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Abstract

The Natario warp drive appeared for the first time in 2001.Although the idea of the warp dive as a
spacetime distortion that allows a spaceship to travel faster than light predated the Natario work by 7
years Natario introduced in 2001 the new concept of a propulsion vector to define or to generate a warp
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x-axis but remember that a real warp drive must accelerate or de-accelerate in order to be accepted as
a physical valid model so it must possesses variable speeds.We developed in this work a new warp drive
vector for the y-axis in both Polar and Spherical coordinates that encompasses variable speeds.Also Polar
Coordinates uses only two dimensions and we know that a real spaceship is a tridimensional 3D object
inserted inside a tridimensional 3D warp bubble that must be defined in real 3D Spherical Coordinates.
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1 Introduction:

The Natario warp drive appeared for the first time in 2001.([1]).Although the idea of the warp dive as a
spacetime distortion that allows a spaceship to travel faster than light predated the Natario work by 7
years Natario introduced in 2001 the new concept of a propulsion vector to define or to generate a warp
drive spacetime.

This propulsion vector nX uses the form nX = Xiei where Xi are the shift vectors responsible for the
spaceship propulsion or speed and ei are the Canonical Basis of the Coordinates System where the shift
vectors are based or placed.

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed
of the warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1]).(see Appendix D about Polar Coordinates).The final form of the original Natario warp drive
vector is given by nX = vs ∗ d(r cos θ).However Polar Coordinates are not real tridimensional 3D coordi-
nates since it uses only the two Canonical Basis er and eθ.

We introduced in this work a new warp drive vector nY = vs ∗ (dY ) where vs is the constant speed
of the warp bubble and ∗(dy) is the Hodge Star taken over the y-axis of motion in Polar Coordinates.The
final form of our new warp drive vector is given by nY = vs ∗ d(r sin θ).

The Hodge Star actually must be taken over the product (yvs) giving the expression nY = ∗(yvs) =
vs ∗ (dy) + y ∗ (dvs) but due to a constant speed vs the term y ∗ d(vs) = 0.In this work we examine what
happens with the new warp drive vector when the velocity is variable and then the term y ∗d(vs) no longer
vanishes.Remember that a real warp drive must accelerate or de-accelerate in order to be accepted as a
physical valid model.

Natario used Polar Coordinates(See pg 4 in [1]) but for a real 3D Spherical Coordinates another warp
drive vector must be calculated.Remember that a real spaceship is a tridimensional 3D object inserted in-
side a tridimensional 3D warp bubble that must be defined in real 3D Spherical Coordinates.The final form
of the Hodge Star for this warp drive vector based over the y-axis is calculated no longer over ∗d(r sin θ)
but instead over ∗d(r sinφ sin θ) since this form uses all the tridimensional 3D Canonical Basis er,eθ and
eφ.(see Appendix E about tridimensional 3D Spherical Coordinates).

In this work we present the new warp drive vector in tridimensional 3D Spherical Coordinates with
the Hodge Star over the y-axis calculated for both constant nY = vs ∗ d(y) or variable speeds nY =
vs ∗ (dy) + y ∗ (dvs).

In order to fully understand the idea presented in this work(a new warp drive vector in tridimensional
3D Spherical Coordinates over the y-axis) acquaintance or familiarity with the Natario original warp drive
paper is required but we provide all the mathematical demonstration QED(Quod Erad Demonstratum)
in the Appendices.
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This work is organized as follows:

• A)-Section 2 introduces the new Natario warp drive vector nY in Polar Coordinates
nY = vs ∗ d(y) for constant speeds.

• B)-Section 3 introduces the new Natario warp drive vector nY in Polar Coordinates
nY = vs ∗ d(y) + y ∗ (dvs) for variable speeds.

• C)-Section 4 introduces the new warp drive vector nY in tridimensional 3D Spherical Coordinates
nY = vs ∗ d(y) for constant speeds.

• D)-Section 5 introduces the new warp drive vector nY in tridimensional 3D Spherical Coordinates
nY = vs ∗ d(y) + y ∗ (dvs) for variable speeds.

We adopted in this work a pedagogical language and a presentation style that perhaps will be considered
as tedious,monotonous, exhaustive or extensive by experienced or seasoned readers and we designated this
work for novices,newcomers,beginners or intermediate students providing in our work all the mathematical
background needed to understand the process Natario used to generate warp drive vectors.

As a matter of fact if a novice,newcomer,beginner or intermediate student not familiarized with the Natario
techniques reads the Natario warp drive paper in first place he(or she) will perhaps feel some difficulties.

We hope our paper is suitable to fill this gap.

Although this work was designed to be independent,self-consistent and self-contained it may be regarded
as a companion work to our works in [9],[16] and [17].
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2 The equation of the new Natario warp drive vector nY in 2D polar
coordinates over the y-axis with a constant speed vs

The equation of the new Natario warp drive vector nY is given by:

nY = Y rer + Y θeθ (1)

With the contravariant shift vector components Y rs and Y θ given by:(see Appendix A for details)

Y rs = 2vsf(rs) sin θ (2)

Y θ = vs(2f(rs) + (rs)f ′(rs)) cos θ (3)

Considering a valid f(rs) as a shape function being f(rs) = 1
2 for large rs(outside the warp bubble)

and f(rs) = 0 for small rs(inside the warp bubble) while being 0 < f(rs) < 1
2 in the walls of the warp

bubble also known as the Natario warped region(see pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nY generates a Natario warp drive spacetime if nY = 0 and Y = vs = 0 for a
small value of rs defined by Natario as the interior of the warp bubble and nY = vs(t) with Y = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(see pg 4 in [1])(see also Appendices G and H).

Natario in its warp drive uses the polar coordinates rs and θ.In order to simplify our analysis we con-
sider motion in the y − axis only or the vertical plane rs where θ = 90 sin(θ) = 1 and cos(θ) = 0.(see pgs
4,5 and 6 in [1]).

In a 1 + 1 spacetime the vertical plane we get¿:

nY = Y rer (4)

The contravariant shift vector component Y rs is then:

Y rs = 2vsf(rs) (5)

Remember that we now defines the y axis as the axis of motion.Inside the bubble f(rs) = 0 resulting
in a Y rs = 0 and outside the bubble f(rs) = 1

2 resulting in a Y rs = vs and this illustrates the Natario
definition for a warp drive spacetime.(see pg 4 in [1]).(see Appendix D about Polar Coordinates).
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3 The equation of the new Natario warp drive vector nY in 2D polar
coordinates over the y-axis with a variable speed vs and a constant
acceleration a

The equation of the new Natario vector nY is given by:

nY = Y tet + Y rer + Y θeθ (6)

The contravariant shift vector components Y t,Y rs and Y θ of the Natario vector are defined by(see
Appendices B and C for details):

Y t = 2f(rs)rs sin θa (7)

Y rs = 2[2f(rs)2 + rsf ′(rs)]at sin θ (8)

Y θ = 2f(rs)at[2f(rs) + rsf ′(rs)] cos θ (9)

Considering a valid f(rs) as a shape function being f(rs) = 1
2 for large rs(outside the warp bubble)

and f(rs) = 0 for small rs(inside the warp bubble) while being 0 < f(rs) < 1
2 in the walls of the warp

bubble also known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value of
rs defined by Natario as the interior of the warp bubble and nY = vs(t) ∗ dy + y ∗ dvs with Y = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])(see Appendices G and H for an explanation about this statement)

Natario in its warp drive uses the polar coordinates rs and θ.In order to simplify our analysis we con-
sider motion in the y − axis or the vertical plane rs where θ = 90 sin(θ) = 1 and cos(θ) = 0.(see pgs 4,5
and 6 in [1]).

