D spherical coor-
dinates and Hodge Star over the y-axis nY with the the new warp drive vector nX in tridimensional 3D
spherical coordinates with a variable speed vs and Hodge Star over the x-axis:

nY =Yle, +Ye, + Y0y + Y%, (326)

V! =2(rf(r)a))(sin ¢)(sin 0) (327)

Y" = (2at)[2f(r)? + (rf'(r)))(sin ¢) (sin 0) (328)
Y% = (2f(r)at)[2f (r) + ' (r)](sin §)(cos 0) (329)
Y? = (2f(r)at)[2f(r) + (rf' ()] (cos®) (330)
nX = X'e, + X"e, + X%q + X%, (331)

With the contravariant shift vector components X* X7 X% and X¢ given by:
(see Appendices K and L in [9] for details )

X' =2(rf(r)a))(sin ¢)(cos 0) (332)

X" = (2at)[2f(r)? + (rf'(r)))(sin ¢)(cos §) (333)
X0 = —(2f(r)at)[2(r) +rf'(r)](sin $)(sin 6) (334)
X% = (2f(r)at)2f(r) + (rf'())](cose)(cott) (335)

Do they look familiar 7
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