In a 1 + 1 spacetime the vertical plane we get¿:

nY = Y tet + Y rer (10)

Y t = 2f(rs)rsa (11)

Y rs = 2[2f(rs)2 + rsf ′(rs)]at (12)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2f(rs)at (13)
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Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.In this case y is now the
axis of motion.Inside the bubble f(rs) = 0 resulting in a vs = 0 and outside the bubble f(rs) = 1

2 resulting
in a vs = at as expected from a variable velocity vs in time t due to a constant acceleration a.Since inside
and outside the bubble f(rs) always possesses the same values of 0 or 1

2 then the derivative f ′(rs) of the
Natario shape function f(rs) is zero and the shift vector Y rs = 2[2n(rs)2]at with Y rs = 0 inside the bubble
and Y rs = 2[2f(rs)2]at = 2[21

4 ]at = at = vs outside the bubble and this illustrates the Natario definition
for a warp drive spacetime.(see Appendix D about Polar Coordinates).
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4 The equation of the new warp drive vector nY in tridimensional 3D
spherical coordinates over the y-axis with a constant speed vs

The equation of the new warp drive vector in tridimensional 3D spherical coordinates with a constant
speed vs nY is given by:

nY = Y rer + Y θeθ + Y φeφ (14)

The corresponding contravariant shift vectors are:(see Appendix J for details)

Y r = [2f(r)]vs(t)sinφ sin θ (15)

Y θ = vs(t)sinφ[2f(r) + rf ′(r)] cos θ (16)

Y φ = vs(t)[2f(r) + rf ′(r)]cosφ (17)

Considering a valid f(r) as a shape function being f(r) = 1
2 for large r(outside the warp bubble) and

f(r) = 0 for small rs(inside the warp bubble) while being 0 < f(r) < 1
2 in the walls of the warp bubble

also known as the warped region(pg 5 in [1]):

We must demonstrate that our new warp drive vector satisfies the Natario criteria for a warp drive defined
by:

any warp drive vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small
value of r defined by Natario as the interior of the warp bubble and nY = vs(t) ∗ dy with Y = vs for a
large value of r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])(see Appendices G and H for an explanation about this statement).

Natario in its warp drive uses the polar coordinates r and θ.In order to simplify our analysis we consider
motion in the y−axis the vertical plane x−y in r where θ = 90 sin(θ) = 1 and cos(θ) = 0.(see pgs 4 and 5
in [1]).Also the vertical plane x−y makes an angle of 90 degrees with the z−axis so sinφ = 1 and cosφ = 0.

Then the contravariant components reduces to:

Y r = vs(t)[sinφ][2f(r) sin θ] → Y r = vs(t)[2f(r)] → sinφ = 1 → sin θ = 1 (18)

Y θ = vs(t)[sinφ][2f(r) + rf ′(r)] cos θ] = 0 → sin φ = 1 → cos θ = 0 (19)

Y φ = [vs(t)cosφ][2(f(r)) + (rf ′(r))] = 0 → cosφ = 0 (20)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Now the y-axis is the axis
of motion.Inside the bubble f(r) = 0 resulting in a Y r = 0 and outside the bubble f(r) = 1

2 resulting in
a Y r = vs and this illustrates the Natario definition for a warp drive spacetime.(See Appendix E about
Spherical Coordinates).
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5 The equation of the new warp drive vector nY in tridimensional 3D
spherical coordinates over the y-axis with a variable speed vs due to
a constant acceleration a

The equation of the new warp drive vector in tridimensional 3D spherical coordinates with a variable speed
vs due to a constant acceleration a nY is given by:

nY = Y tet + Y rer + Y θeθ + Y φeφ (21)

With the contravariant shift vector components Y t,Y rs, Y θ and Y φ given by:(see Appendices K and
L for details )

Y t = 2(rf(r)a))(sinφ)(sin θ) (22)

Y r = (2at)[2f(r)2 + (rf ′(r))](sinφ)(sin θ) (23)

Y θ = (2f(r)at)[2f(r) + rf ′(r)](sinφ)(cos θ) (24)

Y φ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ) (25)

Considering a valid f(r) as a shape function being f(r) = 1
2 for large r(outside the warp bubble) and

f(r) = 0 for small rs(inside the warp bubble) while being 0 < f(r) < 1
2 in the walls of the warp bubble

also known as the warped region(pg 5 in [1]):

We must demonstrate that our warp drive vector satisfies the Natario criteria for a warp drive defined
by:

any warp drive vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small
value of r defined by Natario as the interior of the warp bubble and nY = vs(t) ∗ dy + y ∗ dvs(t) with
Y = vs for a large value of r defined by Natario as the exterior of the warp bubble with vs(t) being the
speed of the warp bubble.(pg 4 in [1])(see Appendices G and H for an explanation about this statement)

Natario in its warp drive uses the polar coordinates r and θ.In order to simplify our analysis we con-
sider motion in the y−axis or the vertical plane x−y in r where θ = 90 sin(θ) = 1 and cos(θ) = 0.(see pgs
4,5 and 6 in [1]).Also the vertical plane x− y makes an angle of 90 degrees with the z − axis so sinφ = 1
and cosφ = 0.Then the contravariant components reduces to:

Y t = 2(rf(r)a))(sinφ)(sin θ) → Y t = 2(rf(r)a)) → sinφ = 1 → sin θ = 1 (26)

Y r = (2at)[2f(r)2 + (rf ′(r))](sinφ)(sin θ) → Y r = (2at)[2f(r)2 + (rf ′(r))] → sinφ = 1 → sin θ = 1 (27)

Y θ = (2f(r)at)[2f(r) + rf ′(r)](sinφ)(cos θ) = 0 → sinφ = 1 → cos θ = 0 (28)
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Y φ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ) = 0 → cos φ = 0 (29)

The remaining contravariant components are:

Y t = 2(rf(r)a))(sinφ)(sin θ) → Y t = 2(rf(r)a)) → sinφ = 1 → sin θ = 1 (30)

Y r = (2at)[2f(r)2 + (rf ′(r))](sinφ)(sin θ) → Y r = (2at)[2f(r)2 + (rf ′(r))] → sinφ = 1 → sin θ = 1 (31)

nY = Y tet + Y rer (32)

Y t = 2rf(r)a (33)

Y rs = 2[2f(r)2 + rf ′(r)]at (34)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2f(r)at (35)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Now the axis of motion
is y.Inside the bubble f = 0 resulting in a vs = 0 and outside the bubble f = 1

2 resulting in a vs =
at as expected from a variable velocity vs in time t due to a constant acceleration a.Since inside and
outside the bubble f(r) always possesses the same values of 0 or 1

2 then the derivative f ′(r) of the shape
function f(r) is zero and the shift vector Y rs = 2[2f(r)2]at with Y r = 0 inside the bubble and Y rs =
2[2f(r)2]at = 2[21

4 ]at = at = vs outside the bubble and this illustrates the Natario definition for a warp
drive spacetime.See Appendix E about Spherical Coordinates.
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6 Conclusion

In this work we introduced a new tridimensional 3D spherical coordinates warp drive vector nY with the
Hodge Star based over the y-axis using the Natario mathematical techniques.We focused ourselves in the
application of the Hodge Star in 3D spherical coordinates for both constant and variable speeds.

Natario used Polar Coordinates(See pg 4 in [1]) and a Hodge Star based over the x-axis and in this
work we computed Hodge Stars in both Polar and Spherical Coordinates for the y-axis.

For a real 3D Spherical Coordinates a new warp drive vector must be calculated.Remember that a real
spaceship is a tridimensional 3D object inserted inside a tridimensional 3D warp bubble that must be de-
fined using all the tridimensional 3D Canonical Basis er,eθ and eφ.(see Appendix E about tridimensional
3D Spherical Coordinates).

Polar Coordinates are not real tridimensional 3D coordinates since it uses only the two Canonical Ba-
sis er and eθ.(see Appendix D about 2D Polar Coordinates).

The Hodge Star actually must be taken considering variable speeds.In this work we examine what happens
with the warp drive vector when the velocity is variable.Remember that a real warp drive must accelerate
or de-accelerate in order to be accepted as a physical valid model.

Our focus was concentrated in the Natario methods to obtain a warp drive vector.We know that we
used a language and a presentation method or style that may be regarded as exhaustive tedious and
monotonous for experienced or seasoned readers but we are concerned about beginners,newcomers,novices
or intermediate students not familiarized with the techniques Natario used to develop warp drive vectors
so our extensive mathematical demonstrations QED Quod Erad Demonstratum will benefit this audience
at least we hope.We gave our best efforts trying to accomplish this goal but only this audience will tell in
the future if we succeeded (or not).

The application of the new tridimensional 3D spherical coordinates warp drive vector wether in constant
or variable speeds to the ADM(Arnowitt-Dresner-Misner) formalism equations in General Relativity using
the approach of MTW (Misner-Thorne-Wheeler)resembling the works [10],[11][12] and [13] will appear in
a future work.

The Natario warp drive is probably the best candidate(known until now) for an interstellar space travel
considering the fact that a spaceship in a real superluminal spaceflight will encounter(or collide against)
hazardous objects(asteroids,comets,interstellar dust and debris etc) and the Natario spacetime offers an
excellent protection to the crew members as depicted in the works [18],[19],[20] and [21].
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7 Appendix A:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nY = vs ∗ dy for a constant speed vs

over the y-axis in Polar Coordinates in a R3 space basis

This appendix is also being written for novice or newcomer students on Warp Drive theory still not ac-
quainted with the methods we used to arrive at the final expression of the Natario Vector nY

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eq 3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (36)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (37)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (38)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (39)

rdθ ∼ r sin θ(dϕ ∧ dr) (40)

r sin θdϕ ∼ r(dr ∧ dθ) (41)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

∗dr = r2 sin θ(dθ ∧ dϕ) (42)

∗rdθ = r sin θ(dϕ ∧ dr) (43)

∗r sin θdϕ = r(dr ∧ dθ) (44)

11



Look that

dy = d(r sin θ) = sin θdr + r cos θdθ (45)

Or

dy = d(r sin θ) = sin θdr + cos θrdθ (46)

Applying the Hodge Star operator * to the above expression:

∗dy = ∗d(r sin θ) = sin θ(∗dr) + cos θ(∗rdθ) (47)

From

∗dr = r2 sin θ(dθ ∧ dϕ) (48)

∗rdθ = r sin θ(dϕ ∧ dr) (49)

We have:

∗dy = ∗d(r sin θ) = sin θ[r2 sin θ(dθ ∧ dϕ)] + cos θ[r sin θ(dϕ ∧ dr)] (50)

∗dy = ∗d(r sin θ) = [r2 sin2 θ(dθ ∧ dϕ)] + [r sin θ cos θ(dϕ ∧ dr)] (51)

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (52)

Now examining the expression:

d

(
1
2

sin2 θdϕ

)
(53)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2

sin2 θdϕ

)
(54)

∗d
(

1
2

sin2 θdϕ

)
∼ 1

2
∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [ddϕ] (55)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
∗ d[(sin2 θ)dϕ] ∼ 1

2
2 sin θ cos θ(dθ ∧ dϕ) (56)
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1
2
∗ d[(sin2 θ)dϕ] ∼ 1

2
2 sin θ cos θ(dθ ∧ dϕ) (57)

1
2
∗ d[(sin2 θ)dϕ] ∼ sin θ cos θ(dθ ∧ dϕ) (58)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (59)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (60)

∗d(dx) = d(dy) = d(dz) = 0 (61)

From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (62)

Now examining the expression:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] (63)

[(r2)(tan θ)][sin θ cos θ(dθ ∧ dϕ)] = [(r2)(
sin θ

cos θ
)][sin θ cos θ(dθ ∧ dϕ)] (64)

[(r2)(
sin θ

cos θ
)][sin θ cos θ(dθ ∧ dϕ)] = [(r2)][sin2 θ(dθ ∧ dϕ)] = sin θer (65)

Now examining the expression:

d

(
1
2
r2dϕ

)
(66)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2dϕ

)
(67)

∗d
(

1
2
r2dϕ

)
∼ 1

2
∗ [d(r2)dϕ] +

1
2
r2 ∗ d[(dϕ)] (68)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2r2 ∗ d[(dϕ)] = 0

This leaves us with:

1
2
∗ [d(r2)dϕ] ∼ 1

2
2r(dr ∧ dϕ) (69)
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Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (70)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (71)

∗d(dx) = d(dy) = d(dz) = 0 (72)

From above we can see for example that

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (73)

1
2
∗ [d(r2)dϕ] ∼ 1

2
2r(dr ∧ dϕ) ∼ r(dr ∧ dϕ) = r(dr ∧ dϕ) = −r(dϕ ∧ dr) (74)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):

dϕ ∧ dr = −dr ∧ dϕ (75)

1
2
∗ [d(r2)dϕ] ∼ −r(dϕ ∧ dr) (76)

Now examining the expression:

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = (−1)(sin θ)(cos θ)[−r(dϕ ∧ dr)] (77)

(−1)(sin θ)(cos θ)[−r(dϕ ∧ dr)] = [r sin θ cos θ(dϕ ∧ dr)] = cos θeθ (78)

Combining the expressions:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] = sin θer (79)

and

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = cos θeθ (80)

As being

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + (−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (81)

We obtain the same result of the Hodge Star for the y-axis

∗dy = ∗d(r sin θ) = [r2 sin2 θ(dθ ∧ dϕ)] + [r sin θ cos θ(dϕ ∧ dr)] (82)

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (83)
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Then we have:

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (84)

∗dy = [(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + (−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (85)

Now using the following expression:

[2f(r)][(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + [2f(r) + rf ′(r)](−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (86)

With these ones:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] = sin θer (87)

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = cos θeθ (88)

We have finally

[2f(r)][(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + [2f(r) + rf ′(r)](−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (89)

[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ (90)

Defining the new Natario vector nY with the Hodge Star operator * explicitly resolved :

nY = vs(t)[2f(r)] sin θer + vs[2f(r) + rf ′(r)] cos θeθ (91)

nY = 2vs(t)f(r) sinθer + vs(t)[2f(r) + rf ′(r)] cos θeθ (92)

compare the new Natario vector nY with the original Natario vector nX pg 5 in [1]:

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (93)

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (94)

nY = 2vs(t)f(r) sinθer + vs(t)[2f(r) + rf ′(r)] cos θeθ (95)

Do they look familiar ?

nY = Y rer + Y θeθ (96)

Y rs = 2vsf(rs) sin θ (97)

Y θ = +vs(2f(rs) + (rs)f ′(rs)) cos θ (98)
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8 Appendix B:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nY = vs ∗ dy for a constant speed vs or
for the first term vs∗dy from the Natario vector nY = vs∗dy+y∗dvs(a
variable speed) in a R4 space basis-Polar Coordinates

This appendix is also being written for novice or newcomer students on Warp Drive theory still not ac-
quainted with the methods we used to arrive at the final expression of the Natario Vector nY

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eqs 3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in
[3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (99)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) (100)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (101)

From above we get the following results

dr ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (102)

rdθ ∼ r sin θ(dt ∧ dϕ ∧ dr) (103)

r sin θdϕ ∼ r(dt ∧ dr ∧ dθ) (104)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in
[3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

∗dr = r2 sin θ(dt ∧ dθ ∧ dϕ) (105)

∗rdθ = r sin θ(dt ∧ dϕ ∧ dr) (106)

∗r sin θdϕ = r(dt ∧ dr ∧ dθ) (107)
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Look that

dy = d(r sin θ) = sin θdr + r cos θdθ (108)

Or

dy = d(r sin θ) = sin θdr + cos θrdθ (109)

Applying the Hodge Star operator * to the above expression:

∗dy = ∗d(r sin θ) = sin θ(∗dr) + cos θ(∗rdθ) (110)

From

∗dr = r2 sin θ(dt ∧ dθ ∧ dϕ) (111)

∗rdθ = r sin θ(dt ∧ dϕ ∧ dr) (112)

We have:

∗dy = ∗d(r sin θ) = sin θ[r2 sin θ(dt ∧ dθ ∧ dϕ)] + cos θ[r sin θ(dt ∧ dϕ ∧ dr)] (113)

∗dy = ∗d(r sin θ) = [r2 sin2 θ(dt ∧ dθ ∧ dϕ)] + [r sin θ cos θ(dt ∧ dϕ ∧ dr)] (114)

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (115)

Now examining the expression:

d

(
1
2

sin2 θdϕ

)
(116)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2

sin2 θdϕ

)
(117)

∗d
(

1
2

sin2 θdϕ

)
∼ 1

2
∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [ddϕ] (118)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
∗ d[(sin2 θ)dϕ] ∼ 1

2
2 sin θ cos θ(dt ∧ dθ ∧ dϕ) (119)
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1
2
∗ d[(sin2 θ)dϕ] ∼ 1

2
2 sin θ cos θ(dt ∧ dθ ∧ dϕ) (120)

1
2
∗ d[(sin2 θ)dϕ] ∼ sin θ cos θ(dt ∧ dθ ∧ dϕ) (121)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (122)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (123)

∗d(dx) = d(dy) = d(dz) = 0 (124)

From above we can see for example that

∗d[(sin2 θ)dϕ] = dt ∧ d(sin2 θ) ∧ dϕ− sin2 θdt ∧ ddϕ = 2sinθ cos θ(dt ∧ dθ ∧ dϕ) (125)

Now examining the expression:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] (126)

[(r2)(tan θ)][sin θ cos θ(dt ∧ dθ ∧ dϕ)] = [(r2)(
sin θ

cos θ
)][sin θ cos θ(dt ∧ dθ ∧ dϕ)] (127)

[(r2)(
sin θ

cos θ
)][sin θ cos θ(dt ∧ dθ ∧ dϕ)] = [(r2)][sin2 θ(dt ∧ dθ ∧ dϕ)] = sin θer (128)

Now examining the expression:

d

(
1
2
r2dϕ

)
(129)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2dϕ

)
(130)

∗d
(

1
2
r2dϕ

)
∼ 1

2
∗ [d(r2)dϕ] +

1
2
r2 ∗ d[(dϕ)] (131)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2r2 ∗ d[(dϕ)] = 0

This leaves us with:

1
2
∗ [d(r2)dϕ] ∼ 1

2
2r(dt ∧ dr ∧ dϕ) (132)
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Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (133)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (134)

∗d(dx) = d(dy) = d(dz) = 0 (135)

From above we can see for example that

∗[d(r2)dϕ] = 2rdt ∧ dr ∧ dϕ− r2dt ∧ ddϕ = 2r(dt ∧ dr ∧ dϕ) (136)

1
2
∗ [d(r2)dϕ] ∼ 1

2
2r(dt ∧ dr ∧ dϕ) ∼ r(dt ∧ dr ∧ dϕ) = r(dt ∧ dr ∧ dϕ) = −r(dt ∧ dϕ ∧ dr) (137)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):

dt ∧ dϕ ∧ dr = −dt ∧ dr ∧ dϕ (138)

1
2
∗ [d(r2)dϕ] ∼ −r(dt ∧ dϕ ∧ dr) (139)

Now examining the expression:

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = (−1)(sin θ)(cos θ)[−r(dt ∧ dϕ ∧ dr)] (140)

(−1)(sin θ)(cos θ)[−r(dt ∧ dϕ ∧ dr)] = [r sin θ cos θ(dt ∧ dϕ ∧ dr)] = cos θeθ (141)

Combining the expressions:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] = sin θer (142)

and

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = cos θeθ (143)

As being

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + (−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (144)

We obtain the same result of the Hodge Star for the y-axis

∗dy = ∗d(r sin θ) = [r2 sin2 θ(dt ∧ dθ ∧ dϕ)] + [r sin θ cos θ(dt ∧ dϕ ∧ dr)] (145)

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (146)
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Then we have:

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (147)

∗dy = [(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + (−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (148)

Now using the following expression:

[2f(r)][(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + [2f(r) + rf ′(r)](−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (149)

With these ones:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] = sin θer (150)

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = cos θeθ (151)

We have finally

[2f(r)][(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + [2f(r) + rf ′(r)](−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (152)

[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ (153)

Defining the new Natario vector nY with the Hodge Star operator * explicitly resolved :

nY = vs(t)[2f(r)] sin θer + vs[2f(r) + rf ′(r)] cos θeθ (154)

nY = 2vs(t)f(r) sinθer + vs(t)[2f(r) + rf ′(r)] cos θeθ (155)

compare the new Natario vector nY with the original Natario vector nX pg 5 in [1]:

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (156)

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (157)

nY = 2vs(t)f(r) sinθer + vs(t)[2f(r) + rf ′(r)] cos θeθ (158)

Do they look familiar ?

nY = Y rer + Y θeθ (159)

Y rs = 2vsf(rs) sin θ (160)

Y θ = +vs(2f(rs) + (rs)f ′(rs)) cos θ (161)
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9 Appendix C:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nY = ∗(vsy) = vs∗dy+y∗dvs for a variable
speed vs and a constant acceleration a in Polar Coordinates

any Natario vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value of r
defined by Natario as the interior of the warp bubble and nY = vs(t) ∗ dy with Y = vs for a large value of
r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])(see Appendix G for an explanation about this statement)

In the Appendices A and B we gave the mathematical demonstration of the Natario vector nY = vs ∗ dy
in the R3 and R4 space basis when the velocity vs is constant.Hence the complete expression of the Hodge
star that generates the Natario vector nY for a constant velocity vs is given by:

nY = ∗(vsy) = vs ∗ (dy) (162)

The equation of the Natario vector nY for a constant velocity vs is given by:

nY = 2vs(t)f(r) sinθer + vs(t)[2f(r) + rf ′(r)] cos θeθ (163)

nY = Y rer + Y θeθ (164)

With the contravariant shift vector components explicitly given by:

Y rs = 2vsf(rs) sin θ (165)

Y θ = +vs(2f(rs) + (rs)f ′(rs)) cos θ (166)

Because due to a constant speed vs the term y ∗ d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term y ∗ d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the Natario vector nY for a variable velocity vs is now given by:

nY = ∗(vsy) = vs ∗ (dy) + y ∗ (dvs) (167)

In order to study the term y ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 11,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 02 pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (168)

dt ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (169)
1These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need

these terms here and we can make S = u = 1
2This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can

make m = 1.Remember also that here we consider geometrized units in which c = 1
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The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2])(see
pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

∗dt = r2 sin θ(dr ∧ dθ ∧ dϕ) (170)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (171)

Because and considering a valid f(r) as a Natario shape function being f(r) = 1
2 for large r(outside

the warp bubble where Y = vs(t) and nY = vs(t) ∗ dy + y ∗ d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where Y = 0 and nY = 0) while being 0 < f(r) < 1

2 in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [1]) and considering also that the Natario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every
point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) = 0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity.The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time t1 and vs(t) = v2 in the time t2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
f(r) = 1

2 giving a generic expression for a variable velocity vs as vs(t) = at and consequently a v1 = at1
in the time t1 and a v2 = at2 in the time t2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[atf ′(r)dr + f(r)tda + f(r)adt] (172)

Applying the Hodge star to the total differential dvs we get:

∗dvs = 2[atf ′(r) ∗ dr + f(r)t ∗ da + f(r)a ∗ dt] (173)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t ∗ da = 0.This leaves us with:

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] (174)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)r2 sin θ(dt ∧ dθ ∧ dϕ) + f(r)ar2 sin θ(dr ∧ dθ ∧ dϕ)] (175)
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∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)er + f(r)aet] (176)

The complete expression of the Hodge star that generates the Natario vector nY for a variable velocity
vs is given by:

nY = ∗(vsy) = vs ∗ (dy) + y ∗ d(vs) (177)

The term vs ∗ dy was obtained in the Appendices A and B as follows:

vs ∗ (dy) = 2vs(t)f(r) sinθer + vs(t)[2f(r) + rf ′(r)] cos θeθ (178)

∗dy = 2f(r) sinθer + [2f(r) + rf ′(r)] cos θeθ (179)

The complete expression of the Hodge star that generates the Natario vector nY for a variable velocity
vs is now given by:

nY = ∗(vsy) = vs(2f(r) sinθer + [2f(r) + rf ′(r)] cos θeθ) + y(2[atf ′(r)er + f(r)aet]) (180)

But remember that we are in polar coordinates(pg 4 in [1]) in which y = rsinθ(see pg 5 in [1]) (see also
Appendix D)and this leaves us with:

nY = ∗(vsy) = vs(2f(r) sin θer + [2f(r) + rf ′(r)] cos θeθ) + rsinθ(2[atf ′(r)er + f(r)aet]) (181)

But we know that vs = 2f(r)at.Hence we get:

nY = ∗(vsy) = 2f(r)at(2f(r) sin θer + [2f(r) + rf ′(r)] cos θeθ) + rsinθ(2[atf ′(r)er + f(r)aet]) (182)

Then we can start with a warp bubble initially at the rest using the Natario vector shown above and
accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed
we turn off the acceleration and keep the speed constant.The terms due to the acceleration now disappears
and we are left again with the Natario vector for constant speeds shown below:

nY = 2vs(t)f(r) sin θer + vs(t)[2f(r) + rf ′(r)] cos θeθ (183)
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Working some algebra with the Natario vector for variable velocities we get:

nY = ∗(vsy) = 2f(r)at(2f(r) sin θer + [2f(r) + rf ′(r)] cos θeθ) + r sin θ(2[atf ′(r)er + f(r)aet]) (184)

nY = 4f(r)2at sin θer + 2f(r)at[2f(r) + rf ′(r)] cos θeθ + 2atf ′(r)r sin θer + 2f(r)r sin θaet (185)

nY = 2f(r)r sin θaet + 4f(r)2at sin θer + 2atf ′(r)r sin θer + 2f(r)at[2f(r) + rf ′(r)] cos θeθ (186)

nY = 2f(r)r sin θaet + 2[2f(r)2 + rf ′(r)]at sin θer + 2f(r)at[2f(r) + rf ′(r)] cos θeθ (187)

Then the Natario vector for variable velocities defined using contravariant shift vector components is
given by the following expressions:

nY = Y tet + Y rer + Y θeθ (188)

Or being:

nY = 2f(r)r sin θaet + 2[2f(r)2 + rf ′(r)]at sin θer + 2f(r)at[2f(r) + rf ′(r)] cos θeθ (189)

The contravariant shift vector components are respectively given by the following expressions:

Y t = 2f(r)r sin θa (190)

Y r = 2[2f(r)2 + rf ′(r)]at sin θ (191)

Y θ = +2f(r)at[2f(r) + rf ′(r)] cos θ (192)
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Figure 1: Polar Coordinates.(Source:Internet)

10 Appendix D:Polar Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed
of the warp bubble and ∗(dx) = ∗d(r cos θ) is the Hodge Star taken over the x-axis of motion in Polar
Coordinates(See pg 4 in [1]).(See also Appendices A and B in [9] for the detailed calculations).

We defined a warp drive vector nY = vs ∗ (dy) where vs is the constant speed of the warp bubble
and ∗(dy) = ∗d(r sin θ) is the Hodge Star taken over the y-axis of motion in Polar Coordinates.(See
Appendices A and B for the detailed calculations).

Due to a constant speed vs the term y ∗ d(vs) = 0.We examined what happens when the velocity is
variable and then the term y ∗ d(vs) no longer vanishes.Remember that a real warp drive must accelerate
or de-accelerate in order to be accepted as a physical valid model.

The complete expression of the Hodge star that generates the Natario vector nY for a variable veloc-
ity vs is now given by nY = ∗(vsy) = vs ∗ (dy) + y ∗ (dvs)(see Appendix C for detailed calculations).
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Figure 2: Tridimensional 3D Spherical Coordinates.(Source:Internet)

11 Appendix E:Tridimensional 3D Spherical Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed
of the warp bubble and ∗(dx) = ∗d(r cos θ) is the Hodge Star taken over the x-axis of motion in Polar
Coordinates(See pg 4 in [1].(See also Appendices D and F ).

Note that in this case of Tridimensional 3D Spherical Coordinates the Hodge Star must be taken
no longer over d(r cos θ) but instead over d(ρ sinφ cos θ) and this demands more calculations.Replacing ρ
by r we have the following expression for the Hodge Star ∗dx = ∗d(r sinφ cos θ):(see Appendices J and K
in [9] for details)

We in this case of Tridimensional 3D Spherical Coordinates defined the Hodge Star no longer over
the x-axis of motion but instead we took the Hodge Star over the y-axis and this means a Hodge Star
taken over d(ρ sinφ sin θ) and this demands more calculations.Replacing ρ by r we have the following ex-
pression for the Hodge Star ∗dy = ∗d(r sinφ sin θ).

Our new tridimensional 3D spherical coordinates warp drive vector in R3 with constant speed vs
or in R4 with constant speed vs is given by: nY = vs ∗ dy = vs ∗ d(r sinφ sin θ).(see Appendices J and
K for details)
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Due to a constant speed vs the term y ∗ d(vs) = 0.Now we must examine what happens when the
velocity is variable and then the term y ∗ d(vs) no longer vanishes.Remember that a real warp drive must
accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression of
the Hodge star that generates the warp drive vector nY in tridimensional 3D spherical coordinates for
a variable velocity vs is now given by nY = vs ∗ dy + y ∗ dvs(see Appendix L for detailed calculations):
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Figure 3: Artistic Presentation of Tangent and Cotangent Spaces I.(Source:Internet)

12 Appendix F:Tangent and Cotangent Spaces I

The Canonical Basis of the Hodge Star * in spherical coordinates in R3 can be defined as follows(see pg 4
in [1],eq 3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (193)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (194)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (195)

The Canonical Basis of the Hodge Star * in spherical coordinates in R4 can be defined as follows(see
pg 4 in [1],eqs 3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and
pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (196)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) (197)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (198)
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In order to study the term y ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 13,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 04 pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (199)

As a matter of fact we have for the Canonical Basis and the Hodge Star * in R4 the following equations
(see pg 47 eqs 2.67 to 2.70 in [3]):

∗e0 = e1 ∧ e2 ∧ e3 (200)

∗e1 = e0 ∧ e2 ∧ e3 (201)

∗e2 = e0 ∧ e3 ∧ e1 (202)

∗e3 = e0 ∧ e1 ∧ e2 (203)

In R3 the corresponding equations are:(see pg 55 in [5])(see also pg 54 fig 4.2 in [5] for a graphical
presentation of the Hodge Star * in R3)(see pg 18 eq 1.55 in [6]):

∗e1 = e2 ∧ e3 (204)

∗e2 = e3 ∧ e1 = −e1 ∧ e3 (205)

∗e3 = e1 ∧ e2 (206)

The Canonical Basis ei are related to the partial derivatives ∂
∂xi

or simplifying related to ∂xi wether in
R3 or R4 and are graphically represented by the partial derivatives ∂xi included in the tangent space of
the picture given in the beginning of this section.

3These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S = u = 1

4This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which c = 1
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On the other hand in R4 we also have the following relations for the Hodge Star *:(see pg 92 in [3])(see
also eqs 4.55 and 4.56 pg 179 in [8])

∗dt = dx ∧ dy ∧ dz (207)

∗dx = dt ∧ dy ∧ dz (208)

∗dy = dt ∧ dz ∧ dx (209)

∗dz = dt ∧ dx ∧ dy (210)

Also for R4 considering the ((w, v)(εΛ3
p)(R

1,3)) formalism we may have the following relations:(see pg
382 in [4])(x1 = x,x2 = y,x3 = z)

∗dt = dx1 ∧ dx2 ∧ dx3 (211)

∗dx1 = dt ∧ dx2 ∧ dx3 (212)

∗dx2 = dt ∧ dx3 ∧ dx1 (213)

∗dx3 = dt ∧ dx1 ∧ dx2 (214)

In R3 we would have the following relations:(see pg 117 eqs 4.6 and 4.7 in [7])(see pg 298 in [4])

∗dx = dy ∧ dz (215)

∗dy = dz ∧ dx (216)

∗dz = dx ∧ dy (217)

The differentials dx,dy,dz or dx1, dx2 and dx3 are related to the cotangent space differentials included
in the picture given in the beginning of this section.

See the graphical presentations of the relations between tangent and cotangent spaces in pg 55 fig 2.28 and
pg 70 fig 3.1 in [4].See pg 168 fig 5.19 for a graphical presentation of dx∧ dy,pg 169 fig 5.20 for a graphical
presentation of dy ∧ dz and pg 170 fig 5.21 for a graphical presentation of dz ∧ dx all in [4].
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Useful relations to deal with the Hodge Star * are given by eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3
pg 68(a)(b) in [2]:See also pg 89 in [3],pg 112 in [4],pg 97 in [5],pg 36 eqs 2.21 and 2.22 in [6],pg 70 eq 3.3
in [7].

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (218)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (219)

∗d(dx) = ∗d(dy) = ∗d(dz) = 0 (220)

p = 3 stands for the R4 and p = 2 stands for the R3.

See also Appendix I.
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Figure 4: Artistic Presentation of a Warp Bubble.(Source:Internet)

13 Appendix G:Artistic Presentation of a Warp Bubble

In 2001 the Natario warp drive appeared.([1]).This warp drive deals with the spacetime as a ”strain” tensor
of Fluid Mechanics(pg 5 in [1]). Imagine a fish inside an aquarium and the aquarium is floating in the
surface of a river but carried out by the river stream.The warp bubble in this case is the aquarium.An
observer at the rest in the margin of the river would see the aquarium passing by him at a large speed but
inside the aquarium the fish is at the rest with respect to his local neighborhoods.Since the fish is at the
rest inside the aquarium the fish would see the observer in the margin passing by him with a large relative
speed since for the fish is the margin that moves with a large relative velocity

any Natario vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nY = vs(t) ∗ dy with Y = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Lets explain better this statement:Natario considered in this case a coordinates reference frame placed
inside the bubble where the fish inside the aquarium or the astronaut in a spaceship inside the bubble
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depicted above are at the rest with respect to their local neighborhoods.Then any Natario vector must be
zero inside the bubble or the aquarium or the spaceship.

On the other hand since the fish sees the margin passing by him with a large relative velocity or the
astronaut would see a stationary observer in outer space outside the bubble passing by him with a large
relative velocity then any Natario vector outside the bubble must have a value equal to the relative velocity
seen by both the fish and the astronaut.

Considering a valid f as a Natario shape function being f = 1
2 for large r(outside the warp bubble)

and f = 0 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble

also known as the Natario warped region(pg 5 in [1]):The walls of the bubble the Natario warped region
corresponds to the distorted region in the picture depicted in this Appendix.

See also Appendix H.
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Figure 5: Another Artistic Presentation of a Warp Bubble.(Source:Internet)

14 Appendix H:Another Artistic Presentation of a Warp Bubble

Natario considered a coordinates reference frame placed inside the bubble.Now we must consider a coordi-
nates reference frame placed outside the bubble:In this case the observer at the rest in the margin of the
river would see the aquarium passing by him with a large velocity with the fish inside.Also a stationary
observer at the rest in outer space would see the spaceship depicted in the picture above passing by him
with a large velocity with the astronaut inside.

Now the rules originally defined by Natario are interchanged:

Since the observer in the margin and the observer in outer space are at the rest any Natario vector in
this case must be zero outside the bubble.

But since the fish and the spaceship are being seen by the observer at the rest in the margin and the
observer at the rest in outer space both fish and spaceship with a large velocity then the Natario vector
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inside the bubble must have a value equal to the velocity seen by both observers.

Considering a valid f as a Natario shape function being f = 0 for large r(outside the warp bubble)
and f = 1

2 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble also

known as the Natario warped region:The walls of the bubble the Natario warped region corresponds to the
distorted region the ”blue circle” in the picture depicted in this Appendix.

For an introductory explanation about remote frames outside the bubble or ship frames inside the bubble
or comoving coordinates frames see pg 8 in [22].
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Figure 6: Artistic Presentation of Tangent and Cotangent Spaces II.(Source:Internet)

15 Appendix I:Tangent and Cotangent Spaces II

Consider a curve R in R4 defined in function of a given set of coordinates u0,u1,u2 and u3 as being
R = R(u0, u1, u2, u3).

A total derivative of R is given by:

dR =
∂R

∂u0
du0 +

∂R

∂u1
du1 +

∂R

∂u2
du2 +

∂R

∂u3
du3 (221)

Applying the Einstein summing convention:

dR =
∂R

∂ui
dui = eidui (222)

or

dR =
∂R

∂uj
duj = ejduj (223)

With i, j = 0, 1, 2, 3 as the coordinates, ∂R
∂ui and ∂R

∂uj as the directional partial derivatives of R with
respect to each coordinate and ei and ej are the respective Canonical Basis.

Defining ds2 = dR
⊗

dR we have:

ds2 = dR
⊗

dR =
∂R

∂ui
dui

⊗ ∂R

∂uj
duj = eidui

⊗
ejduj (224)

ds2 =
∂R

∂ui

∂R

∂uj
duiduj = eiejduiduj = gijduiduj (225)

gij =
∂R

∂ui

∂R

∂uj
= eiej (226)
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The directional partial derivatives of R and their respective Canonical Basis are related to the ∂i and
∂j tangent spaces of the picture depicted in the beginning of this section while the differentials dui and
duj are related to the respective cotangent spaces.See pg 148 problem 17 in [14],pg 132 eq 10.12 pg 133
eqs 10.14a,10.14b and 10.15 in [15].

gij = ∂R
∂ui

∂R
∂uj = eiej is the spacetime metric tensor of General Relativity.
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16 Appendix J:differential forms,Hodge star and the mathematical demon-
stration of the new warp drive vector nY = vs ∗ dy for a constant
speed vs in a R3 space basis-3D Spherical Coordinates

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in [1],eq
3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (227)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (228)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (229)

Back again to the equivalence between 3D spherical and cartezian coordinates d(ρ sin φ sin θ) :(See Ap-
pendix E)

We will replace ρ by r and ϕ by φ.Then we have:

d(r sinφ sin θ) = sinφ[d(r sin θ)] + (r sin θ)d(sinφ) (230)

d(r sinφ sin θ) = sinφ[sinθdr + r(d sin θ)] + (r sin θ)(cosφdφ) (231)

d(r sinφ sin θ) = sinφ[sinθ(dr) + rcosθ(dθ)] + (r sin θ)[cosφ(dφ)] (232)

d(r sinφ sin θ) = sinφ[sinθ(dr) + cosθ(rdθ)] + cosφ[(r sin θ)(dφ)] (233)

Applying the Hodge Star * to the term [sinθ(dr)+cosθ(rdθ)] we will get the same results already shown
in the Appendix A and the first part of the 3D spherical warp drive vector is the one of the Appendix A
multiplied by sinφ .Then we must concern ourselves with the term cosφ[(r sin θ)(dφ)] and the following
Canonical Basis for the Hodge Star * since the other two were covered in the Appendix A.

eφ ≡
1

r sin θ

∂

∂φ
∼ r sin θdφ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (234)

Now applying the Hodge Star * to the term d(r sinφ sin θ) we have:

∗d(r sinφ sin θ) = sinφ[sinθ ∗ (dr) + cosθ ∗ (rdθ)] + cosφ[∗(r sin θ)(dφ)] (235)

∗d(r sin φ sin θ) = sinφ[(sinθ)er + (cosθ)eθ] + (cosφ)eφ (236)

∗d(r sinφ sin θ) = sinφ[sinθer + cosθeθ] + cosφeφ (237)
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In Appendix A we computed the Hodge Star ∗dy in 2D Polar Coordinates as being ∗dy = ∗d(r sin θ)
as being:

∗dy = ∗d(r sin θ) = sin θer + cos θeθ (238)

∗dy = [(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + (−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (239)

We used the following expression:

[2f(r)][(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + [2f(r) + rf ′(r)](−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (240)

With these ones:

[(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] = sin θer (241)

(−1)(sin θ)(cos θ)
1
2
∗ [d(r2)dϕ] = cos θeθ (242)

We arrived finally at:

[2f(r)][(r2)(tan θ)][∗d
(

1
2

sin2 θdϕ

)
] + [2f(r) + rf ′(r)](−1)(sin θ)(cos θ)

1
2
∗ [d(r2)dϕ] (243)

[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ (244)

This is the new Natario vector nY with the Hodge Star operator * explicitly resolved in 2D Polar
Coordinates:

nY = vs(t)[2f(r)] sin θer + vs[2f(r) + rf ′(r)] cos θeθ (245)

But in 3D Spherical Coordinates the Hodge Star ∗dy is given by ∗dy = ∗d(r sinφ sin θ)

∗d(r sinφ sin θ) = sinφ[sinθer + cosθeθ] + cosφeφ (246)

The term sinθer + cosθeθ above will be replaced by [2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ and the
term cosφeφ will be replaced by [2f(r) + rf ′(r)]cosφeφ

And finally we arrived at the final expression for the new warp drive vector nY with the Hodge Star
operator * explicitly resolved in 3D Spherical Coordinates for a constant speed vs:

nY = vs(t)sinφ[[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ] + vs(t)[2f(r) + rf ′(r)]cosφeφ (247)
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nY = vs(t)sinφ[[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ] + vs(t)[2f(r) + rf ′(r)]cosφeφ (248)

nY = [2f(r)]vs(t)sinφ sin θer + vs(t)sinφ[2f(r) + rf ′(r)] cos θeθ + vs(t)[2f(r) + rf ′(r)]cosφeφ (249)

This is the final form of our new tridimensional 3D spherical warp drive vector nY with the Hodge
Star over the y-axis for a constant speed vs.Note that Natario in pg 4 in [1] defined the x-axis as the polar
axis but now the y-axis is the polar axis.If the motion occurs only in the y-axis in polar coordinates then
the angle between the x-y plane and the z-axis is 90 degrees and in this case sinφ = 1 and cos φ = 0 and
our new warp drive vector nY in tridimensional 3D spherical coordinates reduces to the original Natario
warp drive vector nY in polar coordinates.(see Appendix A).

For our new tridimensional 3D spherical coordinates warp drive vector nY with a constant speed vs
and Hodge Star over the y-axis:

nY = Y rer + Y θeθ + Y φeφ (250)

The corresponding shift vectors are:

Y r = [2f(r)]vs(t)sinφ sin θ (251)

Y θ = vs(t)sinφ[2f(r) + rf ′(r)] cos θ (252)

Y φ = vs(t)[2f(r) + rf ′(r)]cosφ (253)

Compare with the equation of the new warp drive vector in tridimensional 3D spherical coordinates
with a constant speed vs nX and the Hodge Star over the x-axis given by:

nX = Xrer + Xθeθ + Xφeφ (254)

With the contravariant shift vector components Xrs, Xθ and Xφ given by:(see Appendix J in [9] for
details )

Xr = vs(t)[sinφ][2f(r) cosθ] (255)

Xθ = −vs(t)[sinφ][2f(r) + rf ′(r)] sin θ] (256)

Xφ = [vs(t)cosφ][cotθ[2(f(r)) + (rf ′(r))] (257)

Note that Natario in pg 4 in [1] defined the x-axis as the polar axis.If the motion occurs only in the
x-axis in polar coordinates then the angle between the x-y plane and the z-axis is 90 degrees and in this
case sinφ = 1 and cos φ = 0 and our new warp drive vector nX in tridimensional 3D spherical coordinates
reduces to the original Natario warp drive vector nX in polar coordinates.(see Appendix A in [9]).
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17 Appendix K:differential forms,Hodge star and the mathematical
demonstration of the warp drive vector nY = vs ∗ dy for a con-
stant speed vs or for the first term vs ∗ dy from the warp drive
vector nY = vs ∗ dy + y ∗ dvs(a variable speed) in a R4 space basis-
Tridimensional 3D Spherical Coordinates

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in [1],eqs
3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see
also eqs 4.55 and 4.56 pg 179 in [8]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (258)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) (259)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (260)

Useful relations to deal with the Hodge Star * are given by eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3
pg 68(a)(b) in [2]:See also pg 89 in [3],pg 112 in [4],pg 97 in [5],pg 36 eqs 2.21 and 2.22 in [6],pg 70 eq 3.3
in [7].

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (261)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (262)

∗d(dx) = ∗d(dy) = ∗d(dz) = 0 (263)

p = 3 stands for the R4 and p = 2 stands for the R3.

Back again to the equivalence between 3D spherical and cartezian coordinates d(ρ sinφ sin θ) :(See Ap-
pendix E)

We will replace ρ by r and ϕ by φ.Then we have:

d(r sinφ sin θ) = sinφ[d(r sin θ)] + (r sin θ)d(sinφ) (264)

d(r sinφ sin θ) = sinφ[sinθ(dr) + cosθ(rdθ)] + cosφ[(r sin θ)(dφ)] (265)

Applying the Hodge Star * to the terms above we will get the same results already shown in the
Appendix J .As a matter of fact comparing the Appendices A and B the given final result is the same in
both Appendices except for the fact that in Appendix A the Hodge Star is taken over R3 and in Appendix
B the Hodge Star is taken over R4.

∗d(r sin φ sin θ) = sinφ[sinθ ∗ (dr) + cosθ ∗ (rdθ)] + cosφ ∗ [(r sin θ)(dφ)] (266)
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The final result is the same of Appendix J :

nY = Y rer + Y θeθ + Y φeφ (267)

The corresponding shift vectors are:

Y r = [2f(r)]vs(t)sinφ sin θ (268)

Y θ = vs(t)sinφ[2f(r) + rf ′(r)] cos θ (269)

Y φ = vs(t)[2f(r) + rf ′(r)]cosφ (270)
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18 Appendix L:differential forms,Hodge star and the mathematical
demonstration of the new warp drive vector nY = ∗(vsy) = vs ∗
dy + y ∗ dvs for a variable speed vs and a constant acceleration a in
Tridimensional 3D Spherical Coordinates

any warp drive vector nY generates a warp drive spacetime if nY = 0 and Y = vs = 0 for a small value
of r defined by Natario as the interior of the warp bubble and nY = vs(t) ∗ dy with Y = vs for a large
value of r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp
bubble.(pg 4 in [1])(see Appendix G for an explanation about this statement)

In the Appendices J and K we gave the mathematical demonstration of the new warp drive vector nY
in the R3 and R4 space basis in tridimensional 3D spherical coordinates where the velocity vs is con-
stant.Hence the complete expression of the Hodge star that generates the warp drive vector nY = vs ∗ dy
for a constant velocity vs is given by:

nY = ∗(vsy) = vs ∗ (dy) (271)

Our new tridimensional 3D spherical coordinates warp drive vector in R4 with constant speed vs
nY = vs ∗ dy or for the first term vs ∗ dy of the new tridimensional 3D spherical coordinates warp drive
vector in R4 with variable speed vs nY = vs ∗ dy + y ∗ dvs is given by:

nY = vs(t)sinφ[[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ] + vs(t)[2f(r) + rf ′(r)]cosφeφ (272)

nY = Y rer + Y θeθ + Y φeφ (273)

The corresponding shift vectors are:

Y r = [2f(r)]vs(t)sinφ sin θ (274)

Y θ = vs(t)sinφ[2f(r) + rf ′(r)] cos θ (275)

Y φ = vs(t)[2f(r) + rf ′(r)]cosφ (276)

Because due to a constant speed vs the term y ∗ d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term y ∗ d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the warp drive vector nY for a variable velocity vs is now given by:

nY = ∗(vsy) = vs ∗ (dy) + y ∗ (dvs) (277)
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In order to study the term y ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 15,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 06 pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3])(see also eqs 4.55 and 4.56 pg 179 in [8]):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (r sin θdφ) ∼ r2 sin θ(dr ∧ dθ ∧ dφ) (278)

The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2](see
also eqs 4.55 and 4.56 pg 179 in [8])):

∗dt = r2 sin θ(dr ∧ dθ ∧ dφ) (279)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (280)

Because and considering a valid f(r) as a Natario shape function being f(r) = 1
2 for large r(outside

the warp bubble where Y = vs(t) and nY = vs(t) ∗ dy + y ∗ d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where Y = 0 and nY = 0) while being 0 < f(r) < 1

2 in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [1]) and considering also that the Natario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every
point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) = 0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity.The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time t1 and vs(t) = v2 in the time t2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
f(r) = 1

2 giving a generic expression for a variable velocity vs as vs(t) = at and consequently a v1 = at1
in the time t1 and a v2 = at2 in the time t2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[atf ′(r)dr + f(r)tda + f(r)adt] (281)

5These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S = u = 1

6This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which c = 1
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Applying the Hodge star to the total differential dvs we get:

∗dvs = 2[atf ′(r) ∗ dr + f(r)t ∗ da + f(r)a ∗ dt] (282)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t ∗ da = 0.This leaves us with:

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] (283)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)r2 sin θ(dt ∧ dθ ∧ dφ) + f(r)ar2 sin θ(dr ∧ dθ ∧ dφ)] (284)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)er + f(r)aet] (285)

The complete expression of the Hodge star that generates the warp drive vector nX for a variable
velocity vs is given by:

nY = ∗(vsy) = vs ∗ (dy) + y ∗ d(vs) (286)

The term vs ∗ dy was obtained in the Appendices J and K as follows:

nY = vs(t)sinφ[[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ] + vs(t)[2f(r) + rf ′(r)]cosφeφ (287)

The complete expression of the Hodge star that generates the warp drive vector nY for a variable
velocity vs is now given by:

nY = vs(t)sinφ[[2f(r)] sin θer+[2f(r)+rf ′(r)] cos θeθ]+vs(t)[2f(r)+rf ′(r)]cosφeφ+y(2[atf ′(r)er+f(r)aet])
(288)

But remember that we are in tridimensional 3D spherical coordinates(see Appendix E) in which y =
r sinφ sin θ and this leaves us with:

nY = A + B → A = vs ∗ dy → B = y ∗ dvs (289)

A = vs(t)sinφ[[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ] + vs(t)[2f(r) + rf ′(r)]cosφeφ (290)

B = (r sinφ sin θ)(2[atf ′(r)er + f(r)aet]) (291)

But we know that vs = 2f(r)at.Hence we get:
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nY = A + B → A = vs ∗ dy → B = y ∗ dvs (292)

A = [2f(r)at]sinφ[[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ] + [2f(r)at][2f(r) + rf ′(r)]cosφeφ (293)

B = (r sinφ sin θ)(2[atf ′(r)er + f(r)aet]) (294)

Then we can start with a warp bubble initially at the rest using the warp drive vector shown above and
accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed
we turn off the acceleration and keep the speed vs constant.The term B due to the acceleration y ∗ (dvs)
now disappears the speed vs is no longer vs = 2f(r)at and we are left again with the warp drive vector for
constant speeds shown below:

nY = A → A = vs ∗ dy (295)

A = vs(t)sinφ[[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ] + vs(t)[2f(r) + rf ′(r)]cosφeφ (296)

Working some algebra with the new warp drive vector for variable velocities we get:7

nY = A + B → A = vs ∗ dy → B = y ∗ dvs (297)

A = [2f(r)at]sinφ[[2f(r)] sin θer + [2f(r) + rf ′(r)] cos θeθ] + [2f(r)at][2f(r) + rf ′(r)]cosφeφ (298)

B = (r sinφ sin θ)(2[atf ′(r)er + f(r)aet]) (299)

A = (2f(r)at) sinφ[2f(r) sin θer]+(2f(r)at) sinφ[2f(r)+rf ′(r)] cos θeθ+(2f(r)at)cosφ[[2(f(r))+(rf ′(r))]eφ]]
(300)

B = 2(r sin φ sin θ)atf ′(r)er + 2(r sinφ sin θ)f(r)aet (301)

A = 4(f(r)2at)(sinφ)(sin θ)er+(2f(r)at)[2f(r)+rf ′(r)](sinφ)(cos θ)eθ+(2f(r)at)[2(f(r))+(rf ′(r))](cosφ)eφ

(302)

B = 2(at)(rf ′(r))(sinφ)(sin θ)er + 2(rf(r)a))(sinφ)(sin θ)et (303)

7we know that we are being tedious monotonous and repetitive but we are writing this mainly for beginners or introductory
students
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Rearranging the terms we have:

A = 4(f(r)2at)(sinφ)(sin θ)er+(2f(r)at)[2f(r)+rf ′(r)](sinφ)(sin θ)eθ+(2f(r)at)[2(f(r))+(rf ′(r))](cosφ)eφ

(304)

A = (2f(r)at) sinφ[2f(r) sin θer]+(2f(r)at) sinφ[2f(r)+rf ′(r)] cos θeθ+(2f(r)at)cosφ[[2(f(r))+(rf ′(r))]eφ]]
(305)

(2f(r)at)[2f(r)](sinφ)(sin θ)er+(2f(r)at)[2f(r)+rf ′(r)](sinφ)(cos θ)eθ+(2f(r)at)[2f(r)+(rf ′(r))](cosφ)eφ

(306)

B = 2(at)(rf ′(r))(sinφ)(sin θ)er + 2(rf(r)a))(sinφ)(sin θ)et (307)

Working the terms with er

(2f(r)at) sinφ[2f(r) sin θer] + 2(at)(rf ′(r))(sinφ)(sin θ)er (308)

(2f(r)at)[2f(r)](sinφ)(sin θ)er + 2(at)(rf ′(r))(sinφ)(sin θ)er (309)

(2at)[2f(r)2](sinφ)(sin θ)er + 2(at)(rf ′(r))(sinφ)(sin θ)er (310)

(2at)[2f(r)2 + (rf ′(r))](sinφ)(sin θ)er (311)

At last we can give now the new warp drive vector for variable velocities in real tridimwensional 3D
spherical coordinates using its respective contravariant shift vector components:8

nY = Y tet + Y rer + Y θeθ + Y φeφ (312)

Y t = 2(rf(r)a))(sinφ)(sin θ) (313)

Y r = (2at)[2f(r)2 + (rf ′(r))](sinφ)(sin θ) (314)

Y θ = (2f(r)at)[2f(r) + rf ′(r)](sinφ)(cos θ) (315)

Y φ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ) (316)

8again:the section is extensive but a beginner needs all these QED Quod Erad Demonstratum mathematical demonstrations
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Comparing the new warp drive vector for variable velocities in real tridimensional 3D spherical coor-
dinates with the Natario polar coordinates warp drive vector counterpart:

nY = Y tet + Y rer + Y θeθ + Y φeφ (317)

Y t = 2(rf(r)a))(sinφ)(sin θ) (318)

Y r = (2at)[2f(r)2 + (rf ′(r))](sinφ)(sin θ) (319)

Y θ = (2f(r)at)[2f(r) + rf ′(r)](sinφ)(cos θ) (320)

Y φ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ) (321)

nY = Y tet + Y rer + Y θeθ (322)

Y t = 2f(r)r sin θa (323)

Y r = 2[2f(r)2 + rf ′(r)]at sin θ (324)

Y θ = +2f(r)at[2f(r) + rf ′(r)] cos θ (325)

Natario defined a motion in the x−axis of polar coordinates (pgs 4 and 5 in [1]) but we considered the
motion in the y−axis then the polar plane x− y makes an angle of 90 degrees with the z−axis and since
sinφ = 1 and cos φ = 0 it is easy to see that in this case the new warp drive vector for variable velocities
in real tridimensional 3D spherical coordinates reduces itself to the Natario polar coordinates warp drive
vector counterpart:

The difference occurs only in a real tridimensional motion.

48



Comparing the new warp drive vector for variable velocities in real tridimensional 3D spherical coor-
dinates and Hodge Star over the y-axis nY with the the new warp drive vector nX in tridimensional 3D
spherical coordinates with a variable speed vs and Hodge Star over the x-axis:

nY = Y tet + Y rer + Y θeθ + Y φeφ (326)

Y t = 2(rf(r)a))(sinφ)(sin θ) (327)

Y r = (2at)[2f(r)2 + (rf ′(r))](sinφ)(sin θ) (328)

Y θ = (2f(r)at)[2f(r) + rf ′(r)](sinφ)(cos θ) (329)

Y φ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ) (330)

nX = Xtet + Xrer + Xθeθ + Xφeφ (331)

With the contravariant shift vector components Xt,Xrs, Xθ and Xφ given by:
(see Appendices K and L in [9] for details )

Xt = 2(rf(r)a))(sinφ)(cos θ) (332)

Xr = (2at)[2f(r)2 + (rf ′(r))](sinφ)(cos θ) (333)

Xθ = −(2f(r)at)[2f(r) + rf ′(r)](sinφ)(sin θ) (334)

Xφ = (2f(r)at)[2f(r) + (rf ′(r))](cosφ)(cotθ) (335)

Do they look familiar ?
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